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TABLE 1.1 0 
Induction times (in years) for A D S  in adults and children 

Infection Child Induction 
Time Adult Induction Time Time 

0.00 5 
0.25 6.75 
0.75 5, 5, 7.25 
1 .OO 4.25, 5.75, 6.25, 6.5 5.5 
1.25 4, 4.25, 4.75, 5.75 
1.50 2.75, 3.75, 5, 5.5, 6.5 2.25 
1.75 2.75, 3, 5.25, 5.25 
2.00 2.25, 3, 4, 4.5, 4.75, 5, 5.25, 5.25, 5.5, 5.5, 6 
2.25 3, 5.5 3 
2.50 2.25, 2.25, 2.25, 2.25, 2.5, 2.75, 3, 3.25, 3.25, 

Basic Quantities 
and Models 

Introduction 

In this chapter we consider the basic parameters used in modeling sur- 
vival data. We shall defme these quantities and show how they are 
interrelated in sections 2.2-2.4. In section 2.5 some common paramet- 
ric models are discussed. The important application of regression to 
survival analysis is covered in section 2.6, where both parametric and 
semiparametric models are presented. Models for competing risks are 
discussed in section 2.7. 

Let X be the time until some specified event. This event may be death, 
the appearance of a tumor, the development of some disease, recur- 
rence of a disease, equipment breakdown, cessation of breast feeding, 
and so forth. Furthermore, the event may be a good event, such as 
remission after some treatment, conception, cessation of smoking, and 
so forth. More precisely, in this chapter, X is a nonnegative random 
variable from a homogeneous population. Four functions characterize 
the distribution of X, namely, the suroival function, which is the prob- 
ability of an individual surviving to time x; the hazard rate Vunction), 
sometimes termed rkk function, which is the chance an individual of 
age x experiences the event in the next instant in time; the probabil- 
ity density (orprobability mass) function, which is the unconditional 
probability of the event's occurring at time x; and the mean residual 
life at time x, which is the mean time to the event of interest, given 
the event has not occurred at x.  If we know any one of these four 
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functions, then the other three can be uniquely determined. In practice, 
these four functions, along with another useful quantity, the cumulative 
hazard function, are used to illustrate different aspects of the distribu- 
tion of X. In the competing risk context, the cause-speczjic hazard rate, 
which is the rate at which subjects who have yet to experience any 
of the competing risks are experiencing the ith competing cause of 
failure, is often used. This quantity and other competing risk quantities 
are discussed in detail in section 2.7. In Chapters 4-6, we shall see how 
these functions are estimated and how inferences are drawn about the 
survival (or failure) distribution. 

The Survival Function 
The basic quantity employed to describe time-to-event phenomena is 
the survival function, the probability of an individual surviving beyond 
time x (experiencing the event after time x). It is defmed as 

In the context of equipment or manufactured item failures, S(x) is 
referred to as the reliability function. If X is a continuous random 
variable, then, S(x) is a continuous, strictly decreasing function. 

When X is a continuous random variable, the survival function is 
the complement of the cumulative distribution function, that is, S(x) = 
1 - F(x), where F(x) = Pr(X s x). Also, the survival function is the 
integral of the probability density function, f (x), that is, 

Thus, 

Note that f (x) dx may be thought of as the "approximate" probability 
that the event will occur at time x and that f (x) is a nonnegative 
function with the area under f (x) being equal to one. 

-- 
EXAMPLE 2.1 The survival function for the Weibull distribution, discussed in more de- 

tail in section 2.5, is S(x) = exp(-w), A > 0, a > 0. The exponential 
distribution is a special case of the Weibull distribution when a = 1. 
Survival curves wi'th a common median of 6.93 are exhibited in Figure 
2.1 for A = 0.26328, a = 0.5; A = 0.1, a = 1; and A = 0.00208, a = 3. 
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Figure 2.1 Wa'bull Suwiualfinctions for ci = 0.5, A = 0.26328 (-1; 
ci = 1.0, A = 0.1 (.-.-..); ff = 3.0, A = 0.00208 (-1. 

Many types of survival curves can be shown but the important point 
to note is that they all have the same basic properties. They are mono- 
tone, nonincreasing functions equal to one at zero and zero as the time 
approaches infinity. Their rate of decline, of course, varies according to 
the risk of experiencing the event at time x but it is diff~cult to deter- 
mine the essence of a failure pattern by simply looking at the survival 
curve. Nevertheless, this quantity continues to be a popular description 
of survival in the applied literature and can be very useful in compar- 
ing two or more mortality patterns. Next, we present one more survival 
curve, which will be discussed ar greater length in the next section. 

EXAMPLE 2.2 The U.S. Department of Health and Human Services publishes yearly 
survival curves for all causes of mortality in the United States and each 
of the fifty states by race and sex in their Vital Statistics of the United 
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TABLE 2.1 
Suruival Functions of U.S. Population By Race and Sex in 1983 
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White White Black Black 
Age Male Female Male Female 

0 1.00000 1.00000 1.00000 1.000M) 
1 0.99092 0.99285 0.97996 0.98283 
2 0.99024 0.99232 0.97881 0.98193 
3 0.98975 0.99192 0.97792 0.98119 
4 0.98937 0.99160 0.97722 0.98059 
5 0.98905 0.99134 0.97664 0.98011 
6 0.98877 0.99111 0.97615 0.97972 
7 0.98850 0.99091 0.97571 0.97941 
8 0.98825 0.99073 0.97532 0.97915 
9 0.98802 0.99056 0.97499 0.97892 

10 0.98782 0.99041 0.97472 0.97870 
11 0.98765 0.99028 0.97449 0.97847 
12 0.98748 0.99015 0.97425 0.97823 
13 0.98724 0.98999 0.97392 0.977% 
14 0.98686 0.98977 0.97339 0.97767 
15 0.98628 0.98948 0.97258 0.97735 
16 0.98547 0.98909 0.97145 0.97699 
17 0.98445 0.98862 0.97002 0.97658 
18 0.98326 0.98809 0.96829 0.97612 
19 0.98197 0.98755 0.96628 0.97559 
20 0.98063 0.98703 0.96403 0.97498 
21 0.97924 0.98654 0.96151 0.97429 
22 0.97780 0.98607 0.95873 0.97352 
23 0.97633 0.98561 0.95575 0.97267 
24 0.97483 0.98514 0.95267 0.97174 
25 0.97332 0.98466 0.94954 0.97074 
26 0.97181 0.98416 0.94639 0.96967 
27 0.97029 0.98365 0.94319 0.96852 
28 0.96876 0.98312 0.93989 0.96728 
29 0.96719 0.98257 0.93642 0.96594 
30 0.96557 0.98199 0.93273 0.96448 
31 0.96390 0.98138 0.92881 0.96289 
32 0.96217 0.98073 0.92466 0.96118 
33 0.96038 0.98005 0.92024 0.95934 
34 0.95852 0.97933 0.91551 0.95740 
35 0.95659 0.97858 0.91044 0.95336 
36 0.95457 0.97779 0.90501 0.95321 
37 0.95245 0.97696 0.89922 0.95095 
38 0.95024 0.97607 0.89312 0.94855 
39 0.94794 0.97510 0.88677 0.94598 
40 0.94555 0.97404 0.88021 0.94321 
41 0.94307 0.97287 0.87344 0.94023 
42 0.94047 0.97158 0.86643 0.93703 

States Series. In Table 2.1, we present the overall survival probabilities 
for males and females, by race, taken from the 1990 report (U.S. De- 
partment of Health and Human Services, 1990). Figure 2.2 shows the 
survival curves and allows a visual comparison of the curves. We can 
see that white females have the best survival probability, white males 
and black females are comparable in their survival probabilities, a n d  
black males have the worst survival. 

