
Censoring and 
Truncation 

Time-to-event data present themselves in different ways which create 
special problems in analyzing such data. One peculiar feature, often 
present in time-to-event data, is known as censoring, which, broadly 
speaking, occurs when some lifetimes are known to have occurred only 
within certain intervals. The remainder of the lifetimes are known ex- 
actly. There are various categories of censoring, such as right censoring, 
left censoring, and interval censoring. Right censoring will be discussed 
in section 3.2. Left or interval censoring will be discussed in section 3.3. 
To deal adequately with censoring in the analysis, we must consider 
the design which was employed to obtain the survival data. There are 
several types of censoring schemes within both left and right censoring. 
Each type will lead to a different likelihood function which will be the 
basis for the inference. As we shall see in section 3.5, though the likeli- 
hood function is unique for each type of censoring, there is a common 
approach to be used in constructing it. 

A second feature which may be present in some survival studies is 
that of truncation, discussed in section 3.4. Left truncation occurs when 
subjects enter a study at a particular age (not necessarily the origin for 
the event of interest) and are followed from this delayed entry time 
until the event occurs or until the subject is censored. Right truncation 
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occurs when only individuals who have experienced the event of in- 
terest are observable. The main impact on the analysis, when data are 
truncated, is that the investigator must use a conditional distribution in 
constructing the likelihood, as shown in section 3.5, or employ a m- 
tistical method which uses a selective risk set to be explained in more 
detail in Chapter 4. 

Sections 3.5 and 3.6 present an overview of some theoretical results 
needed to perform modern survival analysis. Section 3.5 shows the 
construction of likelihoods for censored and truncated data. These like- 
lihoods are the basis of inference techniques for parametric models and, 
suitably modified, as partial likelihoods for semiparametric models. Sec- 
tion 3.6 gives a brief introduction to the theory of counting processes. 
This very general theory is used to develop most nonparametric tech- 
niques for censored and truncated data and is the basis for developing 
the statistical properties of both parametric and nonparametric methods 
in survival analysis. 

3.2 Right Censoring 

First, we will consider Typeelcellsoring where the event is observed only 
if it occurs prior to some prespecified time. These censoring times may 
vary from individual to individual. A typical animal study or clinical trial 
starts with a fixed number of animals or patients to which a treatment 
(or treatments) is (are) applied. Because of time or cost considerations, 
the investigator will terminate the study or report the results before all 
subjects realize their events. In this instance, if there are no accidental 
losses or subject withdrawals, all censored observations have times 
equal to the length of the study period. 

Generally, it is our convention that random variables are denoted 
by upper case letters and fixed quantities or realizations of random 
variables are denoted by lower case letters. With censoring, this con- 
vention will obviously present some difficulties in notation because, as 
we shall see, some censoring times are fixed and some are random. At 
the risk of causing some confusion we will stick to upper case letters 
for censoring times. The reader will be expected to determine from the 
context whether the censoring time is random or fixed. 

In right censoring, it is convenient to use the following notation. For a 
specific individual under study, we assume that there is a lifetime X and 
a fixed censoring time, C, (C, for "right" censoring time). The X's are 
assumed to be independent and identically distributed with probability 
density function f (x) and survival function S(x). The exact lifetime X 
of an individual will be known if, and only if, X is less than or equal 
to C,. If X is greater than C,, the individual is a survivor, and his or 
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her event time is censored at C,. The data from this experiment can be 
conveniently represented by pairs of random variables (T, 81, where 8 
indicates whether the lifetime X corresponds to an event (8 = 1) or is 
censored (8 = 01, and T is equal to X, if the lifetime is observed, and 
to C, if it is censored, i.e., T = rnin(X, C,). 

EXAMPLE 3.1 Consider a large scale animal experiment conducted at the National 
Center for Toxicological Research ( N m )  in which mice were fed a 
particular dose of a carcinogen. The goal of the experiment was to 
assess the effect of the carcinogen on survival. Toward this end, mice 
were followed from the beginning of the experiment until death or until 
a prespecified censoring time was reached, when all those still alive 
were sacrificed (censored). This example is illustrated in Figure 3.1. 

START OF STUDY END OF STUDY 

Figure 3.1 Example of Type I censoring 

When animals have different, fixed-sacrifice (censoring) times, this 
form of Type I censoring is called progressive Type I censoring. An 
advantage of this censoring scheme is that the sacrificed animals give 
information on the natural history of nonlethal diseases. This type of 
censoring is illustrated in the following example. 
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I 1 " 1 + ! 2  I 
Staa of soldy Fmt sacrifice time (42 weeh) Second sacrifice time (104 weeh) 

Figure 3.2 Type 1 censoring with two different sacrifice times 

END 
OF 
STUDY 

Figure 3.3 Generalized TypeZcensoring when each individual has a d z x d  
starting time 
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EXAMPLE 3.2 Consider a mouse study where, for each sex, 200 mice were randomly 
divided into four dose-level groups and each mouse was followed un- 
til death or until a prespecified sacrifice time (42 or 104 weeks) was 
reached (see Figure 3.2 for a schematic of this trial for one gender and 
one dose level). The two sacrifice times were chosen to reduce the cost 
of maintaining the animals while allowing for limited information on 
the survival experience of longer lived mice. 

