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Chapter 1

Examples of Survival Data

TABLE 1.10

Induction times (in years) for AIDS in adults and children

Infection Child Induction
Time Adult Induction Time Time
0.00 5
0.25 6.75
0.75 5,5,7.25
1.00 4.25,5.75, 6.25, 6.5 5.5
1.25 4, 4.25, 4.75, 5.75
1.50 2.75, 3.75, 5, 5.5, 6.5 2.25
1.75 2.75,3,5.25,5.25
2.00 2.25, 3, 4, 45, 475, 5, 5.25, 5.25, 5.5, 5.5, 6
2.25 3,55 3
2.50 2.25, 2.25, 2.25, 2.25, 2.5, 2.75, 3, 3.25, 3.25,
4, 4,4

2.75 1.25, 15, 2.5, 3, 3, 3.25, 3.75, 45, 45, 5, 5, 1
5.25, 5.25, 5.25, 5.25, 5.25

3.00 2,3.25, 3.5, 3.75, 4, 4, 4.25, 4.25,4.25, 4.75, 1.75
4.75,4.75,5

3.25 1.25, 1.75, 2, 2, 2.75, 3, 3, 3.5, 3.5, 4.25, 45

3.50 1.25, 2.25, 2.25, 2.5, 2.75, 2.75, 3, 3.25, 3.5, 0.75
35 4, 4,425, 4.5, 4.5

3.75 1.25, 1.75, 1.75, 2, 2.75, 3, 3, 3, 4, 4.25, 4.25 0.75, 1, 2.75, 3,

3.5, 4.25

4.00 1, 1.5, 1.5, 2, 2.25, 2.75, 3.5, 3.75, 3.75, 4 1

4.25 125, 1.5, 1.5, 2, 2, 2, 2.25, 2.5, 2.5, 2.5, 3, 175
3.5,3.5

4.50 1,15, 1.5, 1.5, 1.75, 2.25, 2.25, 2.5, 2.5, 2.5, 3.25
25, 2.75, 2.75, 2.75, 2.75, 3, 3, 3, 3.25, 3.25

4.75 1,15, 15,15, 175,175, 2, 2.25, 2.75, 3, 3, 1,225
3,25, 3.25, 3.25, 3.25, 3.25, 3.25 .

5.00 05,15, 1.5, 1.75,2, 2.25, 2.25, 2.25, 2.5, 2.5, 0.5, 0.75, 1.5, 2.5
3,33

5.25 0.25, 0.25, 0.75, 0.75, 0.75, 1, 1, 1.25, 1.25, 0.25,1,15
1.5, 1.5, 1.5, 1.5, 2.25, 2.25, 2.5, 2.5, 2.75

5.50 1,1,1,,1.25,1.25, 1.75, 2, 2.25, 2.25, 2.5 5, 15,25

5.75 0.25, 0.75, 1, 1.5, 1.5, 1.5, 2, 2, 2.25 1.75

600 0.5, 0.75, 0.75, 0.75, 1, 1, 1, 1.25, 1.25, 1.5, 0.5, 1.25
1.5, 1.75, 1.75, 1.75, 2

6.25 0.75, 1, 1.25, 1.75, 1.75 0.5, 1.25

6.50 0.25, 0.25, 0.75, 1, 1.25, 1.5 0.75

6.75 0.75, 0.75, 0.75, 1, 1.25, 1.25, 1.25 0.5, 0.75

7.00 0.75 0.75

7.25 0.25 0.25

Basic Quantities

2.1

and Models

Introduction

In this chapter we consider the basic parameters used in modeling sur-
vival data. We shall define these quantities and show how they are
interrelated in sections 2.2-2.4. In section 2.5 some common paramet-
ric models are discussed. The important application of regression to
survival analysis is covered in section 2.6, where both parametric and
semiparametric models are presented. Models for competing risks are
discussed in section 2.7.

Let X be the time until some specified event. This event may be death,
the appearance of a tumor, the development of some disease, recur-
rence of a disease, equipment breakdown, cessation of breast feeding,
and so forth. Furthermore, the event may be a good event, such as
remission after some treatment, conception, cessation of smoking, and
so forth. More precisely, in this chapter, X is a nonnegative random
variable from a homogeneous population. Four functions characterize
the distribution of X, namely, the survival function, which is the prob-
ability of an individual surviving to time x; the hazard rate (function),
sometimes termed risk function, which is the chance an individual of
age x experiences the event in the next instant in time; the probabil-
ity density (or probability mass) function, which is the unconditional
probability of the event’s occurring at time x; and the mean residual
life at time x, which is the mean time to the event of interest, given
the event has not occurred at x. If we know any one of these four
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functions, then the other three can be uniquely determined. In practice,
these four functions, along with another useful quantity, the cumulative
bazard function, are used to illustrate different aspects of the distribu-
tion of X. In the competing risk context, the cause-specific bazard rate,
which is the rate at which subjects who have yet to experience any
of the competing risks are experiencing the ith competing cause of
failure, is often used. This quantity and other competing risk quantities
are discussed in detail in section 2.7. In Chapters 4-6, we shall see how
these functions are estimated and how inferences are drawn about the
survival (or failure) distribution.

2.2 The Survival Function

EXAMPLE 2.1

The basic quantity employed to describe time-to-event phenomena is
the survival function, the probability of an individual surviving beyond
time x (experiencing the event after time x). It is defined as

S(x) = Pr(X >.x). Q2D

In the context of equipment or manufactured item failures, S(x) is
referred to as the reliability function. If X is a continuous random
variable, then, S(x) is a continuous, strictly decreasing function.

When X is a continuous random variable, the survival function is
the complement of the cumulative distribution function, that is, S(x) =
1 — F(x), where F(x) = Pr(X = x). Also, the survival function is the
integral of the probability density function, f(x), that is,

SC0) = Pr(X > x) = / " roar. @22
Thus,
fx) = —-%.

Note that f(x) dx may be thought of as the “approximate” probability
that the event will occur at time x and that f(x) is a nonnegative
function with the area under f(x) being equal to one.

The survival function for the Weibull distribution, discussed in more de-
tail in section 2.5, is $(x) = exp(—Ax®), A > 0, a > 0. The exponential
distribution is a special case of the Weibull distribution when a = 1.
Survival curves with a common median of 6.93 are exhibited in Figure
2.1for A.= 026328, a =05;A =0.1, @ = 1; and A = 0.00208, a = 3.
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EXAMPLE 2.2

Survival Probability
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Figure 2.1  Weibull Survival functions fora = 05, A = 0.26328 (
a=10,A=01(--- ), a = 3.0, A = 0.00208 (—).

D;

Many types of survival curves can be shown but the important point
to note is that they all have the same basic properties. They are mono-
tone, nonincreasing functions equal to one at zero and zero as the time
approaches infinity. Their rate of decline, of course, varies according to
thg risk of experiencing the event at time x but it is difficult to deter-
mine the essence of a failure pattern by simply looking at the survival
curve. Nevertheless, this quantity continues to be a popular description
pf survival in the applied literature and can be very useful in compar-
ing two or more mortality patterns. Next, we present one more survival
curve, which will be discussed at greater length in the next section.

The .U.S. Department of Health and Human Services publishes yearly
survival curves for all causes of mortality in the United States and each
of the fifty states by race and sex in their Vital Statistics of the United
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TABLE 2.1 .
Survival Functions of U.S. Population By Race and Sex in 1989 States Series. In Table 2.1, we present the overall survival probabiliti
for males and females, by race, taken from the 1990 report (U.S D?:
— - - - partment of Health and Human Services, 1990). Figure 2.2 shows
te White Black Black White White Black  Black survival curves and allows a visual compari . ws the
Age Male Female Male Female | Age Male Female Male Female sec that white females have the best sureival o °£ &tl)fh curves. We can
0 1.00000 1.00000 1.00000 100000 | 43 093771 097016 085917 093361 and black females are comparable in their suIr)\rz(i)Va"} rgyl;avgitllilttie e
1 099092 059285 097996 098283 | 44 093477 096862 0.85163 0.92998 black males have the worst survival. P e, and
2 099024 059232 097881 058193 || 45 093161 096694 0.84377 092612
3 098975 059192 097792 058119 || 46 092820 096511 0.83559 0.92202
4 098937 099160 097722 058059 || 47 092450 096311 0.82707 091765
5 098905 099134 097664 098011 | 48 092050 0.96091 0.81814 091300
6 098877 099111 097615 097972 | 49 0.91617 095847 0.80871 0.90804
7 098850 099091 097571 097941 50 091148 095575 0.79870 0.90275 10
8 098325 099073 097532 097915 (| 51 090639 095273 0.78808 0.89709
9 098802 099056 097499 097892 (| 52 0.90086 094938 0.77685 0.89103