White White Black Black 
Age Male Female Male Female 

43 0.93771 0.97016 0.85917 0.93361 
44 0.93477 0.96862 0.85163 0.92998 
45 0.93161 0.96694 0.84377 0.92612 
46 0.92820 0.96511 0.83559 0.92202 
47 0.92450 0.96311 0.82707 0.91765 
48 0.92050 0.96091 0.81814 0.91300 
49 0.91617 0.95847 0.80871 0.90804 
50 0.91148 0.95575 0.79870 0.90275 
51 0.90639 0.95273 0.78808 0.89709 
52 0.90086 0.94938 0.77685 0.89103 
53 0.89480 0.94568 0.76503 0.88453 
54 0.88810 0.94161 0.75268 0.87754 
55 0.88068 0.93713 0.73983 0.87000 
56 0.87250 0.93222 0.72649 0.86190 
57 0.86352 0.92684 0.71262 0.85321 
58 0.85370 0.92096 0.69817 0.84381 
59 0.84299 0.91455 0.68308 0.83358 
60 0.83135 0.90756 0.66730 0.82243 
61 0.81873 0.89995 0.65083 0.81029 
62 0.80511 0.89169 0.63368 0.79719 
63 0.79052 0.88275 0.61584 0.78323 
64 0.77501 0.87312 0.59732 0.76858 
65 0.75860 0.86278 0.57813 0.75330 
66 0.74131 0.85169 0.55829 0.73748 
67 0.72309 0.83980 0.53783 0.72104 
68 0.70383 0.82702 0.51679 0.70393 
69 0.68339 0.81324 0.49520 0.68604 
70 0.66166 0.79839 0.47312 0.66730 
71 0.63865 0.78420 0.45058 0.64769 
72 0.61441 0.76522 0.42765 0.62723 
73 0.58897 0.74682 0.40442 0.60591 
74 0.56238 0.72716 0.38100 0.58375 
75 0.53470 0.70619 0.35749 0.56074 
76 0.50601 0.68387 0.33397 0.53689 
77 0.47641 0.66014 0.31050 0.51219 
78 0.44604 0.63494 0.28713 0.48663 
79 0.41503 0.60822 0.26391 0.46020 
80 0.38355 0.57991 0.24091 0.43291 
81 0.35178 0.54997 0.21819 0.40475 
82 0.31991 0.51835 0.19583 0.37573 
83 0.28816 0.48502 0.17392 0.34588 
84 0.25677 0.44993 0.15257 0.31522 
85 0.22599 0.41306 0.13191 0.28378 

Age in Y m  

Figure 2.2 Sum'vaZFunctionsforall cause mor/aZity/br the USpopuhtion in  
1383. m i t e  males (-); white females (....em); bhck m a b  (-A bhck 
females (-- I. 

When X is a discrete, random variable, different techniques are re- 
quired. Discrete, random variables in survival analyses arise due to 
rounding off measurements, grouping of failure times into intervals, or  
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when lifetimes refer to an integral number of units. Suppose that X can 
take on values xj ,  j = 1,2, . . . with probabiliv mass function (p.m.f.1 
p(xj)  = pr(X = xj) ,  J = 1,2, . . ., where XI < < . . . 

The survival function for a discrete random variable X is given by 

EXAMPLE 2.3 Consider, for pedagogical purposes, the lifetime X ,  which has the p.m.f. 
p(xj)  = Pr(X = j )  = 1/3 ,  j = 1,2,3, a simple discrete uniform 
distribution. The corresponding survival function, plotted in Figure 2.3, 
is expressed by 

Figure 2.3 Sunrivalfunction for a discrete random lifetime 
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Note that, when X is discrete, the survival function is a nonincreasing 
step function. 

The Hazard Function 

A basic quantity, fundamental in survival analysis, is the hazard function. 
This function is also known as the conditional failure rate in reliability, 
the force of mortality in demography, the intensity function in stochastic 
processes, the age-specific failure rate in epidemiology, the inverse of 
the Mill's ratio in economics, or simply as the hazard rate. The hazard 
rate is defined by 

I I€ X is a continuous random variable, then, 

A related quantity is the cumulative hazard function H(x), defined 
by 

~ ( x )  = [ b ( u )  d u  = - Inls(x)l. (2.3.3) 
I 

I Thus, for continuous lifetimes, 

I S(x) = expi- H(x)l = exp [- ix b ( u )  du] . (2.3.4) 

From (2.3.1), one can see that h ( x ) A x  may be viewed as the "ap- 
proximate" probability of an individual of age x experiencing the event 
in the next instant. This function is particularly useful in determin- 
ing the appropriate failure distributions utilizing qualitative information 
about the mechanism of failure and for describing the way in which the 
chance of experiencing the event changes with time. There are many 
general shapes for the hazard rate. The only restriction on b ( x )  is that 
it be nonnegative, i.e., b ( x )  r 0. 

Some generic types of hazard rates are plotted in Figure 2.4. For 
example, one may believe that the hazard rate for the occurrence of 
a particular event is increasing, decreasing, constant, bathtub-shaped, 
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Figure 2.4 Shapes of hazardfunctions. Constant hazard (--); increas- 
ing hazard (-1; decreasi'ng hazard (- - - - - -); bathtub shaped (-); 
humpshaped (---) . 

hump-shaped, or possessing some other characteristic which describes 
the failure mechanism. 

Models with increasing hazard rates may arise when there is natural 
aging or wear. Decreasing hazard functions are much less common but 
find occasional use when there is a very early likelihood of failure, 
such as in certain types of electronic devices or in patients experienc- 
ing certain types of transplants. Most often, a bathtub-shaped hazard is 
appropriate in populations followed from birth. Similarly, some man- 
ufactured equipment may experience early failure due to faulty paas, 
followed by a constant hazard rate which, in the later stages of equip- 
ment life, increases. Most population mortality data follow this type of 
hazard function where, during an early period, deaths result, primarily, 
from infant diseases, after which the death rate stabilizes, followed by 
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an increasing hazard rate due to the natural aging process. Finally, if the 
hazard rate is increasing early and eventually begins declining, then, the 
hazard is termed hump-shaped. This type of hazard rate is often used 
in modeling survival after successful surgery where there is an initial 
increase in risk due to infection, hemorrhaging, or other complications 
just after the procedure, followed by a steady decline in risk as the 
patient recovers. Specific distributions which give rise to these different 
types of failure rates are presented in section 2.5. 

EXAMPLE 2.1 (continued) One particular distribution, which is flexible enough to 
accommodate increasing (a > I), decreasing (a < I), or constant 
hazard rates (a = 11, is the Weibull distribution introduced in Example 
2.1. Hazard rates, h(x) = acYhx"-', are plotted for the same values of 
the parameters used in Figure 2.1, namely, A = 0.26328, a = 0.5; 
A = 0.1, a = 1; and A = 0.00208, a = 3 in Figure 2.5. One can see 

Figure 2.5 Wdbull hazardfunctions for a = 0.5, A = 0.26328 (--I; 
cr = 1.0, A = 0.1 (-1; = 3.0, A = 0.00208 (---I. 
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that, though the three survival functions have the same basic shape, the 
hazard functions are dramatically different. 

An example of a bathtub-shaped hazard rate is presented in the 
following example. 

EXAMPLE2.2 
- 

(continued) The 1989 U.S. mortality hazard rates, by sex and race, 
are presented in Figure 2.6. One can see the decreasing hazard rates 
early in all four groups, followed, approximately, by, a constant hazard 
rate, eventually leading to an increasing hazard rate starting at different 
times for each group. 

Figure 2.6 Hazard functions for all cause mortality for the USpopulation in 
); white females (..-..,); black males (- - - - - -1; 1989. White males (- 

black females(---). 

When X is a discrete random variable, the hazard function is given 
by 

P(xj) h(xj) = Pr(X = xj ( X  z x,) = - 
S(xj-1)' 

where S ( 4 )  = 1 .  Because p(xj) = S(xj-J - S(xj), in conjunction with 
(2.3.51, h(xj)  = 1 - S(X,>/S(X,-~>, j = 1,2, . . . . 