Another instance, which gives rise to Type I censoring, is when in- 
dividuals enter the study at different times and the terminal point of 
the study is predetermined by the investigator, so that the censoring 
times are known when an individual is entered into the study. In such 
studies (see Figure 3.3 for a hypothetical study with only four subjects), 
individuals have their own specific, fixed, censoring time. This form 
of censoring has been termed generalized Type I censoring (cf. David 
and Moeschberger, 1978). A convenient representation of such data is 
to shift each individual's starting time to 0 as depicted in Figure 3.4. 
Another method for representing such data is the Lexis diagram (Keid- 
ing, 1990). Here calendar time is on the horizontal axis, and life length 
is represented by a 45" line. The time an individual spends on study 
is represented by the height of the ray on the vertical axis. Figure 3.5 
shows a Lexis diagram for the generalized Type I censoring scheme 
depicted in Figure 3.4. Here patients 1 and 3 experience the event of 
interest prior to the end of the study and are exact observations with 
8 = 1. Patients 2 and 4, who experience the event after the end of 
the study, are only known to be alive at the end of the study and are 
censored observations (8 = 0). Examples of studies with generalized 
Type I censoring are the breast-cancer trial in section 1.5, the acute 
leukemia trial in section 1.2, the study of psychiatric patients in section 
1.15, and the study of weaning of newborns in section 1.14. 

A second type of right censoring is Type II censoring in which the 
study continues until the failure of the first r individuals, where r is 
some predetermined integer (r < n). Experiments involving Type II 
censoring are often used in testing of equipment life. Here, all items 
are put on test at the same time, and the test is terminated when r of 
the n items have failed. Such an experiment may save time and money 
because it could take a very long time for all items to fail. It is also true 
that the statistical treatment of Type I1 censored data is simpler because 
the data consists of the r smallest lifetimes in a random sample of 
n lifetimes, so that the theory of order statistics is directly applicable 
to determining the likelihood and any inferential technique employed. 
Here, it should be noted that r the number of failures and n - r the 
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TIME ON STUDY 

Figure 3.4 Generalized TypeZcensoring for the four individuals in Figure33 
with each individuals starting time backed up to 0. 4 = XI (death time for 
first individual) (6, = 1); = & (right censored time for second individual) 
6 = 0); = & (death time for third individual) CSJ = 1); = c.4 (right 
censored time forfourth individual) (6.4 = 0). 

CALENDAR 'IZME 

Figure 3.5 Levis diagram forgmeralized T@e I censoring in Figure 3.3 
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number of censored observations are fixed integers and the censoring 
time q,), the rth ordered lifetime is random. 

A generalization of Type I1 censoring, similar to the generalization 
of Type I censoring with different sacrifice times, is progressive Type 
II censoring. Here the first q failures (an integer chosen prior to the 
start of the study) in a sample of n items (or animals) are noted and 
recorded. Then n, - q of the remaining n - q unfailed items (or 
animals) are removed (or sacrificed) from the experiment, leaving n - nl 
items (or animals) on study. When the next fi items (another integer 
chosen prior to the start of the study) fail, n2 - fi of the unfailed items 
are removed (or animals sacrificed). This process continues until some 
predecided series of repetitions is completed. Again, ti and ni ( i  = 1,2) 
are fixed integers and the two censoring times, z,) and q,,,,), are 
random. 

A third type of right censoring is competing risks censoring. A special 
case of competing risks censoring is random censoring. This type of 
censoring arises when we are interested in estimation of the marginal 
distribution of some event but some individuals under study may ex- 
perience some competing event which causes them to be removed 
from the study. In such cases, the event of interest is not observable 
for those who experience the competing event and these subjects are 
random right censored at that time. As shown in section 2.7, in the 
competing risk framework, to be able to idenufy the marginal distribu- 
tion from competing risks data we need the event time and censoring 
times to be independent of each other. This relationship cannot be de- 
termined from the data alone. Typical examples of where the random 
censoring times may be thought to be independent of the main event 
time of interest are accidental deaths, migration of human populations, 
and so forth. 

Whenever we encounter competing risks it is important to determine 
precisely what quantity we wish to estimate. We need to decide if we 
want to estimate a marginal (net), crude, or partial crude probability as 
discussed in section 2.7. If we wish to estimate a margmal probability, 
which is the chance of the event's occurring in a world where all other 
risks CaMOt occur, the other competing risks are random observations. 
Here we need an assumption of independence between the time to 
the event of interest and the competing events to make a meaningful 
inference. Techniques for estimation in this framework are discussed in 
sections 4.1-4.6. When interest centers on estimation of crude proba- 
bilities (that is, the probability of the event in the real world where a 
person can fail from any of the competing causes), then each competing 
risk is modeled by a cumulative incidence curve (see section 4.7) and 
no independence assumption is needed. For partial crude probabilities 
(that is, the probability of the event's occurring in a world where only 
a subset of competing risks are possible causes of failure) some of the 
competing risks are treated as random censored observations (those 
to be eliminated) and others are modeled by a cumulative incidence 
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curve. In this case we require that those causes treated as random 
censored observations need to be independent of the other causes to 
obtain consistent estimates of the desired probabilities. 