10 008782 099041 097472 097870 || 53 089480 0.94568 0.76503 0.88453
11 098765 099028 097449 097847 || 54 0.88810 094161 075268 087754
12 098748 099015 097425 097823 || 55 0.88068 093713 0.73983 0.87000 08 7
13 098724 098999 0.97392 097796 || 56 087250 093222 0.72649 086190
14 008686 0098977 097339 097767 )) 57 0.86352 092684 071262 0.85321
15 098628 0.98948 097258 097735 [} 58 0.85370 0.92096 0.69817 084381
16 098547 098909 097145 097699 || 59 0.84299 0.91455 068308 0.83358 06 J
17 008445 098862 0.97002 097658 || 60 0.83135 090756 0.66730 0.82243
18 008326 098800 0.06820 097612 61 0.81873 0.89995 0.65083 0.81029
19 098197 098755 096628 097559 || 62 0.80511 089169 0.63368 079719
20 058063 098703 096403 057498 || 63 079052 088275 0.61584 0.78323
21 007924 098654 096151 097429 || 64 077501 087312 0.59732 0.76858
22 097780 098607 0.95873 097352 ( 65 0.75860 086278 057813 Q.75330
23 097633 098561 095575 097267 || 66 074131 085169 055825 073748
24 097483 098514 095267 097174 | 67 072309 083980 053783 0.72104
25 097332 0.98466 094954 057074 | 68 070383 082702 051679 0.70393
26 007181 098416 094639 0.96967 || 69 0.68339 0.81324 049520 0.68604
27 057029 098365 094319 096852 )| 70 0.66166 079830 047312 0.66730
28 096876 0.08312 093989 096728 | 71 0.63865 078420 045058 0.64769
20 0.06719 008257 093642 096504 || 72 0.61441 076522 042765 0.62723
30 096557 098199 093273 096448 || 73 058897 074682 040442 0.60591
31 096300 098138 092881 096289 |l 74 056238 072716 038100 058375 00
32 096217 098073 092466 096118 || 75 053470 070619 035749 0.56074 : l
33 096038 098005 092024 095934 76 0.50601 0.68387 0.33397 0.53689 0 » © ' T
34 095852 097933 091551 095740 77 047641 0.66014 031050 051219 '
. 35 095659 0.07858 0.01044 095336 || 78 0.44604 0.63404 0.28713 0.48663 Agein Years
£ 36 095457 0.97779 090501 095321 ) 79 041503 060822 0.26391 0.46020 Figure 2.2 Survival Functi )
37 095245 097696 0.89922 0.95095 || 80 0.38355 057991 0.24091 043291 ‘ nctions for all cause mortality for the US population in
38 095024 097607 0.89312 094855 | 81 035178 054997 021819 040475 1989. White males ); white females (------; black males (——); black
39 094794 057510 083677 094598 || 82 031991 051835 0.19583 037573 Jemales (———). ;
40 0954555 097404 088021 094321 83 028816 048502 0.173%2 034568
41 004307 097287 0.87344 094023 |) 84 025677 044993 0.15257 031522
42 094047 097158 0.86643 093703 | 85 022599 041306 013191 028378 , When X is a discrete, random variable, different technique;

’ ’ S are re-

;l;;lein Dl'sf;rete, random variables in survival analyses arise due to
g g ofl measurements, grouping of failure times into intervals, or

Survival Probability
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Basic Quantities and Models

EXAMPLE 2.3

i i i that X can
hen lifetimes refer to an integral number of units. Suppose
:Zkee on values x;, f = 1,2,... with probability mass function (p.m.f)
x)=Pr(X=x), j=1,2,...,where;y <xp <---.
p(Ti'le survival funjction for a discrete random variable X is given by

SG) = Pr(X>x) =Y plxp. (2.2.3)

x>x

i dagogical ses, the lifetime X, which has the P.m.f.
ggcls)ld:r’ If’cr)'r(gfe =g j)gl= Il)l/lgp.j} = 1,2,3, a simple disc'rete‘ uniform
distxjibution. The corresponding survival function, plotted in Figure 2.3,
is expressed by

o] ———

0.8

Survival Probability

0.2+

0.0
1
— T 5 3

Figure 2.3 Survival function for a discrete random lifetime
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1 fo=x<1,

_ _ _J)2/3 f1=x<2,
S =Pr(X > x) Zp(xj) 1/3 if2=x<3
0 if x = 3.
Note that, when X is discrete, the survival function is a nonincreasing
step function.

x>

2.3 The Hazard Function

A basic quantity, fundamental in survival analysis, is the hazard function.
This function is also known as the conditional failure rate in reliability,
the force of mortality in demography, the intensity function in stochastic
processes, the age-specific failure rate in epidemiology, the inverse of
the Mill’s ratio in economics, or simply as the hazard rate. The hazard

rate is defined by
=X<x+ =

(o) = lim TE=X <Xt Ax|X =) 2.3.1)

Ax—0 Ax

If X is a continuous random variable, then,
b(x) = f(x)/5(x) = —dIn[{S(x))/dx. (2.3.2)
A related quantity is the cumulative hazard function H(x), defined

by :
HGx) = / () du = — lnlSGOL. 23.3)

1]

Thus, for continuous lifetimes,
5(x) = expl—H@] = exp [— / b() du] . (2.3.4)
1]

From (2.3.1), one can see that »(x) Ax may be viewed as the “ap-
proximate” probability of an individual of age x experiencing the event
in the next instant. This function is particularly useful in determin-
ing the appropriate failure distributions utilizing qualitative information
about the mechanism of failure and for describing the way in which the
chance of experiencing the event changes with time. There are many
general shapes for the hazard rate. The only restriction on b () is that
it be nonnegative, i.e., h(x) = 0.

Some generic types of hazard rates are plotted in Figure 2.4. For
example, one may believe that the hazard rate for the occurrence of
a particular event is increasing, decreasing, constant, bathtub-shaped,
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=
i
Time
Figure 2.4  Shapes of bazard functions. Constani bazard (————); increas-
ing bazard (——); decreasing bazard (- - - - - - ); bathtub shaped ) );

bumpshaped (———).

hump-shaped, or possessing some other characteristic which describes
ilure mechanism. )
the;\flfca)ldels with increasing hazard rates may arise when there is natural
aging or wear. Decreasing hazard functions are ml{ch l_ess common but
find occasional use when there is a very early _hkelﬂ}ood of fa1.lure,
such as in certain types of electronic devices or in patients expenenc-
ing certain types of transplants. Most often, a bathrgb.-shaped hazard is
appropriate in populations followed from blrt.h. Similarly, some man-
ufactured equipment may experience early failure due to faulty parts,
followed by a constant hazard rate which, in the later stages pf equlp;_
ment life, increases. Most population mortality data follow this type of
hazard function where, during an early period, deathg result, primarily,
from infant diseases, after which the death rate stabilizes, followed by
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EXAMPLE 2.1

an increasing hazard rate due to the natural aging process. Finally, if the
hazard rate is increasing early and eventually begins declining, then, the
hazard is termed hump-shaped. This type of hazard rate is often used
in modeling survival after successful surgery where there is an initial
increase in risk due to infection, hemorrhaging, or other complications
just after the procedure, followed by a steady decline in risk as the
patient recovers. Specific distributions which give rise to these different
types of failure rates are presented in section 2.5,

(continued) One particular distribution, which is flexible enough to
accommodate increasing (@ > 1), decreasing (@ < 1), or constant
hazard rates (& = 1), is the Weibull distribution introduced in Example
2.1. Hazard rates, b(x) = ahx*"!, are plotted for the same values of
the parameters used in Figure 2.1, namely, A = 026328, a« = 0.35;
A=01 a=1and A = 000208 a = 3 in Figure 2.5. One can see

0.8

Hazard Rates

0.6

0.4

0.2+

00 -7 .

Figure 2.5 Weibull bazard functions fora = 05, A = 0.26328 (
a=10,A=01(—);a=30\= 000208 (———).

) ;
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EXAMPLE 2.2

that, though the three survival functions have the same basic shape, the

hazard functions are dramatically different.

An example of a bathtub-shaped hazard rate is presented in the
following example.

;i i by sex and race
continued) The 1989 U.S. mortality hazard rates, y ,
gre presented in Figure 2.6. One can see the decreasing hazard rates
eatly in all four groups, followed, approximately, by, a constant .hazard
rate, eventually leading to an increasing hazard rate starting at different

times for each group.

0.15 J

0.10

Hazard Rates

0.05

0.0

Age in Years

Figure 2.6 Hazard functions for all cause mortality for the US population in
1989. White males ( Y; white females (-++++ ); black males (- - - - - - );

black females (———).
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EXAMPLE 2.3

Practical Notes

When X is a discrete random variable, the hazard function is given
by
P y
S(xj—l)’
where S(x) = 1. Because p(x) = S(xy-1) — S(xp), in conjunction with
239, bxp =1—85(x)/S(x;-), 7= 1,2,....

