- Use a GAM to find the best parametric form (e.g., x^{2}). This can be achieved by inspecting the plots of $f(x)$ versus x (with the residuals) and by comparing the AICs between the GAM and the parametric versions.
- Then use the semi-parametric GAM to provide an adjusted estimate of x :

$$
-E(y)=B_{0}+B_{1} x^{2}+f(z)
$$

- Another way to use the GAMs is not to try to determine the most parsimonious model using statistical inference but to use it as a mean to find models that make epidemiological sense.
- For example, assume that the variable of interest is x and the covariate is z , and both are measured continuously.

The Montreal Occupational Breast Cancer Study

- Objective: To determine whether past occupational exposures are associated with increased rates of postmenopausal breast cancer.

Design

- Population-based case-control study
- 18 hospitals in Montreal
- Cases: Incident breast cancer, ≥ 50 y
- Controls: other selected sites of cancer
-~ frequency-matched to cases by age and hospital

Fieldwork

- Interviews by telephone or face-to-face
- Detailed questionnaire on nonoccupational risk factors
- Probing questionnaire regarding details of each occupation
- Interviews given to a team of chemists and industrial hygienist who translate job descriptions into a set of profiles of exposure for about 300 agents
- Response rates:
-81\% cases
-73\% controls
- Quality of data:
- few missing data
- Validity of data:
- control population consists of other sites of cancer
- do we find the same risk factors usually observed in c-c studies of breast cancer?

Statistical Analyses

- Outcome:
-breast cancer, binary response => logistic model
- Explanatory Variables:
-Age at menarche
-Number of full-term births
-Age at $1^{\text {st }}$ full-term birth

Confounding Variables

- Age at diagnosis
- Age at menopause
- Previous breast disease
- Alcohol consumption
- Education
- Family history of breast cancer
- Language
- "Ethnicity"

Questions

- Which covariates are associated with the risk of developing breast cancer?
- What is the best functional form to use for each?
- Are the three reproductive variables independent risk factors?
- Can they be modeled together (collinearity)?
-What is the best functional form?