Note that the survival function may be written as the product of 
conditional survival probabilities 

S(x) = J-J S(xj)/S(xj-l). (2 .3 .0  
xlsx 

Thus, the survival function is related to the hazard function by 

EXMiPLE 2.3 (conttnwdl Let us reconsider the discrete random variable X in Ex- 
ample 2.3 with p(xl) = Pr(X = j) = 1/3, j = 1,2,3. The hazard 
function may be obtained by direct application of (2.3.5). This leads to 

" - 
1/2, for j = 2, 

h(xj) ' 1, for j = 3, and 
0, elsewhere. 

Note that the hazard rate is zero for a discrete random variable except 
at points where a failure could occur. 

Practical Notes 

1.  Though the three survival functions in Figure 2.1 have the same basic 
shape, one can see that the three hazard functions shown in Figure 
2.5 are dramatically different. In fact, the hazard function is usually 
more informative about the underlying mechanism of failure than 
the survival function. For this reason, consideration of the hazard 
function may be the dominant method for surnmariting survival data. 

2. The relationship between some function of the cumulative hazard 
function and some function of time has been exploited to develop 
hazard papers (Nelson, 1982), which will give the researcher an 
intuitive impression as to the desirability of the fit of specific models. 
For example, if X has a Weibull distribution, as in Example 2.1, then 
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its cumulative hazard rate is H(x) = A f l ,  so a plot of In H(x) 
versus In x is a straight line with slope a and y intercept In A. 
Using a nonparametric estimator of H(x), developed in Chapter 4, 
this relationship can be exploited to provide a graphical check of 
the goodness of fit of the Weibull model to data (see section 12.5 for 
details and examples). 

Theoretics 1 Notes 
1. For discrete lifetimes, we shall define the cumulative hazard function 

by 

H(x) = C h (xj). (2.3.8) 
X,CX 

Notice that the relationship S(x) = exd-~ (x ) )  for this definition 
no longer holds true. Some authors (Cox and Oakes, 1984) prefer to 
define the cumulative hazard for discrete lifetimes as 

H(x) = - lnil - h(xj)l, (2.3.9) 
X , I X  

because the relationship for continuous lifetimes S(x) = expi- H(x)l 
will be preserved for discrete lifetimes. If the h(x,) are small, (2.3.8) 
will be an approximation of (2.3.9). We prefer the use of (2.3.8) be- 
cause it is directly estimable from a sample of censored or truncated 
lifetimes and the estimator has very desirable statistical properties. 
This estimator is discussed in Chapter 4. 

2. For continuous lifetimes, the failwe distribution is said to have an 
increasing failure-rate (IFR) property, if the hazard function h(x) 
is nondecreasing for x r 0, and an increasing failure rate on the 
average (IFRA) if the ratio of the cumulative hazard function to time 
H(x)/x is nondecreasing for x > 0. 

3. For continuous lifetimes, the failure distribution is said to have a 
decreasing failure-rate (Dm) property if the hazard function h (x) is 
nonincreasing for x r 0. 

The Mean Residual Life Function 
and Median Life 

The fourth basic parameter of interest in survival analyses is the mean 
residual lge at time x. For individuals of age x, this parameter measures 
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their expected remaining lifetime. It is defined as mrl(x) = E(X - x ( 
X > x). It can be shown (see Theoretical Note 1) that the mean residual 
life is the area under the survival curve to the right of x divided by S(x). 
Note that the mean life, = mrl(O), is the total area under the survival 
curve. 

For a continuous random variable, 

and 

Also the variance of X is related to the survival function by 

The pth quantile (also referred to as the lOOpth percentile) of the 
distribution of X is the smallest xp so that 

S(xp) 5 1 - p, i.e., xp = inut : S(t) 1 - p}. (2.4.4) 

If X is a continuous random variable, then the pth quantile is found 
by solving the equation S(x$ = 1 - p .  The median lifetime is the 50th 
percentile q . ~  of the distribution of X. It follows that the median lifetime 
for a continuous random variable X is the value q . 5  so that 

EXAMPLE 2.4 The mean and median lifetimes for an exponential life distribution are 
1/A and (h2)/A as determined from equations (2.4.2) and (2.4.51, re- 
spectively. Furthermore, the mean residual life for an exponential distri- 
bution is also l / A  from equation (2.4.1). Distributions with this property 
are said to exhibit lack of memory. The exponential distribution is the 
unique continuous distribution possessing &is characteristic. 

I 

EXAMPLE2.1 (continued) For the Weibull distribution the lOOpth percentile is 
found by solving the equation I - p = exd-A$) so that xp = 

{-hi1 - pI/~}l/". 

- - 

EXAMPLE 2.2 (contin~d) The median and other percentiles for the population mor- 
tality distribution of black men may be determined graphically by using 
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Figure 2.7 Determination of the median lifetime and Both percentik of life- 
times for black men in the USpopulation in 1989 

the survival function plot depicted in Figure 2.2. F i t ,  h d  the a p  
propriate swvival probability, and, then, interpolate to the appropriate 
time. Determination of the median and 80th percentile, as  illustrated 
in Figure 2.7, give values of about 69 and 82 years, respectively. More 
accurate values can be found by linear interpolation in Table 2.1. We 
see that ~ ( 6 8 )  = 0.51679 > 0.5 and S(69) = 0.49520 < 0.5, so the 
median lies between 68 and 69 years. By linear interpolation, 

3 ~ 0 , ~  = 68 + S(68) - 0'5 = 68.78 years. 
S(68) - S(69) 

Similar calculations yield = 81.8 1 years. 
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Theoretical Notes 

1. For a continuous random variable X, 

We integrate by parts to establish equation (2.4.1) using the 
fact that f (t)dt = -dS(t), so that E(X - x 1 X > x)S(x) = 
- ( t  - x)S(t) 1: + Jz S(t)dt. The first term on the right-hand side of 
the equation is 0 because S(m) is 0 .  For a discrete, random variable, 
the result that the mean residual life is related to the area under the 
survival curve is obtained by using a partial summation formula. 

2. Interrelationships between the various quantities discussed earlier, 
for a continuous lifetime X, may be summarized as 
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3. Interrelationships between the various quantities discussed earlier, 
for discrete lifetimes X ,  may be summarized as 

for x, 5 x < xi+, . 

4. If X is a positive random variable with a hazard rate h(t), which is a 
sum of a continuous function h,(t) and a discrete function which has 
mass hd(x,) at times 0 I xl I a I - a ,  then the survival function 
is related to the hazard rate by the so called "product integral" of 
[I - h (t)]dt defined as follows: 

S(X) = f l u  - hd(xJ)l exp [- Ax hc(t)dt] 
x,sx 

5. Sometimes (particularly, when the distribution is highly skewed), the 
median is preferred to the mean, in which case, the quantity median 
residual lifetime at time x, mdrl(x), is preferred to the mean residual 
lifetime at time x, mrl(x), as defined in (2.4.1). The median residual 
lifetime at time x is defined to be the median of the conditional 
distribution of X - x I X > x and is determined using (2.4.4) except 
that the conditional distribution is used. It is the length of the interval 
from x to the time where one-half of the individuals alive at time x 
will still be alive. Note that the mdrl(0) is simply the median of the 
unconditional distribution. 

2.5 Common Parametric Models 
for Survival Data 

Although nonparametric or semiparametric models will be used exten- 
sively, though not exclusively, in this book, it is appropriate and neces- 
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sary to discuss the more widely used parametric models. These models 
are chosen, not only because of their popularity among researchers 
who analyze survival data, but also because they offer insight into the 
nature of the various parameters and functions discussed in previous 
sections, particularly, the hazard rate. Some of the important models 
discussed include the exponential, Weibull, gamma, log normal, log lo- 
gistic, normal, exponential power, Gompertz, inverse Gaussian, Pareto, 
and the generalized gamma distributions. Their survival functions. haz- 

? ----- 

ard rates, density functions, and expected lifetimes are summarized in 
Table 2.2. 