Note that the survival function may be written as the product of
conditional survival probabilities

bl = Prix =2 [X = x) = =12... @35

S = [ SCxep/sCx,-). (2.3.6)
x/sx
Thus, the survival function is related to the hazard function by
S = Tt — bapl. 2.3.7)

X=x

(continued) Let us reconsider the discrete random variable X in Ex-
ample 2.3 with p(x) = Pr(X = j) = 1/3, j = 1,2,3. The hazard
function may be obtained by direct application of (2.3.5). This leads to

1/3,for j = 1,
_1/2, for j=2,
b(xj) = 1, fOl'j =3 and

0, elsewhere.

Note that the hazard rate is zero for a discrete random variable except
at points where a failure could occur.

1. Though the three survival functions in Figure 2.1 have the same basic
shape, one can see that the three hazard functions shown in Figure
2.5 are dramatically different. In fact, the hazard function is usually
more informative about the underlying mechanism of failure than
the survival function. For this reason, consideration of the hazard
function may be the dominant method for summarizing survival data,

2. The relationship between some function of the cumulative hazard
function and some function of time has been exploited to develop
hazard papers (Nelson, 1982), which will give the researcher an
intuitive impression as to the desirability of the fit of specific models.
For example, if X has-a Weibull distribution, as in Example 2.1, then
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Theoretical Notes

its cumulative hazard rate is H(x) = Ax%, so a plot of In H(x)
versus In x is a straight line with slope a and y intercept In A.
Using a nonparametric estimator of H(x), developed in Chapter 4,
this relationship can be exploited to provide a graphical check of
the goodness of fit of the Weibull model to data (see section 12.5 for
details and examples).

1. For discrete lifetimes, e shall define the cumulative hazard function

by
H) =Y bxp. (23.8)

xp=x

Notice that the relationship S(x) = exp{—H(x)} for this definition
no longer holds true. Some authors (Cox and Oakes, 1984) prefer to
define the cumulative hazard for discrete lifetimes as

H(x) = — Z Inl1 — b{xpl, 23.9

x=x

because the relationship for continuous lifetimes S(x) = expl— H(x)]
will be preserved for discrete lifetimes. If the b (x,) are small, (2.3.8)
will be an approximation of (2.3.9). We prefer the use of (2.3.8) be-
cause it is directly estimable from a sample of censored or truncated
lifetimes and the estimator has very desirable statistical properties.
This estimator is discussed in Chapter 4.

2. For continuous lifetimes, the failure distribution is said to have an

increasing failure-rate (IFR) property, if the hazard function h(x)
is nondecreasing for x = 0, and an increasing failure rate on the
average (IFRA) if the ratio of the cumulative hazard function to time
H(x)/x is nondecreasing for x > 0.

3. For continuous lifetimes, the failure distribution is said to have a

decreasing failure-rate (DFR) property if the hazard function b(x) is
nonincreasing for x = 0.

E‘*{ 2.4 The Mean Residual Life Function
| and Median Life

The fourth basic parameter of interest in survival analyses is the mean
residual life at time x. For individuals of age x, this parameter measures
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EXAMPLE 2.4

EXAMPLE 2.1

EXAMPLE 2.2

their expected remaining lifetime. It is defined as mrl(x) = E(X ~ x |
).( > %). It can be shown (see Theoretical Note 1) that the mean residual
life is the area under the survival curve to the right of x divided by S(zx).

. Note that the mean life, p = mrl(0), is the total area under the survival

curve.,
For a continuous random variable,

L;G—0fDdt _ [T S dt

1) = =
mrl(x) 5o 5GO .4.D

and
=FE = i = *
1 0:¢)] /0' tf(Dat /o S at. 2.4.2)

Also the variance of X is related to the survival function by

o w0 2
Var(X) = 2/0. tS(Hdt — [/ NG dt] . (2.4.3)
0

The pth quantile (also referred to as the 100pth percentile) of th
distribution of X is the smallest x, so that PP ’ ©

SGp) =1-p, ie., x, =inf{t: SO =1- p}. 4.9

If X is a continuous random variable, then the pth quantile is found
by solvxpg the equation S(x;,) = 1 — p. The median lifetime is the 50th
percentile x, 5 of the distribution of X. It follows that the median lifetime
for a continuous random variable X is the value x5 so that

S(xqs) =05. 2.4.5

The mean and median lifetimes for an exponential life distribution
1/A z.md (n2)/A as determined from equgtions (2.4.2) and (2.4.5), 2::
spefzuvely. Furthermore, the mean residual life for an exponential distri-
bution is also 1/A from equation (2.4.1). Distributions with this property
are said to exhibit lack of memory. The exponential distribution is the
unique continuous distribution possessing this characteristic.

(continued) For the Weibull distribution the 100pth percentile is
found by solving the equation 1 -~ p = exp{~Ax} so that x, =
{—In[1 — pl/A}/=.

( cg)ntir}ue_d) 'The median and other percentiles for the population mor-
tality distribution of black men may be determined graphically by using
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LOJ

03 |

06

Survival Probability

04~

0.2

80t Peacenle = 82

MO EOD | Lo

0.0

Agein Years

Figure 2.7 Determination of the median lifetime and 80th percentile of life-
times for black men in the US population in 1989

the survival function plot depicted in Figure 2.2. First, find the ap-
propriate survival probability, and, then, interpolate to the appropriate
time. Determination of the median and 80th percentile, as iltustrated
in Figure 2.7, give values of about 69 and 82 years, respectively. More
accurate values can be found by linear interpolation in Table 2.1. We
see that S(68) = 051679 > 05 and S(69 = 049520 < 0.5, s0 the
median lies between 68 and 69 years. By linear interpolation,

S(68) - 05

S - =6878 .
5(68) — S(69) years

Xs = 68 +

Similar calculations yield x%g = 81.81 years.
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Theoretical Notes

1. For a continuous random variable X ,

X —x|X > x) = =20 = Df(Dat
S(x)

We integrate by parts to establish equation (2.4.1) using the
fact that f(fdt =W-dS(t), so that EX — x | X > 08(x) =
—(t = 28D I + [ S(8)dt. The first term on the right-hand side of
the equation is 0 because $() is 0. For a discrete, random variable
the 1:esu1t that the mean residual life is related to the area under the
survival curve is obtained by using a partial summation formula.

2. Interrelationships between the various quantities discussed earlier
for a continuous lifetime X, may be summarized as ’

SGo) = f Fodt

= exp [— /0 xb(u)du]

= expl~H(x)]
- mil® ex [_ 5 du
mrl(x) P o rnrl(u)}'

-4
S = de(x)
= b(x)S(x) ,
(o) (2o 2]
-4
bix) = dxln[S(x)]

_f®
S(x)

- (é—‘; i) + 1) / mel(x)

[ St
S(x)

_ L= fGodu
SCx) ’

mrl(x) =
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3. Interrelationships between the various quantities discussed earlier,
for discrete lifetimes X, may be summarized as

S = plxp

E>x
= [0 - bl
IISI
plx) = SCxy- 1) — S(xp) = bxS(x-), j=1,2,...,
p(x;)
S(xj—-l)’

_ (xl+1 - x)S(x[) + 2]2{+1(xj+1 - x/)S(x_/)
mrl(x) = S0 ,

b(x/) =

for xXx=x < Xp41-

4. If X is a positive random variable with a hazard rate b(®), whfch isa
sum of a continuous function b.(£ and a discrete function which has
mass b(x)) at times 0 = x =< x, =< -, then the survi\{al function
is related to the hazard rate by the so called “product integral” of
[1 — h(D)dt defined as follows:

sG = [0~ batplesp [ - [ bt].

xsx

5. Sometimes (particularly, when the distribution is highly skgwed), l:.he
median is preferred to the mean, in which case, the quantity me_dmn
residual lifetime at time x, mdrl(%), is preferred to the mean residual
lifetime at time x, mrl(x), as defined in (2.4.1). The median residual
lifetime at time X is defined to be the median of the conditional

distribution of X — x | X > x and is determined using (2.4.4) except -

that the conditional distribution is used. It is the length of the interval
from x to the time where one-half of the individuals alive at time x
will still be alive. Note that the mdrl(0) is simply the median of the
unconditional distribution.

2.5 Common Parametric Models
for Survival Data

Although nonparametric or semiparametric models will be used exten-
sively, though not exclusively, in this book, it is appropriate and neces-
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sary to discuss the more widely used parametric models. These models
are chosen, not only because of their popularity among researchers
who analyze survival data, but also because they offer insight into the
nature of the various parameters and functions discussed in previous
sections, particularly, the hazard rate. Some of the important models
discussed include the exponential, Weibull, gamma, log normal, log lo-
gistic, normal, exponential power, Gompertz, inverse Gaussian, Pareto,
and the generalized gamma distributions. Their survival functions, haz-
ard rates, density functions, and expected lifetimes are summarized in
Table 2.2,

First, because of its historical significance, mathematical simplicity,
and important properties, we shall discuss the exponentigl distribution.
Its survival function is S(x) = expl—Ax],A > 0,x > 0. The density
function is f(x) = Aexp[—Ax], and it is characterized by a constant
hazard function #(x) = A.

