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BIOMETRIcS 34, 100-105 
March, 1978 

A re There Two Logistic Regressions for Retrospective Studies? 
N. BRESLOW and W. POWERS 

Department of Biostatistics SC-32, University of Washington, Seattle, Washington 98195, U.S.A. 

Summary 

A comparison is made between two different approaches to the linear logistic regression 
analysis of retrospective study data. the prospective model wherein the dependent variable is a 
dichotomous indicator of case/control status, and the retrospective model wherein the dependent 
variable is a binary or polychotomnous classification of exposure. The two models yield increas- 
ingly similar estimates of the relative risk with increasing degrees of covariate adjustment. When 
the covariate effects are saturated with parameters the relative risk estimates are identical. The 
prospective model is generally to be preferred Jfr studies involving multiple quantitative risk 
factors. 

1. Introduction 

Analysis of retrospective study data is oriented toward estimating the relative risk (RR), 
i.e. the ratio of disease incidence among persons exposed versus those not exposed to the risk 
factor(s) under investigation (Mantel and Haenszel 1959). Adjustments are usually made for 
confounding factors, related to both disease and exposure, whose effects might otherwise bias 
the results. An important feature of the analysis is to identify and quantify the effects of 
factors which modify the relative risk (Miettinen 1974). 

Two distinct versions of the logistic regression model (Cox 1970) have been proposed for 
such analyses. In one, termed here the prospective model, the dependent or outcome variable 
is formally considered to be the binary indicator of case/control status. Regression variables 
represent both risk and confounding factors, with interaction terms used to quantify effect 
modification. Although this model would seem most appropriate for prospective sampling, 
wherein healthy individuals are classified by exposure and followed up to determine disease 
occurrence, Anderson (1972, 1973) has shown that it may be applied also to retrospective 
studies involving separate samples of cases and controls. See Mantel (1973), Siegel and 
Greenhouse (1973) and Prentice and Breslow (1978) for further accounts of the relationship 
between prospective and retrospective sampling. 

In the retrospective logistic model, proposed by Prentice (1976), the outcome variable is a 
binary indicator of exposure to one particular risk factor. Here the regression variables 
represent disease (case/control) status, other risk factors and confounding factors, with 
effect modification expressed through interaction terms involving disease status. This ap- 
proach accords better with the sampling scheme actually used in retrospective studies. 

In this note we compare these two logistic models by relating both to a log-odds ratio 
regression model for a series of 2 X 2 tables (Zelen 1971, Breslow 1976). Conditions are 
derived under which they yield identical estimates of the RR and its modifications. Data 
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LOGISTIC REGRESSION AND RETROSPECTIVE STUDIES 101 

from the Oxford Childhood Cancer Survey (Kneale 1971) are analyzed to illustrate the 
principle involved, and the numerical results serve as a basis for further discussion. 

2. Conditions for Equivalence of the Prospective and Retrospective Estimates 
Retrospective studies typically involve three types of factors: (i) the disease d which 

occurs at two levels d = I (case) and d = 0 (control); (ii) risk factor(s) f = (f1, f2, )'; and 
(iii) covariates g = (g, g2, ... )'. Suppose for the moment there is but a single risk factor 
coded f = I for exposed and f = 0 for non-exposed. The RR is well approximated by the 
odds ratio which, for a given set of covariates g, is defined by 

P(d = I If = 1, g)P(d = 0 If = 0, g) () 

or, equivalently (Cornfield 1951, Prentice 1976), 

~() P(f = I Id = I 'g) P~f=0 1d =0, g) 2 
P(f = IId = O, g)P(f = O d = I, g) (2) 

Covariates are included in the analysis for either, or both, of two reasons: (i) they are 
themselves risk factors for the disease and hence may need to be controlled in the analysis; or 
(ii) they may interact with disease status and risk variables so as to influence the RR. 