First, because of its historical sigmficance, mathematical simplicity, 
and important properties, we shall discuss the aponential distribution. 
Its survival function is S(x) = exp[-Ax], A > 0, x > 0. The density 
function is f (x) = A exp[-Ax], and it is characterized by a constant 
hazard function h (x) = A. 

The exponential distribution has the following properties. The first, 
referred to as the lack of memory property, is given by 

which allows for its mathematical tractability but also reduces its appli- 
cability to many realistic applied situations. Because of this distributional 
property, it follows that E(X - x ( X > x) = E(X) = l/A; that is, the 
mean residual life is constant. Because the time until the future occur- 
rence of an event does not depend upon past history, this property is 
sometimes called the "no-aging" property or the "old as good as new" 
property. This property is also reflected in the exponential distribution's 
constant hazard rate. Here, the conditional probability of failure at any 
time t, given that the event has not occurred prior to time t, does not 
depend upon t. Although the exponential distribution has been histor- 
ically very popular, its constant hazard rate appears too restrictive in 
both health and industrial applications. 

The mean and standard deviation of the distribution are 1/A (thus, 
the coefficient of variation is unity) and the pth quantile is xp = -ln(l- 
p)/A. Because the exponential distribution is a special case of both the 
Weibull and gamma distributions, considered in subsequent paragraphs, 
other properties will be implicit in the discussion of those distributions. 

Though not the first to suggest the use of this next distribution, Rosen 
and Ramrnler (1933) used it to describe the "laws governing the fine- 
ness of powdered coal," and Weibull (1939, 1951) proposed the same 
distribution, to which his name later became affixed, for describing the 
life length of materials. Its survival function is S(x) = exp[-Ax"], for 
x > 0. Here A > 0 is a scale parameter, and a > 0 is a shape parameter. 
The two-parameter Weibull was previously introduced in Example 2.1. 
The exponential distribution is a special case when a = 1. Figure 2.1, 
already presented, exhibits a variety of Weibull survival functions. Its 
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TABLE 2.2 
Hazard Rates, Survival Functions, Probability Density Functions, and Expected 
Lifetimes f Some Common Parametric Distributiom 
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hazard function has the fairly flexible form 

One can see from Figure 2.5 that the Weibull distribution is flexible 
enough to accommodate increasing (a  > I), decreasing (a < I), or 
constant hazard rates (a  = 1). This fact, coupled with the model's 
relatively simple survival, hazard, and probability density functions, 
have made it a very popular parametric model. It is apparent that the 
shape of the Weibull distribution depends upon the value of a ,  thus, 
the reason for referring to this parameter as the "shape" parameter. 

The rth moment of the Weibull distribution is [r(l + r/a)lh-r/a. 
The mean and variance are IT(1 + ~/a)]h-'~' and (r(l + 2/a) - 
[r(l + l/a)lZ}h-2/a, respectively, where T[al = 5; ~ ~ - ' e - ~ d u  is the 
well-known gamma function. T[al = (a - I)! when a is an integer and 
is tabulated in Beyer (1968) when a is not an integer. The pth quantile 
of the Weibull distribution is expressed by 

It is sometimes useful to work with the logarithm of the lifetimes. If we 
take Y = In X, where X follows a WeibuU distribution, then, Y has the 
density function 

(2.5.3) 
Writing the model in a general linear model format, Y = p + uE, 

where p = (-lnh)/ru, a = a-' and E has the standard extreme value 
distribution with density funaion 

A random variable (more familiar to the traditional linear model au- 
dience) X is said to follow the log n o m l  distribution if its logarithm 
Y = In X, follows the normal distribution. For time-toevent data, this 
distribution has been popularized because of its relationship to the nor- 
mal distribution (a distribution which we assume is commonly known 
from elementary statistics courses and whose hazard rate, survival func- 
tion, density function and mean are reported in Table 2.2 for complete- 
ness) and because some authors have observed that the log normal 
distribution approximates survival times or ages at the onset of certain 
diseases (Feinleib, 1960 and Homer, 1987). 

Like the normal distribution, the log normal distribution is completely 
specified by two parameters CL and a, the mean and variance of Y. Its 
density function is expressed by 
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and its survival function is given by 

l n x - p  
S'x) = 1 - ' [--I , 

where '(4) is the cumulative distribution function (density function) 
of a standard normal variable. 

The hazard rate of the log normal is hump-shaped, that is, its value 
at 0 is zero, and it increases to a maximum and, then, decreases to 0 as 
x approaches infinity (see Figure 2.8). This model has been criticized 
as a lifetime distribution because the hazard function is decreasing for 
large x which seems implausible in many situations. The model may fit 
certain cases where large values of x are not of interest. 

For the log normal distribution the mean lifetime is given by exp(p + 
u2/2) and the variance by [exp(u2)- 11 exp(2p+uZ). The pth percentile, 

Figure 2.8 Log normal hazard rates. p = 0, u = 0.5 (-); p = 0, u = 
0.1(-);p = 0,u = 2.0 (---I 
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xp is expressed as exp(p + uzp), where zp is the pth percentile of a 
standard normal distribution. 

A variable X is said to follow the log logistic distribution if its loga- 
rithm Y = lnX follows the logistic distribution, a distribution closely 
resembling the normal distribution, but the survival function is rnathe- 
matically more tractable. The density function for Y is expressed by 

where p and u2 are, respectively, the mean and scale parameter of  Y .  
Again, we can cast this distribution in the linear model format by taking 
Y = p + u W, where W is the standardized logistic distribution with 
p = O a n d u = l .  

The hazard rate and survival function, respectively, for the log logistic 
distribution may be written as relatively simple expressions: 

and 
1 

where a = 1/u > 0 and A = exp(-p/u). 
The numerator of the hazard function is the same as the Weibull haz- 
ard, but the denominator causes the hazard to take on the following 
characteristics: monotone decreasing for a 5 1. For a > 1, the hazard 
rate increases initially to a maximum at time [(a - 1)/Al1/" and then 
decreases to zero as time approaches infinity, as shown in Figure 2.9. 
The mean and variance of X are given by EKI = ~csc(?r/a)/(a~''~), 
if a > 1, and Var(x> = 2~csc(2~/a) / (aA~/~)  - mZ, if a > 2. The 
pth percentile is xp = (P/[A(l - p)])l/". 

This distribution is similar to the Weibull and exponential models 
because of the simple expressions for h(x) and S(x) above. Its hazard 
rate is similar to the log normal, except in the extreme tail of the 
distribution, but its advantage is its simpler hazard function h(x) and 
survival function S(x). 

The gamma distribution has properties similar to the Weibull distribu- 
tion, although it is not as mathematically tractable. Its density function 
is given by 

where A > 0, p > 0, x > 0, and r(p) is the gamma function. For 
reasons similar to those of the Weibull distribution, A is a scale pa- 
rameter and p is called the shape parameter. This distribution, like the 
Weibull, includes the exponential as a special case (p = 11, approaches 
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Figure 2.9 Log logistic hazard mtes. A = 1, u = 0.5 (-1; h = 1, u = 1.0 
(......I; A = 1, u = 2.0 (-1 
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rune 

a normal distribution as  /3 - a, and gives the chi-square distribution 
with v degrees of freedom when v = 2P (P, an integer) and A = 1/2. 
The mean and variance of the gamma distribution are P/A and P/AZ, 
respectively. 

The hazard function for the gamma distribution is monotone increas- 
ing for /3 > 1, with h(0) = 0 and h(x) -+ A as X -  a, and monotone 
decreasing for /3 C 1, with h(0) = a and h(x) -. A as x -+ a. When 
p > 1, the mode is at x = (fi - l ) /A.  A plot of the gamma hazard 
function is presented in Figure 2.10. 