The exponential distribution has the following properties. The first,
referred to as the lack of memory property, is given by

PXzx+z|X=2x)=PX=2), 2.5.1)

which allows for its mathematical tractability but also reduces its appli-
cability to many realistic applied situations. Because of this distributional
property, it follows that (X — x | X > x) = E(X) = 1/A; that is, the
mean residual life is constant. Because the time until the future occur-
rence of an event does not depend upon past history, this property is
sometimes called the “no-aging” property or the “old as good as new”
propetty. This property is also reflected in the exponential distribution’s
constant hazard rate. Here, the conditional probability of failure at any
time 7, given that the event has not occurred prior to time ¢, does not
depend upon . Although the exponential distribution has been histor-
ically very popular, its constant hazard rate appears too restrictive in
both health and industrial applications.

The mean and standard deviation of the distribution are 1/A (thus,
the coefficient of variation is unity) and the pth quantile is %, = —In(1—
b)/\. Because the exponential distribution is a special case of both the
Weibull and gamma distributions, considered in subsequent paragraphs,
other properties will be implicit in the discussion of these distributions.

Though not the first to suggest the use of this next distribution, Rosen
and Rammler (1933) used it to describe the “laws governing the fine-
ness of powdered coal,” and Weibull (1939, 1951) proposed the same
distribution, to which his name later became affixed, for describing the
life length of materials. Its survival function is S(x) = exp[—Ax®], for
x > 0. Here A > 0 is a scale parameter, and @ > 0 is a shape parameter.
The two-parameter Weibull was previously introduced in Example 2.1. -
The exponential disteibution is a special case when @ = 1. Figure 2.1,
already presented, exhibits a variety of Weibull survival functions. Its
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TABLE 2.2 - . ' eted
Hazard Rates, Survival Functions, Probability Derfmty Functions, and Exp
Lifetimes for Some Common Parametric Distributions
i Mears
Hazard Rate Strvival Funciion Probability %;s)ﬁyiunmon e
Distripution Hx) S(x) ~ .
Ex| tial A expl—Ax) A exp( X
ponen ia) N
A>0,x20
rQ+1i/a)
WEibu':) ahx! expl—Ax?) ahx®~Lexp(—Ax?) T
a,A >0,
x=0
‘ ABxB~1 exp(~Ax) [
y Gamma
i 8.1 >0, [ 1~ IQx% B —® 3
A >0, @
i x=0 —
: exp -3 (Lnfv“&) ] + 050D
‘.‘: Inx — - explut L
X | & 1~o |2k AT
- Log nommal 3‘(—4‘—)
‘ : g>0x=0 B
ax=~1A aCsc(m/a)
- . : all/a
e 0+ axal ]
logistic T+ Aas T+ A )
o,A>0,x=20
2
_1({xe
Normal oxp [ 3 ( - )
50 @ 1-® [!;,A] T
725 5(x)
—oC<x <™
" . e
B Lexp{iax]®} expll — explér0?)} aeh® x*~ ! expl(Ax)?] — expfexpl(ax)"1} f; S(x)
power aATx*” Ax]
ar>0x=0 i —
g exp[2a- ) geo= exp 201 — )] o s
Gorapertz [ -
8,a>0,x=0
12 A=)
17 N M
Inverse S V2 (4 _2Y| - e { - [g] (1+ ’z‘) (m) ep [_z‘,;?‘;_]
Gaussian T(_) @ (,‘ 1 re ]
X,
A=0,x=0
! [N
Pareto e _O—L N
; 2 ! fo>1
0>0,A>0 3
XZA
PP xp(mhat) S
Generzlized L(x_) 1= e, Bl —_W—_— J:
gemma S(x>
A>0,a>0,
g>0,x=0

* K@) = JEuP "V exp(— wau/TE).

hazard function has the fairly flexible form
b(x) = Aax"™1, 252

One can see from Figure 2.5 that the Weijbull distribution is flexible
enough to accommodate increasing (a > 1), decreasing (@ < 1), or
constant hazard rates (@ = 1). This fact, coupled with the model’s
relatively simple survival, hazard, and probability density functions,
have made it a very popular parametric model. It is apparent that the
shape of the Weibull distribution depends upon the value of a, thus,
the reason for referring to this parameter as the “shape” parameter.

The rth moment of the Weibull distribution is [T'(1 + r/a)]\ "7,
The mean and variance are [T(1 + 1/e)]A"® and T + 2/a) —
[TA + 1/a)PIA~?/*, respectively, where Ila] = fo ¥* e du is the
well-known gamma function. I'la] = (a — 1)! when « is an integer and
is tabulated in Beyer (1968) when a is not an integer. The pth quantile
of the Weibull distribution is expressed by

% = {~{in1 - p)I/AY/.

It is sometimes useful 1o work with the logarithm of the lifetimes. If we
take ¥ = In X, where X follows a Weibull distribution, then, ¥ has the
density function

a explaly ~ (—UnA)/a)] — explaly ~ (~(n )/}, ~» < p < oo.
25.3)
Writing the model in a general linear model format, ¥ = u + OE,
where . = (~lnA)/a, ¢ = a™ and E has the standard extreme value
distribution with density function

exp(w — ), —0 < @ < oo, 2549

A random variable (more familiar to the traditional linear model au-
dience) X is said to follow the log normal distribution if its logarithm
Y = InX, follows the normal distribution. For time-to-event data, this
distribution has been popularized because of its relationship to the nor-
mal distribution (a distribution which we assume is commonly known
from elementary statistics courses and whose hazard rate, survival func-
tion, density function and mean are reported in Table 2.2 for complete-
ness) and because some authors have observed that the log normal
distribution approximates survival times or ages at the onset of certain
diseases (Feinleib, 1960 and Horner, 1987).

Like the normal distribution, the log normal distribution is completely
specified by two parameters p and @, the mean and variance of Y. Tts
density function is expressed by

- 1(lnx—py2 —
[ = expx[(zjr()l/;a) ] =4¢ <lnxa u) /x (25.5)
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and its survival function is given by

SGH=1~® [‘nx - “] , 256

g

where ®(¢) is the cumulative distribution function (density function)
of a standard normal variable.

The hazard rate of the log normal is hump-shaped, that is, its value
at 0 is zero, and it increases to a maximum and, then, decreases to 0 as
x approaches infinity (see Figure 2.8). This model has been criticized
as a lifetime distribution because the hazard function is decreasing for
large x which seems implausible in many situations. The model may fit
certain cases where large values of x are not of interest.

For the log normal distribution the mean lifetime is given by exp(u +
@ /2) and the variance by lexp(e®— 1] exp(2p+ 0. The pth percentile,

Hazard Punction

Time

Figure 2.8 Log normal bazard rates. p. = 0,0 = 0.5 ) =0,0=

01— u=00=20———)
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.

x, is expressed as exp(p + 0z,), where 2, is the pth percentile of a
standard normal distribution.

A variable X is said to follow the log logistic distribution if its loga-
rithm ¥ = InX follows the logistic distribution, a distribution closely
resembling the normal distribution, but the survival function is mathe-
matically more tractable. The density function for Y is expressed by

exp(25)

A+ expCBF <Y< @57
where p and o? are, respectively, the mean and scale parameter of Y.
Again, we can cast this distribution in the linear model format by taking
Y = p+ oW, where W is the standardized logistic distribution with
p=0ando =1

The hazard rate and survival function, respectively, for the log logistic
distribution may be written as relatively simple expressions:

aix*!

bh(x) = T 2.5.8)
and ;
S(x) = T 2.5.9

where & = 1/ > 0 and A = exp(—u/0).

The numerator of the hazard function is the same as the Weibull haz-
ard, but the denominator causes the hazard to take on the following
characteristics: monotone decreasing for & = 1. For « > 1, the hazard
rate increases initially to a maximum at time [(e — 1)/A]"/* and then
decreases to zero as time approaches infinity, as shown in Figure 2.9.
The mean and variance of X are given by E[X] = mcsc(n/a)/(ad /),
if @ > 1, and Var(X) = 2mwesc(2m/a) /(@A) — EIXP, if & > 2. The
pth percentile is x, = {p/IAQ — PI}/°.