The prospective logistic regression model is specified by the equation 

logit P(d = I If, g) = a + Of + y'z + f'y (3) 

where z = z(g) is a p-vector representing the effects of the covariates on d, while y = y(g) is a 
q-vector of covariate terms which interact with f. Similarly, the retrospective model is 
specified by the equation 

logit P(f = I Id, g) = a* + O3d + y*'z* + dM'y (4) 

where z* = z*(g) is a p-vector representing the main effects of the covariates on f, while y 
again represents the interactions. This notation is justified by the fact that the models (3) and 
(4) both imply the same linear structure for the In odds ratio (Zelen 1971). From (I) and (3) 
or (2) and (4), it follows that 

In A(g) = 13+ W'y. (5) 

Although d and 6 have the same meaning for both models, the estimates of these 
parameters derived from them will usually be different. Varying the covariate term z used in 
model (3), or the term z* used in (4), will change the estimates of : and 6 even though the 
structure (5) remains fixed. There is, however, the following situation in which (3) and (4) 
yield identical estimates for : and 6. 

When the covariates g are discrete, the data may be arranged as a series of 2 X 2 tables, 
one for each of a finite number of covariance outcomes corresponding to the possible values 
of g: 

Case Control 
Exposed n11(g) n10(g) n1+(g) 

(6) 
Non-exposed n01(g) no0(g) no+(g). 

n+ 1(g) n+o(g) n++(g) 
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102 BIOMETRICS, MARCH 1978 

For such data Breslow (1976) discusses two methods of estimating : and 5 directly from (5): 
(i) "exact" maximum likelihood (ML) based on the non-central hypergeometric distribution; 
and (ii) "asymptotic" ML based on the normal approximation to this distribution. In cases 
where the covariate effects on disease are saturated, that is fully modeled by the vector z, so 
that the number of independent parameters a, y equals the number of covariance outcomes, 
ML fitting of the prospective model (3) and asymptotic ML fitting of (5) yield identical 
results. This may be argued as follows. 

First, the observed n1j(g) and ML fitted nlj(g) frequencies for any prospective model 
satisfy n+j(g) = n+j(g) for j = 0, 1 and all g. Second, when the covariate effects in (3) are 
saturated by z, the likelihood equations specify that n,+(g) = ni1+(g), which implies that all 
the marginal totals of the 2 X 2 tables (6) are fit exactly. Third, the likelihood equations from 
(3) always specify that 2gn11(g)y(g) = Jgn'1(g)y(g) whether or not z saturates the model. 

An identical argument shows that the same three sets of equations are satisfied by the ML 
fitting of the retrospective model (4) when z* saturates the covariate effects on exposure. 
Since they are precisely the equations used to fit (5) directly by asymptotic ML, this proves 
that all three approaches yield identical estimates of 1 and ?. An extension of the results of 
Breslow (1976) shows that the usual expressions for the variances and covariances of these 
estimates, obtained by inversion of the matrices of second partials of the ln-likelihood, are 
likewise identical under the stipulated conditions. 

In practice it is unlikely that one would attempt to include so many parameters as to 
obtain complete saturation of the covariate effects. Hence the main interest in the previous 
result is its implication that, as one adds terms to describe more fully the effects of the 
covariates, the estimates of 3 and a obtained from the two models will tend to converge 
towards common values. This phenomenon is illustrated below. 

3. Further Study of the Oxford Survey Data 
For an example having nearly "continuous" covariates, we use data from the Oxford 

Childhood Cancer Survey reported by Kneale (1971). Cases were 6,347 children under 10 
years of age who died of malignant disease during 1944-1964. Controls were neighbor 
children of the same age, sex and year of birth. In-utero radiation, as reported during an 
interview of the mother, was the risk factor under investigation. The two covariates were age 
(g,) coded 0 years -9, 1 year = -7, , 9 years = 9; and year of birth (g2) coded 1944 = 
-10, 1945 = -9, *, 1954 = 10. Due to the limited period of case ascertainment, not all 
combinations of the 10 ages and 21 years occurred; in fact only 120 tables of the form (6) 
were available for analysis. Results are presented in Table 1. Two odds ratio parameters were 
estimated in each run: d represents the overall In RR, and 6 represents the linear change in In 
RR with year of birth (y = g2). Estimates of these two parameters are shown with their 
standard errors according to the degree of polynomial adjustment for the two covariates. 
Also shown are the goodness-of-fit X2 for each model. 