In many studies, the censoring scheme is a combination of random 
and Trpe I censoring. In such studies, some patients are randomly 
censored when, for example, they move from the study location for 
reasons unrelated to the event of interest, whereas others are Type I 
censored when the fixed study period ends. 

Theoretica / Note 

I 

EXAMPLE 3.4 

1. In Type I progressive censoring, the sacrifice times are fixed (pre- 
determined prior to the start of the study), whereas, in Type I1 pro- 
gressive censoring, the sacrifice times are random times at which a 
predetermined number of deaths has occurred. This distinction is 
extremely important in constructing the likelihood function in sec- 
tion 3.5. An advantage of either type of censoring scheme is that the 
sacrificed animals give information on the natural history of nonlethal 
diseases. 

Left or Interval Censoring 

A lifetime X associated with a specific individual in a study is considered 
to be IeJt censored if it is less than a censoring time q(C; for "left" 
censoring time), that is, the event of interest has already occurred for 
the individual before that person is observed in the study at time G. 
For such individuals, we know that they have experienced the event 
sometime before time q ,  but their exact event time is unknown. The 
exact lifetime X will be known if, and only if, X is greater than or 
equal to q .  The data from a left-censored sampling scheme can be 
represented by pairs of random variables (T, E), as in the previous 
section, where T is equal to X if the lifetime is observed and E indicates 
whether the exact lifetime X is observed (E = 1) or not ( E  = 0). 
Note that, for left censoring as contrasted with right censoring, T = 
max(X CJ. 

EXAMPLE 3.3 In a study to determine the distribution of the time until first marijuana 
use among high school boys in California, discussed in section 1.17, 
the question was asked, When did you you first use marijuana?'' One of 
the responses was "I have used it but can not recall just when the first 
time was." A boy who chose this response is indicating that the event 
had occurred prior to the boy's age at interview but the exact age at 

EXAMPLE 3.3 

EXAMPLE 3.4 
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which he started using marijuana is unknown. This is an example of a 
left-censored event time. 

In early childhood learning centers, interest often focuses upon test- 
ing children to determine when a child learns to accomplish certain 
specified tasks. The age at which a child learns the task would be con- 
sidered the time-to-event. Often, some children can already perform 
the task when they start in the study. Such event times are considered 
left censored. 

Often, if left censoring occurs in a study, right censoring may also 
occur, and the lifetimes are considered doubly censored (cf. Turnbull, 
1974). Again, the data can be represented by a pair of variables (T, S), 
where T = mad min (X, C;), C;l is the on study time; S is 1 if T is a 
death time, 0 if T is a right-censored time, and -1 if T is a left-censored 
time. Here C; is the time before which some individuals experience the 
event and C, is the time after which some individuals experience the 
event. X will be known exactly if it is less than or equal to C, and 
greater than or equal to q. 

(continued) An additional possible response to the question "When 
did you first use marijuana?" was "I never used itn which indicates 
a rightcensored observation. In the study described in section 1.17, 
both left-censored observations and right-censored observations were 
present, in addition to knowing the exact age of first use of marijuana 
(uncensored observations) for some boys. Thus, this is a doubly cen- 
sored sampling scheme. 

(continued) Some children undergoing testing, as described in Ex- 
ample 3.4, may not learn the task during the entire study period, 
in which case such children would be right-censored. Coupled with 
the leftcensored observations discussed earlier, this sample would also 
contain doubly censored data. 

A more general type of censoring occurs when the lifetime is only 
known to occur within an interval. Such intmal censoring occurs when 
patients in a clinical trial or longitudinal study have periodic follow-up 
and the patient's event time is only known to fall in an interval (4, &] 
( L  for left endpoint and R for right endpoint of the censoring interval). 
This type of censoring may also occur in industrial experiments where 
there is periodic inspection for proper functioning of equipment items. 
Animal tumorigenicity experiments may also have this characteristic. 
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EXAMPLE 3.5 In the Framingham Heart Study, the ages at which subjects first dev2 
oped coronary heart disease (CHD) are usually known exactly. H ~ ~ -  
ever, the ages of first occurrence of the subcategory angina pectob 
may be known only to be between two clinical examinations, approx- 
imately two years apart (Ode11 et a]., 1992). Such observations woulrl -- 
be interval-censored. 