This distribution is similar to the Weibull and exponential models
because of the simple expressions for »(x) and S(x) above. Its hazard
rate is similar to the log normal, except in the extreme tail of the
distribution, but its advantage is its simpler hazard function b(x) and
survival function S(x). '

The gamma distribution has properties similar to the Weibull distribu-
tion, although it is not as mathematically tractable. Its density function
is given by

f(x) = ABxPlexp(—Ax)/T(B), (2.5.10)

where A > 0, B > 0, x > 0, and I'(B) is the gamma function. For
reasons similar to those of the Weibull distribution, A is a scale pa-
rameter and B is called the shape parameter. This distribution, like the
Weibull, includes the exponential as a special case (B = 1), approaches
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20

Hazard Punction

Figure 2.9 Loglogistic hazard rates. A = 1,0 = 0.5(
G pyA=1,0=200)

»A=1,0=10

a normal distribution as B — o, and gives the chi*square distribution
with v degrees of freedom when » = 2B (B, an integer) and A = 1 /2.
The mean and variance of the gamma distribution are B/A and B/A?,
respectively.

The hazard function for the gamma distribution is monotone increas-
ing for B > 1, with h(0) = 0 and h(x) — A as x— o, and monotone
decreasing for B < 1, with h(0) = o and h(x) — A as x — . Whep

B > 1, the mode is at x = (B — 1)/A. A plot of the gamma hazard
function is presented in Figure 2,10. '

The survival function of the gamma distribution is expressed as

SC) = [ / T AP exp(—-)\t)dt] /T@) (2511

2.5 _Common Parametric Models For Survival Data

20 ~
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0.5 {
00
1T
! T ' T Bl —T
° ! 2 3 4

Time

Figure 210 Gamma hazard rates. A = 1,B=20¢

(—%A=18=05(~——) BA=1,8=10

Ax
=1- [ /; 1 exp(~ u)du] /T(®
=1-1IQx B),

where 7 is the incomplete gamma function.

For B = n, an integer, we obtain the Erlangian distribution whose suc-

vival function and hazard functi i
o By ez on, respectively, calculated from (2.2.2)

n—1
§(x) = exp(—Ax) Y (Ax)* / k!

k=0

(2.5.12)

43
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Practical Notes

and

n—1 -1
h(x) = M) |(n — D! Z(Ax)k/k'] :

k=0

1. A relationship for the exponential distribution is H(x) = —InS(x) =

i iri ial fit to data
Ax. This provides an empirical check for an exponential nt :
by plotltin% H(x) vs x. The resulting plot should be a straight line
through the origin with slope A.

. An empirical check of the Weibull distribution is accomplished by

ilizi i ip in the continu-
lotting In{H(x)] vs. In(x) (utlizing the relauopshlp in . !
gtic())n ogf Example 2.1). The plot should result in a straight line w1r_.h
slope a and y intercept In (A). Later, in Chapter 12, we shall use this
technique to give crude estimates of the parameters.

The generalized gamma distribution introduces an additional param-

eter « allowing additional flexibility in selecting a hazard function.
This model has density function
arBx®® 1 exp{—Ax}

2.5.13)
'

fGo=

and survival function
SGo =1~ IOx®, B).
This distribution reduces to the exponential when o = B =1,tothe

= hes the
i h = 1, to the gamma when a = 1, and approache:
lvgglr)lgltln‘;valear; %—» o. It is a useful distribution for model checking.

. Occasionally, the event of interest may not occur until a threshold

time ¢ is attained, in which case, S(x) <1 only for x > '4;. In
reliability theory, ¢ is called the “guarantee time.” Fo.r example, in thls
instance, the Weibull survival function may be modified as follows:
S0 = expl~A(x — $)*L,A > 0,0 > 0and x > ¢.

i ificati distributions dis-
Similar modifications may be made to the othe'r
cussed in this section to accommodate the notion of a threshold
parameter.

. A model that has a hazard function capable of being bathtub-shaped,

. . .o i< the
i.e., decreasing initially and, then, increasing as_nme increases, is
1e.vqbonerztial pcgpwer distribution with & < 1 (Smith-Bain, 1975).

_ A distribution with a rich history in describing mortality curves is

i ified by Makeham

e introduced by Gompertz (1825) and later r_nodlﬁe y
(()111860) by adding a constant to the hazard function (see C!mng, 196§,
pp. 61-62). Again, the hazard function, survival function, density
function, and mean of the Gompertz distribution are summarized in

Table 2.2.
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Theoretical Notes

7. Other distributions which have received some attention in the liter-
ature are the inverse Gaussian and the Pareto distributions. These
distributions are tabulated in Table 2.2 along with their survival, haz-
ard, and probability density functions.

1. The exponential distribution is summarized, with references, by
Galambos (1982), Galambos and Kotz (1978), and Johnson and Kotz
(1970). It is known to have been studied as early as the nineteenth
century by Clausius (1858) in connection with the kinetic theory of
gases. More recently, in studies of manufactured items (Davis, 1952;
Epstein and Sobel, 1954; Epstein, 1958) and, to a lesser extent, in
health studies (Feigl and Zelen, 1965; Sheps, 1966), the exponential
distribution has historically been used in describing time to failure. As
has been already noted, its constant hazard rate and lack of memory
property greatly limit its applicability to modern survival analyses.

2. The Weibull distribution has been widely used in both industrial and
biomedical applications. Lieblein and Zelen (1956), Berretoni (1964),
and Nelson (1972) used it to describe the life length of ball bearings,
electron tubes, manufactured items, and electrical insulation, respec-
tively. Pike (1966) and Peto and Lee (1973) have given a theoretical
motivation for its consideration in representing time to appearance
of tumor or until death in animals which were subjected to carcino-
genic insults over time (the multi-hit theory). Lee and Thompson
(1974) argued, in a similar vein, that, within the class of proportional
hazard rate distributions, the Weibull appears to be the most appro-
priate choice in describing lifetimes. Other authors (Lee and O’Neill,
1971; Doll, 1971) claim that the Weibull model fits data involving
time to appearance of tumors in animals and humans quite well.

3. The Weibull distribution is also called the first asymptotic distribu-

tion of extreme values (see Gumbel, 1958, who popularized its use).
The Weibull distribuition arises as the limiting distribution of the min-
imum of a sample from a continuous distribution. For this reason,
the Weibull distribution has been suggested as the appropriate dis-
tribution in certain circumstances.

2.6 Regression Models for Survival Data

Until this point, we have dealt exclusively with modeling the survival
experience of a homogeneous population. However, a problem fre-




46

Chapter 2 Basic Quantities and Models

quently encountered in analyzing survival data is that of adjusting the
survival function to account for concomitant information (sometimes re-
ferred to as covariates, explanatory variables or independent variables).
Populations which exhibit such heterogeneity are prevalent whether
the study involves a clinical trial, a cohort study, or an observational

study.
Consider a failure time X > 0, as has been discussed in the previous
sections, and a vector Z' = (Z, ..., Zp) of explanatory variables as-

sociated with the failure time X. Z' may include quantitative variables
(such as blood pressure, temperature, age, and weight), qualitative vari-
ables (such as gender, race, treatment, and disease status) and/or time-
dependent variables, in which case ZY(x) = [Z,(x0), . .., Z,(x)]. Typical
time-dependent variables include whether some intermediate event has
or has not occurred by time x, the amount of time which has passed
since the same intermediate event, serial measurements of covariates
taken since a treatment commenced or special covariates created to test
the validity of given model. Previously, we have stressed the impor-
tance of modeling the survival function, hazard function, or some other

_ parameter associated with the failure-time distribution. Often a matter

of greater interest is to ascertain the relationship between the failure
time X and one or more of the explanatory variables. This would be
the case if one were comparing the survival functions for two or more

treatments, wanting to determine the prognosis of a patient presenting

with various characteristics, or identifying pertinent risk factors for a
particular disease, controlling for relevant confounders.

Two approaches to the modeling of covariate effects on survival have
become popular in the statistical literature. The first approach is analo-
gous to the classical linear regression approach. In this approach, the
natural logarithm of the survival time ¥ = In(X) is modeled. This is the
natural transformation made in linear models to convert positive vari-
ables to observations on the entire real line. A linear model is assumed
for Y, namely,

Y=p+vy'Z+ oW, 6.1

where ¥ = (y,...,7,) is a vector of regression coefficients and W
is the error distribution. Common choices for the error distribution
include the standard normal distribution which yields a log normal
regression model, the extreme value distribution (2.5.4), which yields a
Weibull regression model, or a logistic distribution (2.5.7), which yields
a log logistic regression model. Estimation of regression coefficients,
which is discussed in detail in Chapter 12, is performed using maximum
likelihood methods and is readily available in most statistical packages.

This model is called the accelerated failure-time model. To see why
this is so, let $,(x) denote the survival function of X = e¥ when Z is
zero, that is, S,(x) is the survival function of exp(p + o W).
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EXAMPLE 2.5

Now,

Pr(X > x|2Z] = PrlY > Inx | Z]
=Prlp+ oW >Ilnx— y'Z 7]
= Prie**V > xexp(—4'Z) | Z)
= S,[xexp(—y'ZD)l.