The survival function of the gamma distribution is expressed as 

Figure 2.10 Gamma hazard rates. A = 1, B = 2.0 (-1; h = 1, B = 1.0 
(->; A = 1, = 0.5 (---) 

where I is the incomplete gamma function. 
For /3 = n, an integer, we obtain the Erlangian distribution whose sur- 

vival function and hazard function, respectively, calculated from (2.2.2) 
and (2.3.2) sirnphfy to 
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Pra ctica 1 Notes 

and 

( Theoretical Notes 

7. Other distributions which have received some attention in the liter- 
ature are the invtlse Gaussian and the Pareto distributions. These 
distributions are tabulated in Table 2.2 along with their survival, haz- 
ard, and probability density functions. 

1. A relationship for the exponential distribution is H(x) = -hS(x) = 
hx. This provides an empirical check for an exponential fit to data 
by plotting H(x) vs x. The resulting plot should be a straight line 
&;ugh the origin with slope A. 

2. An empirical check of the Weibull distribution is accomplished by 
plotting ln[H(x)] vs. ln(x) (utilizing the relationship in the continu- 
ation of Example 2.1). The plot should result in a straight line with 
done a and Y interce~t In (A). Later, in Chapter 12, we shall use this --- r -  - .' 

technique to give c r d e  estimates of the parameters. 
3. The generalized gamma distribution introduces an additional param- 

eter a allowing additional flexibility in selecting a hazard function. 
This model has density function 

and survival function 

S(x) = 1 - I(AXU, PI. 

This distribution reduces to the exponential when a = P = 1, to the 
Weibull when P = 1, to the gamma when a = 1, and approaches the 
log normal as P -+ w. It is a useful distribution for model checking. 

4. Occasionally, the event of interest may not occur until a threshold 
time 4 is attained, in which case, S(x) < 1 only for x > 4.  In 
reliability theory, 4 is called the "guarantee time." For example, in this 
instance, the Weibull survival function may be modified as follows: 

S(x) = exp[-A(x - +)"I, A > 0, a > 0 and x > 4 .  

Similar modifications may be made to the other distributions dis- 
cussed in this section to accommodate the notion of a threshold 
parameter. 

5. A model that has a hazard function capable of being bathtub-shaped, 
i.e., decreasing initially and, then, increasing as time increases, is the 
exponentidpower distribution with a < 1 (Smith-Bain, 1975). 

6. A distribution with a rich history in describing mortality curves is 
one introduced by Gompertz (1825) and later modified by Makeham 
(1860) by adding a constant to the hazard function (see Chiang, 1968, 
pp. 6142). Again, the hazard function, survival function, density 
function, and mean of the Gompertz distribution are summarized in 
Table 2.2. 

1. The exponential distribution is summarized, with references, by 
Galambos (19821, Galambos and Kotz (19781, andJohnson and Kotz 
(1970). It is known to have been studied as early as the nineteenth 
century by Clausius (1858) in connection with the kinetic theory of 
gases. More recently, in studies of manufactured items (Davis, 1952; 
Epstein and Sobel, 1954; Epstein, 1958) and, to a lesser extent, in 
health studies (Feigl and Zelen, 1965; Sheps, 19661, the exponential 
distribution has historically been used in describing time to failure. As 
has been already noted, its constant hazard rate and lack of memory 
property greatly limit its applicability to modem survival analyses. 

2. The Weibull distribution has been widely used in both industrial and 
biomedical applications. Lieblein and Zelen (1956), Berretoni (1964), 
and Nelson (1972) used it to describe the life length of ball bearings, 
electron tubes, manufactured items, and electrical insulation, respec- 
tively. Pike (1966) and Peto and Lee (1973) have given a theoretical 
motivation for its consideration in representing time to appearance 
of tumor or until death in animals which were subjected to carcino- 
genic insults over time (the multi-hit theory). Lee and Thompson 
(1974) argued, in a similar vein, that, within the class of proportional 
hazard rate distributions, the WeibuU appears to be the most appro- 
priate choice in describing lifetimes. Other authors (Lee and O'Neill, 
1971; Doll, 1971) claim that the Weibull model fits data involving 
time to appearance of tumors in animals and humans quite well. 

3. The Weibull distribution is also called the first asymptotic distribu- 
tion of extreme values (see Gumbel, 1958, who popularized its use). 
The Weibull distribution arises as the limiting distribution of the rnin- 
imum of a sample from a continuous distribution. For this reason, 
the Weibull distribution has been suggested as the appropriate dis- 
tribution in certain circumstances. 

I 2.6 Regression Models for Survival Data 

Until this point, we have dealt exclusively with modeling the survival 
experience of a homogeneous population. However, a problem fre- 
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quently encountered in analyzing survival data is that of adjusting the 
survival function to account for concomitant information (sometimes re- 
ferred to as  covariates, explanatory variables or independent variables). 
Populations which exhibit such heterogeneity are prevalent whether 
the study involves a clinical trial, a cohort study, or an observational 
study. 

Consider a failure time X > 0, as has been discussed in the previous 
sections, and a vector ZL = (Zl, . . . , Zp) of explanatory variables as- 
sociated with the failure time X. Z' may include quantitative variables 
(such as blood pressure, temperature, age, and weight), qualitative vari- 
ables (such as gender, race, treatment, and disease status) and/or time- 
dependent variables, in which case Zt(x) = [Zl(x), . . . , Zp(x)l. Typical 
time-dependent variables include whether some intermediate event has 
or has not occurred by time x, the amount of time which has passed 
since the same intermediate event, serial measurements of covariates 
taken since a treatment commenced or special covariates created to test 
the validity of given model. Previously, we have stressed the impor- 
tance of modeling the survival function, hazard function, or some other 
parameter associated with the failure-time distribution. Often a matter 
of greater interest is to ascertain the relationship between the failure 
time X and one or more of the explanatory variables. This would be 
the case if one were comparing the survival functions for two or more 
treatments, wanting to determine the prognosis of a patient presenting 
with various characteristics, or idenming pertinent risk factors for a 
particular disease, controlling for relevant confounders. 

Two approaches to the modeling of covariate effects on survival have 
become popular in the statistical literature. The first approach is analo- 
gous to the classical linear regression approach. In this approach, the 
natural logarithm of the survival time Y = l n o  is modeled. This is the 
natural transformation made in linear models to convert positive vari- 
ablest0 observations on the entire real line. A linear model is assumed 
for Y, namely, 

where y' = (yl, . . ., yp) is a vector of regression coefficients and W 
is the error distribution. Common choices for the error distribution 
include the standard normal distribution which yields a log normal 
regression model, the extreme value distribution (2.5.41, which yields a 
Weibull regression model, or a logistic distribution (2.5.7), which yields 
a log logistic regression model. Estimation of regression coefficients, 
which is discussed in detail in Chapter 12, is performed using maximum 
likelihood methods and is readily available in most statistical packages. 

This model is called the accelerated failure-time model. To see why 
this is so, let So(x) denote the survival function of X = eY when Z is 
zero, that is, S,(x) is the survival function of exp(p + a W). 
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Now, 

Pr[X> xIZ1 = Pr[Y > InxIZ] 

= Pr[p + UW > h x -  y'Z (Zl 
= P ~ [ B + ~ "  > xexp(-y'Z) I Zl 

= So[x exp(- ytZ)1. 

Notice that the effect of the explanatory variables in the original time 
scale is to change the time scale by a factor exp(- ytZ). Depending on 
the sign of ytZ, the time is either accelerated by a constant factor or 
degraded by a constant factor. Note that the hazard rate of an individual 
with a covariate value Z for this class of models is related to a baseline 
hazard rate ho by 

ULAMPLE 2.5 Suppose that the survival time X follows a Weibull distribution with 
parameters A and a .  Recall that in section 2.5 we saw that the natural 
logarithm of X, Y = ln(X), can be written as a linear model, Y = p + 
uW, where p = (-ln(A)/a), a = a-', and W has a standard extreme 
value distribution with density function f (w) = exp(w - ew}, -w < 
w < m. Suppose that we also have a set of p - 1 covariates, {Zz,  . . . , Zp} 
which can explain some of the patient to patient variability observed for 
the lifetimes under study. We shall define the covariate Zl = 1 to allow 
for an intercept term in our log linear model and Z' = (Z,, . . . , Zp) Let 
y' = (71, . . . , yp) be a vector of regression coefficients. The natural log 
linear model for Y is given by 

With this model, the survival function for Y is expressed as 

Sy(y 1 2) = exp [ - exp r-F)]. -- 

On the original time scale the survival function for X is given by 

SAX I a= exp [-x1lu exp (?)I = exp(-[x exp(- y'Z)la} 

where So(x) = exp(-a?) is a Weibull survival function. 