-- 
EXAMPLE3.6 In section 1.18, the data from a retrospective study to compare the 

cosmetic effects of radiotherapy alone versus radiotherapy and adill. 
vant chemotherapy on women-with early breast cancer &e report& 
Patients were observed initially every 4-6 months but, as their recovery 
progressed, the interval between visits lengthened. The event of inter- 
est was the first appearance of moderate or severe breast retraction, a 
cosmetic deterioration of the breast. The exact time of retraction was 
known to fall only in the interval between visits (interval-censored) or 
after the last time the patient was seen (right-censored). 

In view of the last two examples, it is apparent that any combination 
of left, right, or interval censoring may occur in a study. Of course, 
interval censoring is a generalization of left and right censoring because, 
when the left end point is 0 and the right end point is we have left 
censoring and, when the left end point is C, and the right end point is 
infinite, we have right censoring. 

The main impact on the analysis, when data are truncated, is that 
the investigator must use a conditional distribution in constructing the 
likelihood, as shown in section 3.5, or employ a statistical method which 
uses a selective risk set, explained in more detail in section 4.6. 

3.4 Truncation 

A second feature of many survival studies, sometimes confused with 
censoring, is truncation. Truncation of survival data occurs when only 
those individuals whose event time lies within a certain observational 
window (K, YR) are observed. An individual whose event time is not 
in this interval is not observed and no information on this subject is 
available to the investigator. This is in contrast to censoring where 
there is at least partial information on each subject. Because we are only 
aware of individuals with event times in the observational window, the 
inference for truncated data is restricted to conditional estimation. 

When Y, is infinite then we have lefi truncation. Here we only ob 
serve those individuals whose event time X exceeds the truncation 

time K. That is we observe X if and only if 5 < X. A common ex- 
ample of left truncation is the problem of estimating the distribution of 
the diameters of microscopic particles. The only particles big enough 
to be seen based on the resolution of the microscope are observed and 
smaller particles do not come to the attention of the investigator. In 

..-jib.: survival studies the truncation event may be exposure to some disease, 
,y2, 
' ,$, diagnosis of a disease, entry into a retirement home, occurrence of 

some intermediate event such as graft-versus-host disease after a bone 
marrow transplantation, etc. In this type of truncation any subjects who 
experience the event of interest prior to the truncation time are not 
observed. The truncation time is often called a delayed entry time since 
we only observe subjects from this time until they die or are censored. 
Note that, as opposed to left censoring where we have partial informa- 
tion on individuals who experience the event of interest prior to age 
at entry, for left truncation these individuals were never considered for 
inclusion into the study. 

'\' 

EXAMPLE3.7 In section 1.16, a survival study of residents of the Channing House 
retirement center located in California is described. Ages at death (in 
months) are recorded, as well as ages at which individuals entered the 
retirement community (the truncation event). Since an individual must 
survive to a sufficient age to enter the retirement center, all individuals 
who died earlier will not enter the center and thus are out of the 
investigator's cognizance; i.e., such individuals have no chance to be in 
the study and are considered left truncated. A survival analysis of this 
data set needs to account for this feature. 

Right truncation occurs when K is equal to zero. That is, we observe 
the survival time X only when X 5 YR. Right truncation arises, for 
example, in estimating the distribution of stars from the earth in that 
stars too far away are not visible and are right truncated. A second 
example of a right-truncated sample is a mortality study based on death 
records. Right-censored data is particularly relevant to studies of AIDS. 

EXAMPLE3.8 Consider the AIDS study described in section 1.19. Here cases of pa- 
tients with transfusion-induced AIDS were sampled. Retrospective de- 
termination of the transfusion times were used to estimate the waiting 
time from infection at transfusion to clinical onset of AIDS. The reg- 
istry was sampled on June 30, 1986, so only those whose waiting time 
from transfusion to AIDS was less than the time from transfusion to 
June 30, 1986, were available for observation. Patients transfused prior 
to June 30, 1986, who developed AIDS after June 30, 1986, were not 
observed and are right truncated. 
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The main impact on the analysis when data are truncated is that 

the investigator must use a conditional distribution in constructing lhe 
likelihood, as shown in section 3.5, or employ a statistical method 
which uses a selective risk set, which will be explained in more detail 
in section 4.6. 

Likelihood Construction for Censored 
and Truncated Data 

As stated previously, the design of survival experiments involving ten- 
soring and truncation needs to be carefully considered when constma- 
ing likelihood functions. A critical assumption is that the lifetimes and 
censoring times are independent. If they are not independent, then spe- 
cialized techniques must be invoked. In constructing a likelihood tinc- 
tion for censored or truncated data we need to consider carefully what 
information each observation gives us. An observation corresponding 
to an exact event time provides information on the probability that the 
event's occurring at this time, which is approximately equal to the den- 
sity function of X at this time. For a right-censored observation all we 
know is that the event time is larger than this time, SO the informa- 
tion is the survival function evaluated at the on study time. Similarly 
for a left-censored observation, all we know is that the event has al- 
ready occurred, so the contribution to the likelihood is the cumulative 
distribution function evaluated at the on study time. Finally, for interval- 
censored data we know only that the event occurred within the interval, 
so the information is the probability that the event time is in this interval. 
For truncated data these probabilities are replaced by the appropriate 
conditional probabilities. 