Notice that the effect of the explanatory variables in the original time
scale is to change the time scale by a factor exp(—¥°Z). Depending on
the sign of y'Z, the time is either accelerated by a constant factor or
degraded by a constant factor. Note that the hazard rate of an individual

with a covariate value Z for this class of models is related to a baseline
hazard rate b, by

b(x|2) = bylx exp(—y'D]exp(~y'Z). 2.6.2)

Suppose that the survival time X follows a Weibull distribution with
parameters X and a. Recall that in section 2.5 we saw that the natural
logarithm of X, ¥ = In(X), can be written as a linear model, ¥ = p +
oW, where p = (~In(A)/a), ¢ = a™?, and W has a standard extreme
value distribution with density function f(w) = exp{w — e}, —~0 <
w < . Suppose that we also have a set of p— 1 covariates, {Z,, .. ., Z,}
which can explain some of the patient to patient variability observed for
the lifetimes under study. We shall define the covariate Z; = 1 to allow
for an intercept term in our log linear model and Z* = (Z,, .. ., Z,). Let

¥ =", ...,¥) be a vector of regression coefficients. The natural log
linear model for Y is given by

Y=9Z+ow,
With this model, the survival function for Y is expressed as

Sy 12Z) = exp [— exp (‘%ﬂ)] .

On the original time scale the survival function for X is given by

PO |

Sx(x|2) = exp [—xl/" exp (%Z)] = exp{—[x exp(—¥' D"}

= S(xexp{—y'Z),
where S,(x) = exp(—x*) is a Weibull survival function.

‘ Although the accelerated failure-time model provides a direct exten-
sion of the classical linear model’s construction for explanatory variables
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EXAMPLE 2.5

for conventional data, for survival data, its use is restricted by the error
distributions one can assume. As we have seen earlier in this chapter,
the easiest survival parameter to model is the hazard rate which tells
us how quickly individuals of a certain age are experiencing the event
of interest. The major approach to modeling the effects of covariates
on survival is to model the conditional hazard rate as a function of
the covariates. Two general classes of models have been used to relate
covariate effects to survival, the family of multiplicative hazard models
and the family of additive hazard rate models.

For the family of multiplicative hazard rate models the conditional
hazard rate of an individual with covariate vector Z is a product of a
baseline hazard rate h,(x) and a non-negative function of the covariates,
«(B'2), that is,

b(x [2) = by(xX)A(BD). 6.3)
In applications of the model, b,(x) may have a specified parametric
form or it may be left as an arbitrary nonnegative function. Any nonneg-
ative function can be used for the link function ¢(). Most applications
use the Cox (1972) model with ¢«(8‘z) = exp(B‘z) which is chosen for
its simplicity and for the fact it is positive for any value of g'z.

A key feature of multiplicative hazards models is that, when all the
covariates are fixed at time 0, the hazard rates of two individuals with
distinct values of z are proportional. To see this consider two individuals
with covariate values z; and z,. We have

b(x|z) _ b()c(B'z) _ o(B'z)
bxlzp W@dB'z) Bz
which is a constant independent of time.
Using (2.6.3), we see that the conditional survival function of an in-

dividual with covariate vector Z can be expressed in terms of a baseline
survival function Si(x) as

SCx |2 = S, () B2,

6.9

This relationship is also found in nonparametric statistics and is called
a “Lehmann Alternative.”

Multiplicative hazard models are used for modeling relative survival
in section 6.3 and form the basis for modeling covariate effects in
Chapters 8 and 9.

(continued) The multiplicative hazard model for the Weibull dis-
tribution with baseline hazard rate by(x) = aAx*"!is b(x | 2 =
alx*" o(B'z). When the Cox model is used for the link function,
b(x | 2 = arx*lexp(B'z). Here the conditional survival function
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is given by S(x | 20 = expl—Ax*]*P¥d = exp[—A\x*exp(B'z)] =
expl—A(x exp(B‘z/a])*], which is of the form of an accelerated failure-
time model (2.6.2). The Weibull is the only continuous distribution
which has the property of being both an accelerated failure-time model
and a multiplicative hazards model.

A second class of models for the hazard rate is the family of addi-

t;ve hazard rate models. Here, we model the conditional hazard function
y

14
bx|2) = b + 3 2(DB.
/=1

. The regression coefficients for these models are functions of time so
t.hat the effect of a given covariate on survival is allowed to vary over
time. The p regression functions may be positive or negative, but their
values are constrained because (2.6.5) must be positive.

Estimation for additive models is typically made by nonparametric
(weighted) least-squares methods. Additive models are used in section

6.fff} to model excess mortality and, in Chapter 10, to model regression
effects.

2.6.5

1. From Theoretical Note 1 of section 2.4,

S(x |z) = exp [— fxb(t | z)dt] 2.6.6)
0
and, in conjunction with (2.6.4),
SCx |2 =exp [- f b(® exp[B'ZIdt]
0
x explfi‘al
= {exp [—/ b,,(t)dt]}
0
= [S,(a))erPlp’d
which implies that
In{—In S(x | 2] = Bz + In[— In 5,(x)]. @.6.7D

So the logarithms of the negative logarithm of the survival functions
of X, given different regressor variables z,, are parallel. This relation-
ship will serve as a check on the proportional hazards assumption
discussed further in Chapter 11,
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2.7 Models for Competing Risks

In the previous sections of this chapter we have examined parameters
which can be used to describe the failure time, T, of a randomly selected
individual. Here T may be the time to death (see, for example, sections
1.5, 1.7, 1.8, 1.11), the time to treatment failure (see, for example,
sections 1.9, 1.10), time to infection (see sections 1.6, 1.12), time to
weaning (section 1.14), etc.

In some medical experiments we have the problem of competing
risks. Here each subject may fail due to one of K (K = 2) causes, called
competing risks. An example of competing risks is found in section 1.3,
Here the competing risks for treatment failure are relapse and death
in remission. Occurrence of one of these events precludes us from
observing the other event on this patient. Another classical example of
competing risks is cause-specific mortality, such as death from heart
disease, death from cancer, death from other causes, etc.

To discuss parameters for the competing-risks problem we shall for-
mulate the model in terms of a latent failure time approach. Other for-
mulations, as discussed in Kalbfleisch and Prentice (1980), give similar
representations. Here we let X;, 7 = 1, ..., K be the potential unobserv-
able time to occusrence of the ith competing risk. What we observe
for each patient is the time at which the subject fails from any cause,
T = Min(X;, ..., X,) and an indicator 8 which tells which of the X risks
caused the patient to fail, that is, 8 = 7/ if T = X,.

The basic competing risks parameter is the cause-specific hazard rase
Sor risk i defined by

Pt=T<t+Atd=i|lT=14

b(t) = guglo A (2.7..1)
L P=x<t+Atd=ilX,=tj=1,... K
= lim
A0 At

Here b,(®) tells us the rate at which subjects who have yet to experience
any of the competing risks are experiencing the ith competing cause of
failure. The overall hazard rate of the time to failure, 7', given by (2.3.1)
is the sum of these K cause-specific hazard rates; that is

K
br(® =Y h(®.
1=1

The cause-specific hazard rate can be derived from the joint sur-
vival function of the K competing risks. Let S(#,..., &%) = PiX; >
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EXAMPLE 2.6

EXAMPLE 2.7

t, ..., Xk > tg. The cause specific hazard rate is given by

—as(n, ..., tK)/ati|,l=...
Y ¢ A )

b(D = bt 272

Suppose that we have K competing risks and that the potential failure
times are independent with survival functions S(®) for i = 1,2, ..., K.
Then the joint survival function is S(4, ..., %) = [Ix, S«t), and by
(2.7.2) we have

=0 S/ ou, ...,  —3SK8D/ M|, _,
b{(t) _ z 1 K = | s
T, 5, 0)

which is precisely the hazard rate of X;.

Example 2.6 shows that for independent competing risks the marginal
and cause-specific hazard rates are identical. This need not be the case
when the risks are dependent as we see in the following example.

Suppose we have two competing risks and the joint survival function
is S(h, &) = [1+ 0\ + Ae)7/%, 8 = 0,A, A, = 0. Here the two
potential failure times are correlated with a Kendall's T of (8/(6 + 2))
(see section 13.3 for a discussion and derivation of this model). By
(2.7.2) we have

—oll + 8t + AotV 31, _, _,
14+ 6:(A; + A)) V8

A .
1+ 0+

20

1,2.

Here the survival function of the time to failure, 7 = min(X;, X;)
is S&H = SO = [1 + 6t + ADI™® and its hazard rate is
(A1 + A/ + 61, + A1, Note that the marginal survival function
for X, is given by S(#,0) = [1 + 82A,]7/% and the marginal hazard
rate is, from (2.3.2), A, /(1 + 6A;9), which is not the same as the crude
hazard rate.