Although the accelerated failure-time model provides a direct exten- 
sion of the classical linear model's construction for explanatory variables 
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for conventional data, for survival data, its use is restricted by the error 
distributions one can assume. As we have seen earlier in this chapter, 
the easiest survival parameter to model is the hazard rate which tells 
us how quickly individuals of a certain age are experiencing the event 
of interest. The major approach to modeling the effects of covariates 
on survival is to model the conditional hazard rate as a function of 
the covariates. Two general classes of models have been used to relate 
covariate effects to survival, the family of multiplicative hazard models 
and the family of additive hazard rate models. 

For the family of multiplicative hazard rate models the conditional 
hazard rate of an individual with covariate vector z is a product of a 
baseline hazard rate h,(x) and a non-negative function of the covariates, 
c(/3'z), that is, 

In applications of the model, ho(x) may have a specified parametric 
form or it may be left as an arbitrary nonnegative function. Any nonneg- 
ative function can be used for the link function c(). Most applications 
use the Cox (1972) model with c(ptz) = exp(ptz) which is chosen for 
its simplicity and for the fact it is positive for any value of p'z. 

A key feature of multiplicative hazards models is that, when all the 
covariates are fixed at time 0, the hazard rates of two individuals with 
distinct values of z are proportional. To see this consider two individuals 
with covariate values zl and z2. We have 

which is a constant independent of time. 
Using (2.63, we see that the conditional survival function of an in- 

dividual with covariate vector z can be expressed in terms of a baseline 
survival function So(x) as 

This relationship is also found in nonparametric statistics and is called 
a "Lehrnann Alternative." 

Multiplicative hazard models are used for modeling relative survival 
in section 6.3 and form the basis for modeling covariate effects in 
Chapters 8 and 9. 

UIAMPLEZ.5 (continued) The multiplicative hazard model for the Weibull dis- 
tribution with baseline hazard rate h,(~) = aAx"-' is h ( ~  I Z) = 
aka?-lc(ptz). When the Cox model is used for the link function, 
h(x I z) = aW-'exp(8'z). Here the conditional survival function 
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is given by S(x I z) = e ~ ~ [ - k a ? I ~ ~ ~ [ ~ ' ~  = exp[-Ax" exp(ptz)l = 
exp[-A(xexp[p'z/al)"l, which is of the form of an accelerated failure- 
time model (2.6.2). The Weibull is the only continuous distribution 
which has the property of being both an accelerated failure-time model 
and a multiplicative hazards model. 

A second class of models for the hazard rate is the family of addi- 
tive hazard rate models. Here, we model the conditional hazard function 
by 

The regression coefficients for these models are functions of time so 
that the effect of a given covariate on survival is allowed to vary over 
time. The p regression functions may be positive or negative, but their 
values are constrained because (2.6.5) must be positive. 

Estimation for additive models is typically made by nonparametric 
(weighted) least-squares methods. Additive models are used in section 
6.3 to model excess mortality and, in Chapter 10, to model regression 
effects. 

Practica 1 Notes 

1. From Theoretical Note 1 of section 2.4, 

S(XI, = exp [-Lxh(tlz)dt] 

and, in conjunction with (2.6.4), 

S(x 18 = exp [- 4' bo(t) expfp'zldt] 

which implies that 

So the logarithms of the negative logarithm of the survival functions 
of X, given different regressor variables z,, are parallel. This relation- 
ship will serve as a check on the proportional hazards assumption 
discussed further in Chapter 11. 
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Models for Competing Risks 

In the previous sections of this chapter we have examined parameters 
which can be used to describe the failure time, T, of a randomly selected 
individual. Here T may be the time to death (see, for example, sections 
1.5, 1.7, 1.8, 1.11), the time to treatment failure (see, for example, 
sections 1.9, 1.10), time to infection (see sections 1.6, 1.121, time to 
weaning (section 1.14), etc. 

In some medical experiments we have the problem of competing 
risks. Here each subject may fail due to one of K (K 2 2) causes, called 
competing risks. An example of competing risks is found in section 1.3. 
Here the competing risks for treatment failure are relapse and death 
in remission. Occurrence of one of these events precludes us from 
observing the other event on this patient. Another classical example of 
competing risks is cause-specific mortality, such as death from heart 
disease, death from cancer, death from other causes, etc. 

To discuss parameters for the competing-risks problem we shall for- 
mulate the model in terms of a latent failure time approach. Other for- 
mulations, as discussed in Kalbfleisch and Prentice (1980), give similar 
representations. Here we let Xi, i = 1, . . . , K be the potential unobserv- 
able time to occurrence of the ith competing risk. What we observe 
for each patient is the time at which the subject fails from any cause, 
T = Min(X1, . . . , Xi) and an indicator 6 which tells which of the K risks 
caused the patient to fail, that is, 6 = i if T = Xi. 

The basic competing risks parameter is the cause-qcapc hazard rate 
for &k i defined by 

f i t s x i < t + A t , 6 = i I x l r t , j =  1 ,..., Kl 
= lirn 

A M  At 

Here hi(t) tells us the rate at which subjects who have yet to experience 
any of the competing risks are experiencing the ith competing cause of 
failure. The overall hazard rate of the time to failure, T, given by (2.3.1) 
is the sum of these K cause-specific hazard rates; that is 

The cause-specific hazard rate can be derived from the joint sur- 
vival function of the K competing risks. Let SOl, . . ., tK) = P a l  > 
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tl, . . . , XK > tK1. The cause specific hazard rate is given by 

EXAMPLE2.6 Suppose that we have K competing risks and that the potential failure 
times are independent with survival functions Si(t) for i = 1,2, . . . , K. 
Then the joint survival function is S(t1, . . . , tK) = JJf=l Si(ti), and by 
(2.7.2) we have 

which is precisely the hazard rate of Xi. 

Example 2.6 shows that for independent competing risks the marginal 
and cause-specific hazard rates are identical. This need not be the case 
when the risks are dependent as we see in the following example. 

EXAMPLE2.7 Suppose we have two competing risks and the joint survival function 
is SOl, tz) = 11 + O(Altl + A2tzll-1/8, 0 2 0,Al,A2 r 0. Here the two 
potential failure times are correlated with a Kendall's r of (O/(O + 2)) 
(see section 13.3 for a discussion and derivation of this model). By 
(2.7.2) we have 

Here the survival function of the time to failure, T = rnin(Xl, X2) 
is S(t, t) =  ST(^) = [l  + Ot(A1 + A2)l-1/e and its hazard rate is 
(A, + A2)/[1 + Ot(Al + ~J1-l'~. Note that the margmd survival function 
for Xl is given by S(tl, 0) = [l  + OtAll-l/e and the marginal hazard 
rate is, from (2.3.21, hl/(l + 8hlt), which is not the same as thecrude 
hazard rate. 

In competing-risks modeling we often need to make some assump- 
tions about the dependence structure between the potential failure 
times. Given that we can only observe the failure time and cause and 
not the potential failure times these assumptions are not testable with 
only competing risks data. This is called the identapability dilemma. 
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We can see the problem clearly by careful examination of Example 2.7. 
Suppose we had two independent competing risks with hazard rates 
Al/[l + &(A1 + A2)] and A2/[1 + &(Al + A2)l, respectively. By Example 
2.6 the cause-specific hazard rates and the marginal hazard rates are 
identical when we have independent competing risks. SO the crude 
hazard rates for this set of independent competing risks are identical 
to the set of dependent competing risks in Example 2.7. This means 
that given what we actually see, ('1; S), we can never distinguish a pair 
of dependent competing risks from a pair of independent competing 
risks. 