More specifically, the likelihoods for various types of censoring 
schemes may all be written by incorporating the following compo- 
nents: 

exact lifetimes - f ( x )  
right-censored observations - S(Cr) 
left-censored observations - 1 - S ( C J  
interval-censored observations - [S(L) - S(R)I 
left-truncated observations - f (x) /S(YJ 
right-truncated observations - f ( x ) / [ l  - S(YR)I 
interval-truncated observations - f (x ) / [S(  YJ - S(YRII 

The likelihood function may be constructed by putting together the 
component parts as 
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where D is the set of death times, R the set of right-censored observa- 
tions, L the set of left-censored observations, and I the set of interval- 
censored observations. For left-truncated data, with truncation interval 
( K t ,  YRI) independent from the jth death time, we replace f (X,) by 

f (xf)/[S( YL3 - S( YRIII and S(Ct) by S ( C i ) / [ s ( c i )  - S( Y,,)] in (3.5 .I). 

For right-truncated data, only deaths are observed, so that the likelihood 
is of the form 

If each individual has a different failure distribution, as might be the 
case when regression techniques are used, 

We will proceed with explicit details in constructing the likelihood 
function for various types of censoring and show how they all basically 
lead to equation (3.5.1). 

Data from experimenk involving right censoring can be conveniently 
represented by pairs of random variables ( T  61, where S indicates 
whether the lifetime X is observed (6 = 1) or not (6  = 01, and T 
is equal to X if the lifetime is observed and to C; if it is right-censored, 
i.e., T = rnin(X, C;). 

Details of constructing the likelihood function for Type I censoring 
are as follows. For 6 = 0 ,  it can be seen that 

Also, for 13 = 1, 

These expressions can be combined into the single expression 

If we have a random sample of pairs (T i ,  a,), i = 1, . . . , n, the likeli- 
hood function is 
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which is of the same form as (3.5.1). Because we can write f (ti) = 
h(ti)S(ti) we can write this likelihood as 

EXAMPLE 3.9 Assume f (x) = Ae-&. 
Then, the likelihood function is 

where r = C Si is the observed number of events and ST is the total 
time on test for all n individuals under study. 

EXAMPLE 3.10 A simple random censoring process encountered frequently is one in 
which each subject has a lifetime X and a censoring time C,, X and 
C, being independent random variables with the usual notation for the 
probability density and survival function of X as in Type I censoring 
and the p.d.f. and survival function of C, denoted by g ( ~ )  and G(cJ), 
respectively. Furthermore, let T = min(X, C,) and 6 indicates whether 
the lifetime X is censored (6 = 0) or not (6 = 1). The data from 
a sample of n subjects consist of the pairs (ti, Si), i = 1: . . . , n. The 
density function of this pair may be obtained from the joint density 
function of X and C,, f (x, GI), as 

When X and C, are independent with. marginal densities f and g, 
respectively, (3.5.5) becomes 

and, similarly, 

If the distribution of the censoring times, as alluded to earlier, does 
not depend upon the parameters of interest, then, the first term will be 
a constant with respect to the parameters of interest and the likelihood 
function takes the form of (3.5.1) 

Pra ctica 1 Notes 

1. The likelihoods constructed in this section are used primarily for 
analyzing parametric models, as discussed in Chapter 12. They also 
serve as a basis for determining the partial likelihoods used in the 
semiparametric regression methods discussed in Chapters 8 and 9. 

2. Even though, in most applications of analyzing survival data, the 
likelihoods constructed in this section will not be explicitly used, 
the rationale underlying their construction has value in understand- 
ing the contribution of the individual data components depicted in 
(3.5.1). 

Theoretical Notes 

1. For Type I1 censoring, the data consist of the rth smallest lifetimes 
4 1 )  5 4 2 )  5 - .  5 qr) out of a random sample of n lifetimes 
XI, . . . , Xn from the assumed life distribution. Assuming XI, . . . , Xn 
are i.i.d. and have a continuous distribution with p.d.f. f (x) and 
survival function S(x), it follows that the joint p.d.f. of ql), . . . , &,) 
is (cf. David, 1981) 
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2. For simplicity, in the progressive Type I1 censoring case, assume that 

the censoring (or serial sacrifice) has just two repetitions. Here we 
observe the r, ordered failures 5 q2) 5 . * .  5 then, nl 
items are removed from the study and sacrificed. Of the remaining 
( n  - rl - n l )  items we observe the next r2 ordered failures X;,, 5 
X*(,) 5 . . . 5 Tn, afier which the study stops with the remaining 
n - nl - q - r2 items being censored at X*,. The likelihood for 
type of data may be written as 

By equation (3.5.7), the first term above becomes 

and, by a theorem in order statistics (David, 1981), the second term 
above becomes 

where f ' (x)  = @ , x 2 q,) is the truncated p.d.f. and S*(x) = 

, x 2 q,)  is the truncated survival function so that 

so that 

which, again, can be written in the form of (3.5.1). 
3. For random censoring, when X and C, are not independent, the 

likelihood given by (3.5.6) is not correct. If the joint survival function 
of X and C, is S(x, c), then, the likelihood is of the form 

n 

r, n{[-  as(^, t i ) /a~~ ,=f , ) s i { [ -  as(ti, c)/aclc=f,ll-sl, 
i=l  

which may be appreciably different from (3.5.6). 