The unadjusted analyses, obtained from (3) and (4) without z or z* terms, give quite 
different impressions of the degree of decline in the RR with year of birth. This happens to be 
underestimated by the retrospective model. The decline itself is probably related to improve- 
ment in radiologic technology, which led to lower doses of obstetric radiation during these 
years (Bithell and Stewart 1975). However, after adjustment for both linear and quadratic 
effects of age and year, the concordance is quite respectable. By the time a fifth degree 
polynomial is fitted, requiring the estimation of 20 independent parameters y or Yb, the 
prospective and retrospective estimates agree to the fourth decimal place. In normal practice, 
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LOGISTIC REGRESSION AND RETROSPECTIVE STUDIES 103 

TABLE 1 
Comparison of Estimates of the Log-Odds Ratio Relating Childhood Cancer and In-Utero X-Ray 
Exposure Under "Retrospective" and "Prospective" Regression Models, Depending on the Degree 

of Adjustment for Age at Death and Year of Birth 

Parameter Prospective Retrospective 
Estimated Coef. S.E. Coef. S.E. Covariates 

In;'(d) 0.5113 i 0.0562 0.5036 0.0559 None 
IntXYr (6) -0.0343 i 0.0136 -0.0143 i 0.0083 
X237 114.62 326.86 
In;'(d) 0.5124 ? 0.0562 0.5105 i 0.0561 Linear terms in 
IniXYr (6) -0.0382 ? 0.0143 -0.0317 ? 0.0130 age and year 
X235 113.87 325.71 
In;(F) 0.5149 ? 0.0563 0.5148 ? 0.0563 Linear and quadratic 
IniXYr (6) -0.0384 ? 0.0143 -0.0386 ? 0.0144 terms in age 
X232 113.57 280.72 and year 
In;t(d) 0.5150 ? 0.0563 0.5151 ? 0.0563 Linear, quadratic 
IntXYr (6) -0.0385 ? 0.0143 -0.0387 ? 0.0144 and cubic terms 

X228 113.55 279.18 in age and year 
InC(O) 0.5157 ? 0.0564 0.5158 ? 0.0564 Linear, quadratic, cubic 
IniXYr (6) -0.0385 ? 0.0143 -0.0386 ? 0.0144 and quartic terms 
X223 113.43 260.63 in age and year 
In;(d) 0.5163 ? 0.0564 0.5163 ? 0.0564 Linear, quadratic, cubic, 
IntXYr (6) -0.0386 ? 0.0144 -0.0386 ? 0.0144 quartic and quintic 

2 113.33 244.60 terms in age and year X 21711.3246 
In;V(F) 0.5218 ? 0.0567 0.5218 ? 0.0567 Complete saturation 
IniXYr (6) -0.0390 ? 0.0145 -0.0390 ? 0.0145 of age and 

2 112.52 112.52 year marginals X 11811.2125 

of course, one would probably not consider for adjustment purposes more than a second or 
at most third degree polynomial in the covariates. 

There is very little change in the goodness-of-fit of the prospective model as additional 
covariate terms are added: the coefficients of these terms are all near zero and the estimates of 
d and 6 remain quite constant. This behavior is explained by the fact that subjects were 
matched on the two covariates, so that each of the 120 2 X 2 tables had equal numbers of 
cases and controls. Other numerical examples considered by the authors, in which there was 
no matching, do not evidence such behavior. 

There is a particularly large drop in the goodness-of-fit x2 for the retrospective model 
after the addition of quadratic covariate effects. Subsequent examination of the data revealed 
that the proportion of children irradiated increased from 1944 to the mid-1950's and declined 
thereafter, again reflecting changes in radiologic practice. 

It was not feasible in this particular example to obtain complete saturation of the 
covariate effects using a computer program for linear logistic regression analysis, since to do 
so would have required estimation of 122 separate parameters. However the equivalent In 
odds ratio regression analysis had already been carried out, and the last set of estimates in 
Table I was taken from the third line of Table 3 of Breslow (1976). The result is reassuring 
since it shows that estimation of the additional 99 covariate terms beyond those in the fifth 
degree polynomial equation leads to negligible changes in the assessment of the RR. If the 
data were less extensive, one would expect the estimation of these additional parameters to 
have a greater; effect on the RR estimate (see discussion). 
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104 BIOMETRICS, MARCH 1978 

4. Multiple Levels of a Quantitative Risk Factor 
Consider now the situation where the risk factor f is quantitative, being recorded at J 

levels x1 < < X, of some variable x, with x0 denoting zero or baseline exposures. Let fij(g) 
represent the odds ratio of disease occurrence at exposure level xjCf = ), relative to exposure 
x0(f = 0), for individuals have covariates g. A possible model here is 

In bj(g) = 3(xj - xo) + (x; - xo)6'y(g) (7) 

which implies a linear change in the In RR with increasing exposure, the slope being itself a 
linear function of y. 