In competing risks problems we are often interested not in the hazard 
rate but rather in some probability which summarizes our knowledge 
about the likelihood of the occurrence of a particular competing risk. 
Three probabilities are computed, each with their own interpretation. 
These are the crude, net, and partial crude probabilities. The crude 
probability is the probability of death from a particular cause in the real 
world where all other risks are acting on the individual. For example, 
if the competing risk is death from heart disease, then an example of a 
crude probability is the chance a man will die from heart disease prior to 
age 50. The net probability is the probability of death in a hypothetical 
world where the specific risk is the only risk acting on the population. 
In the potential failure time model this is a marginal probability for 
the specified risk. For example, a net probability is the chance that 
a man will die from heart disease in the counterfactual world where 
men can only die from heart disease. Partial crude probabilities are the 
probability of death in a hypothetical world where some risks of death 
have been eliminated. For example, a partial crude probability would 
be the chance a man dies from heart disease in a world where cancer 
has been cured. 

Crude probabilities are typically expressed by the cause-specific sub 
distribution function. This function, also known as the cumulative in- 
cidence function, is defined as F,(t) = P[T 5 t, S = il. The cumulative 
incidence function can be computed directly from the joint density 
function of the potential failure times or it can be computed from the 
cause specific hazard rates. That is, 

F,(t) = PIT 5 I, S = iI = b,(u)exp{-~~(d)du.  (2.7.3) 
0 

Here Hr(t) = Cy=l Sd h,(u) du is the cumulative hazard rate of T .  Note 
that the value of F,(t) depends on the rate at which all the competing 
risks occur, not simply on the rate at which the specific cause of interest 
is occurring. Also, since hi(t) can be estimated directly from the ob- 
served data, 4(t) is directly estimable without making any assumptions 
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about the joint distribution of the potential failure times (see section 
4.7). &(t) is not a true distribution function since Fi(m) = PtS = i]. It 
has the property that it is non-decreasing with &(O) = 0 and Fi(m) < 1. 
Such a function is called a "sub-distribution" function. 

The net survival function, St(t), is the marginal survival function found 
from the joint survival function by taking tj = 0 for all j # i. When 
the competing risks are independent then the net survival function is 
related to the crude probabilities by 

This relationship is used in Chapter 4 to allow us to estimate prob- 
abilities when there is a single independent competing risk which is 
regarded as random censoring (see section 3.2 for a discussion of ran- 
dom censoring). 

When the risks are dependent, Peterson (1976) shows that net sur- 
vival probabilities can be bounded by the crude probabilities. He shows 
that 

The lower (upper) bounds correspond to perfect positive (negative) 
correlation between the risks. These bounds may be quite wide in 
practice. Klein and Moeschberger (1988) and Zheng and Klein (1994) 
show that these bounds can be tightened by assuming a family of 
dependence structures for the joint distribution of the competing risks. 

For partial crude probabilities we let J be the set of causes that an 
individual can fail from and JC the set of causes which are eliminated 
from consideration. Let TJ = min(Xt, i E J) then we can define the 
partial crude sub-distribution function by F{(t) = Pr [TJ 5 t, 6 = il, i E 
J. Here the ith partial crude probability is the chance of dying from 
cause i in a hypothetical patient who can only experience one of the 
causes of death in the set J. One can also define a partial crude hazard 
rate by 

As in the case of the crude partial incidence function we can express 
the partial crude sub-distribution function as 
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When the risks are independent then the partial crude hazard rate can 
be expressed in terms of the crude probabilities as 

EXAMPLE 2.8 Suppose we have three independent exponential competing risks with 
hazard rates A ] ,  A2, A3, respectively. In this case, as seen in Example 2.6 ,  
the net and crude hazard rates for the first competing risk are equal 
to A,.  The hazard rate of T is h7( t )  = A, + A2 + A3. Equation (2 .7 .3) ,  
the crude sub-distribution function for the first competing risk is 

Note that the crude probability of death from cause 1 in the interval 
[O, tl is not the same as the net (marginal) probability of death in this 
interval given by 1 - exd-A, t } .  Also F,(w) = Al / (A l  + A2 + A3), which 
is the probability that the first competing risk occurs first. If we consider 
a hypothetical world where only the first two competing risks are oper- 
ating (J = { 1 , 2 } ) ,  the partial crude hazard rates are A{( t )  = A,, i = 1 , 2 ,  
and the partial crude sub-distribution function is given by 

EXAMPLE 2.7 (continued) Suppose we have two competing risks with joint survival 
function S ( t l ,  h) = [I + O(Altl  + A2t2)1-1/8, O 2 0, A,, A2 r 0. Here the 
crude hazard rates are given by A i / [ l  + Ot(Al + A,)], for i = 1 , 2 .  The 
cause-specific cumulative incidence function for the ith risk is 

In Figure 2.11 we plot the cumulative incidence function and the net 
probability for cause 1 when Al = 1 ,  A2 = 2 ,  and 0 = 2 .  Here we 
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Figure 2.1 1 Cumuhtiw incidence function (solid line) and net probability 
for the first competing n3k in Exampk 2.7. 

see clearly that the cumulative incidence function levels off at one-third 
the probability that the first competing risk fails first. Also we see quite 
clearly that the crude probability is always less than the net probability. 

1 .  Competing risk theory has an intriguing history going back to a mem- 
oir read in 1 7 6 0  by Daniel Bernoulli before the/French Academy of 
Sciences and published in 1765 .  It was motivated by a controversy on 
the merits of smallpox inoculation. Using Halley's Breslau life table of 
1 6 9 3 ,  Bernoulli constructed a hypothetical lifetable, which reflected 
the mortality structure at different ages if smallpox was eliminated. A 
key assumption was, as Bernoulli recognized, that the hypothetical 
lifetimes of individuals saved from smallpox were independent of 
lifetimes associated with the other causes of death. Bernoulli's ques- 
tion 'Vhat would be the effect on mortality if the occurrence of one 
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or more causes of death were changed?" and the untestable assump- 
tion of independence of causes of death are still very much with us 
today. 

2. For simplicity, we shall only assume one competing risk, whose event 
time will be denoted by Y (although all results may be general- 
ized to many competing risks). In the competing-risks framework, 
as we have seen, we can only observe T = minimum (X ,  I.? and 
6 = I(X < 0, an indicator function which indicates whether or 
not the main event of interest has occurred. The early observation 
by Cox (1959, 1962) that there was a difficulty in the interpretation 
of bivariate data in the competing risk context was elucidated and 
clarified by later authors. Berman (1963) showed explicitly that the 
distribution of (T, S) determined that of X, if X and Y are assumed 
to be independent. Tsiatis (1975) proved a nonidentifiability theorem 
which concluded that a dependent-risk model is indistinguishable 
from some independent risk model and that any analysis of such 
data should include a careful analysis of biological circumstances. 
Peterson (1976) argued that serious errors can be made in estimating 
the survival function in the competing risk problem because one can 
never know from the data whether X and Y are independent or not. 

3. Heckman and Honore (1989) show, under certain regularity con- 
ditions, for both proportional hazards and accelerated failure time 
models that if there is an explanatory covariate, Z, whose support is 
the entire real line then the joint distribution of (X, I.? is identifiable 
from (T, 6, 2). Slud (1992), in a slightly different vein, shows how the 
ma@ distribution of the survival time X can be nonparametrically 
identifiable when only the data (T,  S,2) are observed, where Z is an 
observed covariate such that the competing risk event time, Y, and 
Z are conditionally independent given X. 

Theoretics 1 Notes 

1. Slud and Rubinstein (1983) have obtained tighter bounds on S(x) 
/ than the Peterson bounds described earlier, in this framework, by 

utilizing some additional information. Their method requires the in- 
vestigator to bound the function 

where 

and 

Knowledge of the function p(t) and the observable information, 
( r  S), is sufficient to determine uniquely the marginal distribution 
of X. The resulting estimators ip(x) are decreasing functions of p(.). 
These resulting bounds are obtained by the investigator's specifica- 
tion of two functions, p,(t)[fi(t) < pz(t)l, so that if the true p(t) 
function is in the interval [p,(t) < pz(t)l, for all t, then ih(t) 5 
S(t) 5 SPl(t). 