9 3  
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3.6 Counting Processes 

In the previous section, we discussed the construction of classical like- 
lihoods for censored and truncated data. These likelihoods can be used 
to develop some of the methods described in the remainder of this 
book. An alternative approach to developing inference procedures for 
censored and truncated data is by using counting process methodology. 
This approach was first developed by Aalen (1975) who combined ele- 
ments of stochastic integration, continuous time martingale theory and 
counting process theory into a methodology which quite easily allows 
for development of inference techniques for survival quantities based 
on censored and truncated data. These methods allow relatively simple 
development of the large sample properties of such statistics. Although 
complete exposition of this theory is beyond the scope of this book, 
we will give a brief survey in this section. For a more rigorous survey 
of this area, the reader is referred to books by Andersen et al. (1993) 
and Fleming and Harrington (1991). 

We start by defining a counting process NO), t r 0, as a stochastic 
process with the properties that N(0) is zero; N(t) < m, with probability 
one; and the sample paths of N(t) are right-continuous and piecewise 
constant with jumps of size + l .  Given a rightcensored sample, the 
processes, Ni(t) = I [T, 5 t, 6i = 31, which are zero until individual 
i dies and then jumps to one, are counting processes. The process 
N(t) = C:=l N(t )  = C,,, 6, is also a counting process. This process 
simply counts the number of deaths in the sample at or prior to time t.  

The counting process gives us information about when events occur. 
In addition to knowing this information, we have additional information 
on the study subjects at a time t .  For right censored data, this informa- 
tion at time t includes knowledge of who has been censored prior to 
time t and who died at or prior to time t .  In some problems, our in- 
formation may include values for a set of k e d  time covariates, such as 
age, sex, treatment at time 0 and possibly the values of time-dependent 
covariates, at all times prior to t .  This accumulated knowledge about 
what has happened to patients up to time t is called the history or j l -  
tration of the counting process at time t and is denoted by F f .  As time 
progresses, we learn more and more about the sample so that a natural 
requirement is that F, C F f  for s 5 t .  In the case of right-censored 
data, the history at time t ,  F,,  consists of knowledge of the pairs (T,, 6 3  
provided T, 5 t and the knowledge that > t for those individuals 
still under study at time t .  We shall denote the history at an instant 
just prior to time t by F f - .  The history {PI, t r 0)  for a given problem 
depends on the observer of the counting process. 

For right-censored data, if the death times Xi and censoring times 
Ci are independent, then, the chance of an event at time t ,  given the 
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history just prior to t ,  is given by 

Pr[t 5 T, 5 t + dt, 6, = 1 IF,-] 0 .6.1) 

For a given counting process, we define dN(t) to be the change in 
the process N(t) over a short time interval [t, t + dt). That is dN(t) = 
M(t + dt)-] - N(t-)  (Here t- is a time just prior to t). In the right- 
censored data example (assuming no ties), dN(t) is one if a death 
occurred at t or 0, otherwise. If we define the process Y(t)  as the 
number of individuals with a study time T, 2 t ,  then, using (3.6.0,  

E[dN(t)(F,-I = E[Number of observations with 

t 5 Xi 5 t + dt, C, > t + dt, I F , - ]  

The process A(t) = Y(t)h(t) is called the intensityprocess of the count- 
ing process. A(t) is itself a stochastic process that depends on the in- 

. formation contained in the history process, FI through Y(t). 
The stochastic process Y(t) is the process which provides us with the 

number of individuals at risk at a given time and, along with NO), is 
a fundamental quantity in the methods presented in the sequel. Notice 
that, if we had left truncated data and right-censored data, the intensity 
process would be the same as in (3.6.2) with the obvious modification 
to Y(t)  as the number of individuals with a truncation time less than t 
still at risk at time t .  