This situation is easily handled in the context of prospective logistic regression, since any 
model of the form 

logit P(d = 1 If = j, g) =c a + Oxj + y'z + xj6'y (8) 
implies (7) for the In odds ratio. It is more difficult to construct retrospective models which 
satisfy this relationship, due to the necessity of considering more than two levels of exposure. 
However, if Q(j d, g) denotes the conditional probability of an exposure level J = j, given 
disease status d and covariates g, then such a model is defined by 

In QU d, g) - a* + O3(xj - x0) d + y'z* + d(xj - xo)6'y (9) 
Q(0 d, g) j 

for d = 0, 1 and j = 1, 2, , J. This is a polychotomous logistic regression model as 
introduced by Mantel (1966). An extension of arguments used for the previous case of a 
dichotomous risk factor leads to the same condition for agreement of the estimates of 
common parameters in (8) and (9); that is, complete saturation of the covariate effects by the 
parameters ac, y and a&*, yA. This of course requires that J times as many parameters of this 
type be estimated for the retrospective as for the prospective model. 

5. Discussion 
The general principle illustrated by the preceding is that when prospective and retro- 

spective models imply the same structure for the RR, one expects them to yield increasingly 
similar estimates for the common parameters as further covariate adjustments are made. 
When the covariates are sufficiently continuous so as to preclude the formation of 2 X 2 
tables as in (6), complete saturation of their effects is neither feasible nor desirable. Indeed, 
one of the strengths of the regression approach is that covariates may be accounted for 
without close matching of cases and controls. A strategy for analysis which is suggested by 
the example is to fit a series of models, whether prospective or retrospective, which contain 
an increasing number of covariate terms. Provided there are no high order interactions in the 
data, the estimates of the relative risk parameters should eventually stabilize, and the 
adjustment process may be stopped. 

One situation where complete saturation of covariate effects is clearly inappropriate is 
when cases and controls are collected and analyzed in a matched pairs design, so that each 
covariate class contains but one case and one control. When there is a single binary risk 
factor, the proper analysis is the conditional analysis which restricts attention to the pairs 
which are discordant for exposure (Cornfield and Haenszel 1960). The RR is estimated by 
the ratio of the number of pairs where the case is exposed and the control not, to the number 
where the case is not exposed and the control is. Use of the unconditional logistic regression 
models considered here, wherein a separate covariate parameter is actually estimated for 
each pair, leads to a RR estimate which is the square of the above. See Prentice and Breslow 
(1978) for a generalization of the conditional analysis to include multiple, continuous 
exposure variables. 
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LOGISTIC REGRESSION AND RETROSPECTIVE STUDIES 105 

Both prospective and retrospective models are easily employed with a single binary risk 
factor. Hence the choice between them could well be made in terms of which model requires 
less covariate adjustment to achieve an unconfounded estimate of the RR. When cases and 
controls have similar distributions of covariates, as in the above example, this would be the 
prospective model. In situations where the covariates were strongly associated with disease 
status and less so with the risk factor, the retrospective model would be preferred. 

The prospective model would seem to offer a clear advantage when dealing with a 
continuous risk factor or when several risk factors are being considered on an equal footing, 
since they are modelled quite simply in the binary logistic regression equation. With the 
retrospective approach one must discretize the exposures into a relatively small number of 
outcome categories, representing different levels of exposure to a single factor or combina- 
tions of exposures to several factors. This is an awkward procedure which may entail the 
estimation of a large number of parameters. Moreover, if the results presented here are any 
guide, it is probably unnecessary. 

Resume 

On compare deux approches de l'analyse de regression logistique lineaire sur donnees 
d'6tude retrospective. le mode'le prospectif ot la variable dcpendante est un indicateur 
dichotomique de 1'6tat d'un temoin, et le module retrospectif dans sequel la variable dcpendante 
est une classification de l'exposition en deux ou plusieurs niveaux. 
Les deux mode'les fournissent des estimateurs du risque relatif d'autant plus semblables qu'il 
Y a plus de covariables intervenant dans lajustement. Lorsque les effets des convariables sont 
satures de parametres, les estimateurs du risque relatif sont identiques. On preferera en general 
le modele prospectif pour 6tudier des facteurs de risque multiples et quantitatifs. 
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