In competing-risks modeling we often need to make some assump-
tions about the dependence structure between the potential failure
times. Given that we can only observe the failure time and cause and
not the potential failure times these assumptions are not testable with
only competing risks data. This is called the identifiability dilemma.
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We can see the problem cleatly by careful examination of Example 2.7,
Suppose we had two independent competing risks with hazard rates
M/ + 6:CA; + ADFand A, /11 + 68(A; + A, respectively. By Example
2.6 the cause-specific hazard rates and the marginal hazard rates are
identical when we have independent competing risks. So the crude
hazard rates for this set of independent competing risks are identical
to the set of dependent competing risks in Example 2.7. This means
that given what we actually see, (7; 8), we can never distinguish a pair
of dependent competing risks from a pair of independent competing
risks.

In competing risks problems we are often interested not in the hazard
rate but rather in some probability which summarizes our knowledge
about the likelihood of the occurrence of a particular competing risk.
Three probabilities are computed, each with their own interpretation.
These are the crude, net, and partial crude probabilities. The crude
probability is the probability of death from a particular cause in the real
world where all other risks are acting on the individual. For example,
if the competing risk is death from heart disease, then an example of a
crude probability is the chance a man will die from heart disease prior to
age 50. The net probability is the probability of death in a hypothetical
world where the specific risk is the only risk acting on the population.
In the potential failure time model this is a marginal probability for
the specified risk. For example, a net probability is the chance that
a man will die from heart disease in the counterfactual world where
men can only die from heart disease. Partial crude probabilities are the
probability of death in a hypothetical world where some risks of death
have been eliminated. For example, a partial crude probability would
be the chance a man dies from heart disease in a world where cancer
has been cured.

Crude probabilities are typically expressed by the cause-specific sub-
distribution function. This function, also known as the cumaulative in-
cidence function, is defined as F(¢) = PIT = t,8 = i{]. The cumulative
incidence function can be computed directly from the joint density
function of the potential failure times or it can be computed from the
cause specific hazard rates. That is,

¢
RO =PT=t6=i= / bi(i) expl{~ Hr (1} du. 273
[1]

Here H(#) = £, [ b,(#) du is the cumulative hazard rate of T. Note
that the value of F(#) depends on the rate at which all the competing
risks occur, not simply on the rate at which the specific cause of interest
is occurring. Also, since b(f) can be estimated directly from the ob-
served data, F(#) is directly estimable without making any assumptions
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about the joint distribution of the potential failure times (see section
4.7). F(® is not a true distribution function since F,(«) = P[§ = §]. It
has the property that it is non-decreasing with £(0) = 0 and F,(«) < 1.
Such a function is called a “sub-distribution” function.

The net survival function, S,(#), is the marginal survival function found
from the joint survival function by taking ¢, = 0 for all j # i. When
the competing risks are independent then the net survival function is
related to the crude probabilities by

14
dF(w)
S(D = - duy .
16 exp{ e u}

This relationship is used in Chapter 4 to allow us to estimate prob-
abilities when there is a single independent competing risk which is
regarded as random censoring (see section 3.2 for a discussion of ran-
dom censoring).

When the risks are dependent, Peterson (1976) shows that net sur-
vival probabilities can be bounded by the crude probabilities. He shows
that

Sr() = S(H=1-F®.

The lower (upper) bounds correspond to perfect positive (negative)
correlation between the risks. These bounds may be quite wide in
practice. Klein and Moeschberger (1988) and Zheng and Klein (1994)
show that these bounds can be tightened by assuming a family of
dependence structures for the joint distribution of the competing risks.

For partial crude probabilities we let J be the set of causes that an
individual can fail from and J¢ the set of causes which are eliminated
from consideration. Let 77 = min(X;,{ € J) then we can define the
partial crude sub-distribution function by F/() = PriT/ =8 = 4], i €
J. Here the ith partial crude probability is the chance of dying from
cause 7 in a hypothetical patient who can only experience one of the
causes of death in the set J. One can also define a partial crude hazard
rate by

—0SCh, .., 6/ O,y ey im0y
M@= =ty €)y=048)"

Q7.9
NCHNNTS e—

As in the case of the crude partial incidence function we can express

' the partial crude sub-distribution function as

F@=prir =£6=i= /A{(x)exp {— Z/A{(u) du} dx.
0 7€) o

2.7.5)
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1.0

When the risks are independent then the partial crude hazard rate can |
| -----------------

be expressed in terms of the crude probabilities as
dF(D/dt . @76 ",___.--
Sr(® 08{

MO

EXAMPLE 2.8 Suppose we have three independent exponential competing risks with
hazard rates A, Az, As, respectively. In this case, as seen in Example 2.6,
' 0.6

the net and crude hazard rates for the first competing risk are equal
to A;. The hazard rate of T is h(2) = A; + A, + A;. Equation (2.7.3),
the crude sub-distribution function for the first competing risk is

4
4
1
[
[}
[
L}
1
1
1
1
1
I
L}
:
04 {3
L]
R
L]

t
F® = /)\] exp(—u(A; + A, + A3) du
0

‘ A
g = ——— {1 —exp{—t(\; + Az + AD}}.
| - T T SR A

i Note that the crude probability of death from cause 1 in the interval
' [0, ] is not the same as the net (marginal) probability of death in this
interval given by 1 — exp{—A;#}. Also F(®) = A; /(A + A; + A3), which

0.2

l
! is the probability that the first competing risk occurs first. If we consider
a hypothetical world where only the first two competing risks are oper- _ 004 . r S— . .
ating (J = {1, 2}), the partial crude hazard rates are AJ(1) = A,,i = 1,2, 0 20 40 60 80 100
and the partial crude sub-distribution function is given by
Figure 2.11  Cumuldative incidence function (solid line) and net probability
! Or the first competing risk in Example 2.7.
A= /)\1 exp(—u(r; + X)) du = %{1 —exp{— A + A} 4 s pering g .
4 1 2 see clearly that the cumulative incidence function levels off at one-third
_ the probability that the first competing risk fails first. Also we see quite
clearly that the crude probability is always less than the net probability.
EXAMPLE 2.7 (continued) Suppose we have two competing risks with joint survival .
function S(4, ) = [1 + 8\ + 51778, 0 = 0,01, X, = 0. Here the Practical Notes
crude hazard rates are given by A;/[1 + 01, + Ap], for i = 1,2. The '
cause-specific cumulative incidence function for the 4th risk is 1. Competing risk theory has an intriguing history going back to a mem-
oir read in 1760 by Daniel Bernoulli before the-French Academy of

Sciences and published in 1765. It was motivatéd by a controversy on

At '
Py 4 } dx ’ the merits of smallpox inoculation. Using Halley’s Breslau life table of
1693, Bernoulli constructed a hypothetical lifetable, which reflected

F® = , A exp{ — ]
; 0/ [+ 0Oy + 21 7P ) T 0ulh; + A2
A 16 the mortality structure at different ages if smallpox was eliminated. A
=TI {1 — 1+ 6:(A + A } . key assumption was, as Bernoulli recognized, that the hypothetical
1T Az lifetimes of individuals saved from smallpox were independent of
In Figure 2.11 we plot the cumulative incidence function and the net lifetimes associated with the other causes of death. Bernoulli’s ques-
tion “What would be the effect on mortality if the occurrence of one

probability for cause 1 when A; = 1, A; = 2, and 6 = 2. Here we




56 Chapter 2 Basic Quantities and Models

Theoretical Notes

or more causes of death were changed?” and the untestable assump-
tion of independence of causes of death are still very much with ug
today.

. For simplicity, we shall only assume one competing risk, whose event

time will be denoted by Y (although all results may be general-
ized to many competing risks). In the competing-risks framework,
as we have seen, we can only observe 7' = minimum (X, Y) and
8 = I(X < ¥), an indicator function which indicates whether or
not the main event of interest has occurred. The early observation
by Cox (1959, 1962) that there was a difficulty in the interpretation
of bivariate data in the competing risk context was elucidated and
clarified by later authors. Berman (1963) showed explicitly that the
distribution of (7, 8) determined that of X, if X and Y are assumed
to be independent. Tsiatis (1975) proved a nonidentifiability theorem
which concluded that a dependent-risk model is indistinguishable
from some independent risk model and that any analysis of such
data should include a careful analysis of biological circumstances.
Peterson (1976) argued that serious errors can be made in estimating
the survival function in the competing risk problem because one can
never know from the data whether X and Y are independent or not.

. Heckman and Honore (1989) show, under certain regularity con-

ditions, for both proportional hazards and accelerated failure time
models that if there is an explanatory covariate, Z, whose support is
the entire real line then the joint distribution of (X, Y) is identifiable
from (T} 8, Z). Slud (1992), in a slightly different vein, shows how the
marginal distribution of the survival time X can be nonparametrically
identifiable when only the data (7, 8, Z) are observed, where Z is an
observed covariate such that the competing risk event time, Y, and
Z are conditionally independent given X.