We define the process A(t) by S,' A(s)ds, t 2 0. This process, called 
the cumulative intensity process, has the property that E[N(t) IFI-] = 
E[A(t) I F,-]  = A(t). The last equality follows because, once we know 
the history just prior to t ,  the value of Y(t)  is fixed and, hence, A(t) 
is nonrandom. The stochastic process M(t) = N(t) - A(t) is called 
the counting process martingale. This process has the property that 
increments of this process have an expected value, given the strict past, 
F,- ,  that are zero. To see this, 

The last inequality follows because A(t) has a fixed value, given F ,  . 
A stochastic process with the property that its expected value at time 

t ,  given its history at time s < t ,  is equal to its value at time s is called 
a martingale, that is, M(t) is a martingale if 

m ( t )  I Fsl = ~ ( s ) ,  for all s < t. (3.6.3) 
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To see that this basic definition is equivalent to having E[dM(t) I F , - ]  = 
0 for all t ,  note that, if E[dM(t) IF,-] = 0, then, 

Thus the counting process martingale is indeed a martingale. 
The counting process martingale, M(t) = N(t) - A(t) is made u p  of 

two parts. The h t  is the process N(t), which is a nondecreasing step 
function. The second part M t )  is a smooth process which is predictable 
in that its'value at time t is fixed just prior to time t .  This random function 
is called a compensator of the counting process. The martingale can 
be considered as mean zero noise which arises when we subtract the 
smoothly varying compensator from the counting process 

To illustrate these concepts, a sample of 100 observations was gen- 
erated from an exponential population with hazard rate hx(t) = 0.2. 
Censoring times were generated from an independent exponential dis- 
tribution with hazard rate h,-(t) = 0.05. Figure 3.6 shows the processes 
N(t) and the compensator of N(t), A(t) = J,' h(u) Y(u)du, of a single 
sample drawn from these distributions. Note that N(t) is an increasing 
step function with jumps at the observed death times, Y(t)  is a decreas- 
ing step function with steps of size one at each death or censoring time, 
and A(t) is an increasing continuous function that is quite close to N(t).  

Figure 3.7 depicts the values of M(t) for 10 samples generated from 
this population. The sample in Figure 3.6 is the solid lineon this figure. 
We can see in this figure that the sample paths of M(t) look like a 
sample of random, mean 0, noise. 

An additional quantity needed in this theory is the notion of the 
predictable variationprocess of M(t), denoted by (MXt). This quantity 
is defined as the compensator of the process M2(t). Although M(t)  
reflects the noise left after subtracting the compensator, M2(t) tends to 
increase with time. Here, (M)(t) is the systematic part of this increase 
and is the predictable process needed to be subtracted from M2(t) to 
produce a martingale. The name, predictable variation process, comes 
from the fact that, for a martingale M(t), var(dM(t) ( F,-) = d(M)(t). 
To see this, recall that, by definition, E[dM(t)l = 0. Now, 
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Figure 3.6 &mpk of a counting process, N(0 (solid line) and its compen- 
sator, A(t), (dashed 1ine)for a sampk of 100 individuals 

because once Ft- is known, M(t-) is a fixed quantity and E[dM(t) 1 
Ft-1 = 0. 

To find VaddM(t) I Ft-I recall that dN(t) is a zero-one random vari- 
able with a probability, given the history, of A(t) of having a jump of size 
one at time t .  The variance of such a random variable is A(t)[l - A(t)l. I f  
there are no ties in the censored data case, A(t)' is close to zero so that 
VaddM(t) 1 Ft-I A(t) = Y(t)h(t). In this case, notice that the condi- 
tional mean and variance of the counting process ~ ( t )  are the same and 
one can show that locally, conditional on the past history, the counting 
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Figure 3.7 Sampk of 10 martingales. The compensatedprocesr in Figure 3.6 
is the solid line. 

process behaves like a Poisson process with rate A(t). When there are 
ties in the data, the Bernoulli variance is used. Of course, in either case, 
these variances are conditional variances in that they depend on the 
history at time t- through Y(t). In many applications these conditional 
variances serve as our estimator of the variance of dM(t). 

Many of the statistics in later sections are stochastic integrals of the 
basic martingale discussed above. Here, we let K(t) be a predictable 
process. That is K(t) is a stochastic process whose value is known, 
given the history just prior to time t ,  Ft-. An example of a predictable 
process is the process Y(t) .  Over the interval 0 to t, the stochastic 
integral of such a process, with respect to a martingale, is denoted 
by jd ~ ( u ) d M ( u ) .  Such stochastic integrals have the property that they 
themselves are martingales as a function of t  and their predictable 
variation process can be found from the predictable variation process 
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of the original martingale by 

To illustrate how these tools can be used to derive nonparameMc 
estimators of parameters of interest, we shall derive a nonparameMc 
estimator of the cumulative hazard rate H(t)  based on right-censored 
data, the so-called Nelson-Aalen estimator. Recall that we can w& 
dN(t) = Y(t)h(t)dt + &(t). If Y(t )  is nonzero, then, 

If &(t) is noise, then, so is d M ( t ) / ~ ( t ) .  Because the value of Y(t) is 
fixed just prior to time t ,  

Also, the conditional variance of the noise can be found as 

If we let J ( t )  be the indicator of whether Y(t)  is positive and we define 
0 / 0  = 0 ,  then, integrating both sides of equation (3.6.51, 

The integral Jd % d ~ ( u )  = ~ ( t )  is the Nelson-Aalen estimator of 

H(t). The integr&.w(t) = Jd E & ( u ) ,  is the stochastic integral of 
the predictable process with respect to a martingale and, hence, 
is also a martingale. Again, we can think of this integral as random 
noise or the statistical uncertainty in our estimate. The random quantity 
P ( t )  = Jd ~(u)h (u )du ,  for right-censored data is equal to H(t)  in the 
range where we have data, and, ignoring the statistical uncertainty in 
W(t) ,  the statistic H(t) is a nonparametric estimator of the random 
quantity P ( t ) .  