2. Pepe (1991) and Pepe and Mori (1993) interpret the cumulative in- 
cidence function as a "marginal probability." Note that this function 
is not a true marginal distribution as discussed earlier but rather is 
the chance that the event of interest will occur prior to time t in a 
system where an individual is exposed to both risks. Pepe and Mori 
suggest as an alternative to the cumulative incidence function the 
"conditional probability" of X, defined by 

which they interpret as the probability of X's occurring in LO, t), given 
nonoccurrence of Y in [O, t), where Fc denotes the complement of F. 

2.8 Exercises 

2.1 The lifetime of light bulbs follows an exponential distribution with a 
hazard rate of 0.001 failures per hour of use. 
(a) Find the mean lifetime of a randomly selected light bulb. 
(b) Find the median lifetime of a randomly selected light bulb. 
(c) What is the probability a light bulb will still function after 2,000 
hours of use? 

2.2 The time in days to development of a tumor for rats exposed to a 
carcinogen follows a Weibull distribution with a = 2 and A = 0.001. 

(a) What is the probability a rat will be tumor free at 30 days? 45 days? 
60 days? 
(b) What is the mean time to tumor? (Hint r(0.5) = fi.) 
(c) Find the hazard rate of the time to tumor appearance at 30 days, 45 
days, and 60 days. 
(d) Find the median time to tumor. 
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2.3 The time to death (in days) following a kidney transplant follows a log 
logistic distribution with a = 1.5 and A = 0.01. 

(a) Find the 50,100, and 150 day survival probabilities for kidney trans- 
plantation in patients. 

(b) Find the median time to death following a kidney transplant. 

(c) Show that the hazard rate is initially increasing and, then, decreas- 
ing over time. Find the time at which the hazard rate changes from 
increasing to decreasing. 

(d) Find the mean time to death. 

2.4 A model for lifetimes, with a bathtub-shaped hazard rate, is the ex- 
ponential power distribution with survival function S(x) = e x d l  - 
exp[(Ax)"I}. 
(a) If a = 0.5, show that the hazard rate has a bathtub shape and find 
the time at which the hazard rate changes from decreasing to increasing. 

(b) If a = 2, show that the hazard rate of x is monotone increasing. 

2.5 The time to death (in days) after an autologous bone marrow transplant, 
follows a log normal distribution with p = 3.177 and a = 2.084. Find 

(a) the mean and median times to death; 

(b) the probability an individual survives 100, 200, and 300 days fol- 
lowing a transplant; and 

(c) plot the hazard rate of the time to death and interpret the shape of 
this function. 

2.6 The Gompertz distribution is commonly used by biologists who believe 
that an exponential hazard rate should occur in nature. Suppose that 
the time to death in months for a mouse exposed to a high dose of 
radiation follows a Gompertz distribution with = 0.01 and a = 0.25. 
Find 

(a) the probability that a randomly chosen mouse will live at least one 
year, 
(b) the probability that a randomly chosen mouse will die within the 
first six months, and 

(c) the median time to death. 

2.7 The time to death, in months, for a species of rats follows a gamma 
distribution with P = 3 and A = 0.2. Find 

(a) the probability that a rat will survive beyond age 18 months, 

(b) the probability that a rat will die in its first year of life, and 

(c) the mean lifetime for this species of rats. 

2.8 The battery life of an internal pacemaker, in years, follows a Pareto 
distribution with 0 = 4 and A = 5. 
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(a) What is the probability the battery will survive for at least 10 years? 

(b) What is the mean time to battery failure? 

(c) If the battery is scheduled to be replaced at the time to, at which 99% 
of all batteries have yet to fail (that is, at to so that P~(X > t,) = -991, 
find to. 

2.9 The time to relapse, in months, for patients on two treatments for lung 
cancer is compared using the following log normal regression model: 

where W has a standard normal distribution and Z = 1 if treatment A 
and 0 if treatment B. 

(a) Compare the survival probabilities of the two treatments at 1, 2, and 
5 years. 

(b) Repeat the calculations if W has a standard logistic distribution. 
Compare your results with part (a). 

2.10 A model used in the construction of life tables is a piecewise, con- 
stant hazard rate model. Here the time axis is divided into k intervals, 
[~i-1,~i),  i = 1, . . ., k, with TO = 0 and ~k = m. The hazard rate on the 
ith interval is a constant value, 8,; that is 

(a) Find the survival function for this model. 

(b) Find the mean residual-life function. 

(c) Find the median residual-life function. 

2.11 In some applications, a third parameter, called a guarantee time, is 
included in the models discussed in this chapter. This parameter 4 is 
the smallest time at which a failure could occur. The survival function 
of the three-parameter Weibull distribution is given by 

(a) Find the hazard rate and the density function of the three- parameter 
Weibull distribution. 
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&I) Suppose that the survival time X follows a three-parameter Weibull 
distribution with a = 1, A = 0.0075 and 4 = 100. Find the mean and 
median lifetimes. 

2.12 Let X have a uniform distribution on the interval 0 to 8 with density 
function 

1/8, for 0 5 x 5 8 

f = 0, otherwise. 

(a) Find the survival function of X. 

(b) Find the hazard rate of X. 
(c) Find the mean residual-life function. 

2.13 Suppose that X has a geometric distribution with probability mass func- 
tion 

(a) Find the survival function of X. (Hint: Recall that for 0 < 8 < 1, c;=, 8' = Ok/(l - 8). 

(b) Find the hazard rate of X .  Compare this rate to the hazard rate of 
an exponential distribution. 

2.14 Suppose that a given individual in a population has a survival time 
which is exponential with a hazard rate 8. Each individual's hazard rate 
8 is potentially different and is sampled from a gamma distribution with 
density function 

Let X be the life length of a randomly chosen member of this popula- 
tion. 

(a) Find the survival function of X. 

(Hint: Find S(x) = &[e-e*l.) 

(b) Find the hazard rate of X. What is the shape of the hazard rate? 

2.15 Suppose that the hazard rate of X is a linear function h(x) = a + px, 
with a and p > 0. Find the survival function and density function of x. 

2.16 Given a covariate 2, suppose that the log survival time Y follows a 
linear model with a logistic error distribution, that is, 

Y = h(X) = p + pZ + a W where the pdf of W is given by 
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(a) For an individual with covariate Z, find the conditional survival 
function of the survival time X, given Z, namely, S(x I Z). 
(b) The odds that an individual will die prior to time x is expressed by 
[l - S(x I Z)I/S(x I Z). Compute the odds of death prior to time x for 
this model. 
(c) Consider two individuals with different covariate values. Show that, 
for any time x, the ratio of their odds of death is independent of x. The 
log logistic regression model is the only model with this property. 

2.17 Suppose that the mean residual life of a continuous survival time X is 
given by MRL(x) = x + 10. 
(a) Find the mean of X. 
(b) Find h(x). 
(c) Find S(x). 

2.18 Let X have a uniform distribution on 0 to 100 days with probability 
density function 

= 0, elsewhere. 

(a) Find the survival function at 25,50, and 75 days. 
(b) Find the mean residual lifetime at 25, 50, and 75 days. 
(c) Find the median residual lifetime at 25, 50, and 75 days. 

2.19 Suppose that the joint survival function of the latent failure times for 
two competing risks, X and Y ,  is 

(a) P i d  the mar+ survival function for x. 
(b) Find the cumulative incidence of K .  

2.20 Let X and Y be two competing risks with joint survival function 

S(x, y) = exd-x - y - .5&, 0 < x, y. 

(a) Find the marginal cumulative distribution function of X. 
(b) P i d  the cumulative incidence function of X .  