. Slud and Rubinstein (1983) have obtained tighter bounds on S(x)

than the Peterson bounds described earlier, in this framework, by
utilizing some additional information. Their method requires the in-
vestigator to bound the function

_ /g0 - 1}

PO = SO/ DT — 1)
where
__ds
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2.8 Exercises

2.1

22

and
d
) = thz(t)-

Knowledge of the function p(#) and the observable information,
(T, 8, is sufficient to determine uniquely the marginal distribution
of X. The resulting estimators S’p(x) are decreasing functions of p(:).
These resulting bounds are obtained by the investigator’s specifica-
tion of two functions, p,(Dp(H) < px(P), so that if the true p(d)
function is in the interval [p;() < p(8)], for all ¢, then Sp() =

2. Pepe (1991) and Pepe and Mori (1993) interpret the cumulative in-
cidence function as a “marginal probability.” Note that this function
is not a true marginal distribution as discussed earlier but rather is
the chance that the event of interest will occur prior to time ¢ in a
system where an individual is exposed to both risks. Pepe and Mori
suggest as an alternative to the cumulative incidence function the
“conditional probability” of X, defined by

F®
Fe(’

which they interpret as the probability of X’s occurring in [0, £), given
nonoccurrence of ¥ in [0, £), where F¢ denotes the complement of F.

AX=tX<71v}i{r<tx>v}H=

The lifetime of light bulbs follows an exponential distribution with a
hazard rate of 0.001 failures per hour of use.

(2) Find the mean lifetime of a randomly selected light bulb.

(b) Find the median lifetime of a randomly selected light bulb.

(c) What is the probability a light bulb will still function after 2,000
hours of use?

The time in days to development of a tumor for rats exposed to a
carcinogen follows a Weibull distribution with @ = 2 and A = 0.001.

éa) What is the probability a rat will be tumor free at 30 days? 45 days?
0 days? '

(b) What is the mean time to tumor? (Hint I'(0.5) = /7r.)

() Find the hazard rate of the time to tumor appearance at 30 days, 45
days, and 60 days.

(d) Find the median time to tumor.
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2.3

2.4

25

2.6

2.7

28

The time to death (in days) following a kidney transplant follows a log
logistic distribution with @ = 1.5 and A = 0.01.

(2) Find the 50, 100, and 150 day survival probabilities for kidney trans-
plantation in patients.

(b) Find the median time to death following a kidney transplant.

(c) Show that the hazard rate is initially increasing and, then, decreas-
ing over time. Find the time at which the hazard rate changes from
increasing to decreasing.

(d) Find the mean time to death.

A model for lifetimes, with a bathtub-shaped hazard rate, is the ex-
ponential power distribution with survival function S(x) = expll -
expl(Ax)*}.

(@ If @ = 0.5, show that the hazard rate has a bathtub shape and find
the time at which the hazard rate changes from decreasing to increasing.
() If @ = 2, show that the hazard rate of x is monotone increasing.
The time to death (in days) after an autologous bone marrow transplant,
follows a log normal distribution with g = 3.177 and o = 2.084. Find
(@) the mean and median times to death;

(b) the probability an individual survives 100, 200, and 300 days fol-
lowing a transplant; and .

(© plot the hazard rate of the time to death and interpret the shape of
this function.

The Gompertz distribution is commonly used by biologists who believe
that an exponential hazard rate should occur in nature. Suppose that
the time to death in months for a2 mouse exposed to a high dose of
radiation follows a Gompertz distribution with § = 001 and & = 0.25.
Find

(2) the probability that a randomly chosen mouse will live at least one
year,

(b) the probability that a randomly chosen mouse will die within the

first six months, and

(c) the median time to death.

The time to death, in months, for a species of rats follows a gamma
distribution with 8 = 3 and A = 0.2. Find

(a) the probability that a rat will survive beyond age 18 months,

(b) the probability that a rat will die in its first year of life, and

(©) the mean lifetime for this species of rats.

The battery life of an internal pacemaker, in years, follows a Pareto
distribution with 8 = 4 and A = 5.
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29

2.10

2.11

(a) What is the probability the battery will survive for at least 10 years?
(b) What is the mean time to battery failure?

(©) If the battery is scheduled to be replaced at the time #,, at which 99%

of all batteri , - ‘
fod atteries have yet to fail (that is, at ¢, so that Pr(X > L) = 99),

Z::Cume to relapse, in. months, for patients on two treatments for lung
er is compared using the following log normal regression model:

Y=In(X)=2+05Z+2W,

where W has a standard normal distributi =1j
i s & stan distribution and Z = 1 if treatment A

(a) Com, thy i iliti
@ pare the survival probabilities of the two treatments at 1, 2, and

(b) Repeat the calculations if W has istic distri
Compare yous reaults s part (o) as a standard logistic distribution.

;xtar;olfljel uged in the construction of life tables is a. piecewise, con-
azard rate model. Here the time axis is divided into & intérvals
t

[T“Il T{), i=1 k i
yeeey ,Wltl]fo=0and1.k=°°,rl]
th i i . The hazar
ith interval is a constant value, 8;; that is d rate on the

01 05x<1'1
6, nEx<n

b(x) =

01 Tep S x < 7w,

‘A X = 1
@ Fmd the survival function for this model.
(b) Find the mean residual-life function,
(c) Find the median residual-life function.
In some applications, a third param
. : \ p eter, called i i
included in the models discussed in this chapter. aﬂg'ulsm;r)aa?gett:? 2 f;

the smallest time at which a fajlur
e could occur. Th i i
of the three-parameter Weibull distribution is given gysurvwal function

SCo) = {1 fx<dg
x) expl—-Alx — )1 if x = ¢,

(2) Find the hazard rate and the density function of the three-

Weibull distribution. parameter



60

Chapter 2  Basic Quantities and Models

2.12

2.13

2.14

215

2.16

(b) Suppose that the survival time X follows a three-parameter Weibull
distribution with @ = 1, A = 0.0075 and ¢ = 100. Find the mean and
median lifetimes.

Let X have a uniform distribution on the interval 0 to 6 with density
function

1/0, for0=x=6

0, otherwise.

f@) =

(2) Find the survival function of X.
(b) Find the hazard rate of X.
(©) Find the mean residual-life function.

Suppose that X has a geometric distribution with probability mass func-
tion

PO =pU—prlx=12,...
(a) Find the survival function of X. (Hint: Recall that for 0 < 8 < 1,
Y-8 =64/0— 6.
(b) Find the hazard rate of X. Compare this rate to the hazard rate of
an exponential distribution.

Suppose that a given individual in a population has a survival time
which is exponential with a hazard rate 0. Each individual’s hazard rate
6 is potentially different and is sampled from a gamma distribution with
density function

A B oﬁ—l e-—AO

| X0

Let X be the life length of a randomly chosen member of this popula-
tion,

(2) Find the survival function of X.

(Hint: Find S(x) = Ele™%1.)

(b) Find the hazard rate of X. What is the shape of the hazard rate?

f®=

Suppose that the hazard rate of X is a linear function Kx) = a + Bx,
with a and B > 0. Find the survival function and density function of x.

Given 2 covariate Z, suppose that the log survival time Y follows 2
linear model with a logistic error distribution, that is,

Y = In(X) = p + BZ + o W where the pdf of W is given by

w

e
fw) = m,_w<u}<w'
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2,17

2.18

2.19

2.20

@ Fpr an individual with covariate Z, find the conditional survival
function of the survival time X, given Z, namely, S(x | 2).

(b) The odds that an individual will die prior to time x is expressed by
gﬂ— S(J(cj IIZ)]/ S(x | 2). Compute the odds of death prior to time x for
s model.

© Consjder two individuals with different covariate values. Show that,
for any time X, the ratio of their odds of death is independent of x. The
log logistic regression model is the only model with this property.

Suppose that the mean residual life of a continuous survival time X is
given by MRL(x) = x + 10.

(2) Find the mean of X.
(b) Find b(x).
(©) Find S(x).

Let X have a uniform distribution on 0 to 100 days with probability
density function

(%) =1/100 for 0 < x < 100,
= 0, elsewhere.

(2) Find the survival function at 25, 50, and 75 days.
(b) Find the mean residual lifetime at 25, 50, and 75 days.
() Find the median residual lifetime at 25, 50, and 75 days.

Suppose that the joint survival function of the latent failure times for
two competing risks, X and Y, is

SN =0A-200-A+ 5x), 0<x<1 0<y<l.

(a) Find the marginal survival function for x.
(b) Find the cumulative incidence of T;.

Let X and Y be two competing risks with joint survival function
S(x, ) = exp{—x—y — 5x3},0 < x, 5.

(a) Find the marginal cumulative distribution function of X.

(b) Find the cumulative incidence function of X.



