

Imagine a disk or "Spinner" with 2 concentric circles, and a spindle through the centre.
Suppose that when spun it is equally likely to come to rest at any point on the outer circumference. This is reflected in markings of 0 to 1 (or, if you prefer, $\%$ to 100%) uniformly on the circumference of the outer circle.

Q: How should we mark the circumference of the inner circle so that repeated spins produce values with a Gaussian $\mathrm{N}(0,1)$ distribution? [see "spinner" in fig 4.9 page 317 of $\mathrm{M} \& \mathrm{M}$]

A: Use the z values corresponding to the percentiles of the Gaussian Distribution!

Then, the spinner shown will produce Z values from minus to plus infinity..

IMPLICATIONS FOR MONTE CARLO (SIMULATION) WORK

1 Generate numbers with a Uniform Distribution on (0,1)
e.g. in Excel use the RAND() function i.e. generate $\mathrm{P}=\operatorname{RAND}()$

2 Calculate percentile corresponding to P
i.e. $\mathrm{z}=\mathrm{Z}$ value such that $\operatorname{Prob}(\mathrm{Z}<\mathrm{z})=\mathrm{P}$
in Excel, use NORMINV function,
i.e.
calculate $\mathrm{z}=\operatorname{NORMINV}(\mathrm{P}, \mu=0, \sigma=1)$

T
The above nomograms illustrate the same idea: the function links the shaded area under the Gaussian curve with the corresponding z value. It is shown, first with area or Percent or $\operatorname{Pr}(\mathrm{Z}<\mathrm{z})$ as a function of z , and then vice-versa (as is done in Table A of M\&M). Table A tabulates $\operatorname{Prob}[Z<z]$ as a function of z, but one can travel in either direction.

Another way of visualizing the Table is given below. To generate a random Z , enter randomly at the vertical axis and find corresponding Z value!