Because W(t )  = ~ ( t )  - H'(t) is a martingale, n ~ ( t ) l  = BH'(t)l. 
Note that P ( t )  is a random quantity and its expectation is not, in 
general, equal to H(t). The predictable variation process of W(t)  is 
found quite simply, using (3.6.4), as 

t s z  
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A final strength of the counting process approach is the martingale 
central limit theorem. Recall that Y( t ) /n  and N( t ) /n  are sample aver- 
ages and that, for a large sample, the random variation in both should 
be small. For large n ,  suppose that Y ( t ) / n j s  close to a deterministic 
function fit).  Let Z(")(t) = f i  ~ ( t )  = f i [ ~ ( t )  - P ( t ) l .  This process 
is almost equal to f i [ ~ ( t )  - H(t)l, because for large samples P ( t )  is 
very close to H(t). Given the history, the conditional variance of the 
jumps in Z(")(t) are found to converge to h(t)/y(t).  To see this 

- d(M(t))  - n- 
Y(tIZ 

- A ( t )  dt - n-  
Y(tIZ 

which converges to h(t)dt/y(t) for large samples. Also, for large sam- 
ples, Z'") will have many jumps, but all of these jumps will be small 
and of order 1 / f i .  - 

The above heuristics tell us 
continuous sample paths and a 
to 

It turns out that there is one and only one limiting process, Z(") which 
is a martingale with continuous sample paths and a deterministic pre- 
dictable variation (Z(")) exactly equal to (3.6.6). This limiting process 
has independent increments and normally distributed finite-dimensional 
distributions. A process has independent increments if, for any set of 
nonoverlap ing intervals (ti-l ,  t,), i = 1 , .  . ., k the random variables 
&-)(ti) - are independent. The limiting process has normally 
distributed finite-dimensional distributions if the joint distribution of 
[Z(")(tl), . . . , Z'")(tk)l is multivariate normal for any value of k. For the 
process [Z(")(tl), . . . , Pm)(tk)l has a k-variate normal distribution 
with mean 0 and a covariance matrix with entries 

This basic convergence allows us to find confidenc,e intervals for the 
cumulative hazard rate at a fixed time because f i [ ~ ( t )  - P ( t ) l  will 
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have an approximate normal distribution with mean 0 and variance 

An estimate of the variance can be obtained from 

n / o f $ g  

because we can t) by Y(t)/n and h(t) by dN(t)/Y(t). The 
is approximated by a continuous process 

with normal margins also allows us to compute confidence bands for 
the cumulative hazard rate (see section 4.4). 

To estimate the survival function, recall that, for a continuous random 
variable, S(t) = exp[-H(t)] and, for a discrete, random variable, S(t) = 
n:=,[l - dH(s)]. Here, we say that S(t) is the product integral of 
1 - d ~ ( t ) .  To obtain an estimator of the survival function, we take the 
product integral of 1 - dH(t) to obtain 

This is the Kaplan-Meier estimator (see section 4.2) which is a step 
function with steps at the death times where dN(t) > 0. It turns out that 
i ( t ) /~( t)  - 1 is a stochastic integral with respect to the basic martingale 
M and is also a martingale. Thus confidence intervals and confidence 
bands for the survival function can be found using the martingale central 
limit theorem discussed above (see sections 4.3 and 4.4). 

Counting processes methods can be used to construct likelihoods for 
survival data in a natural way. To derive a likelihood function based on 
N(t) consider a separate counting process, NJ(t), for each individual in 
the study. Given the history up to time t, dNJ(t) has an approximate 
Bernoulli distribution with probability Aj(t)dt of having dN,(t) = 1. The 
contribution to the likelihood at a given time is, then, proportional to 

Integrating this quantity over the range [O, TI gives a contribution to the 
likelihood of 

The full likelihood for all n observations based on information up tc 
time r is, then, proportional to 

For right-censored data, where Aj(t) = q(t)h(t), with q(t) = 1 if 
t 5 t,, 0 if t > tJ, so 

L [fi ~ t~ )61 ]  exp (- 2 ~( t ] ) )  . 
j= l  /=1 

which is exactly the same form as (3.5.1). This heuristic argument is 
precisely stated in Chapter 2 of Andersen et al. (1993). 

The counting process techniques illustrated in this section can be 
used to derive a wide variety of statistical techniques for censored 
and truncated survival data. They are particularly useful in developing 
nonpararnetric statistical methods. In particular, they are the basis of 
the univariate estimators of the survival function and hazard rate dis- 
cussed in Chapter 4, the smoothed estimator of the hazard rate and 
the models for excess and relative mortality discussed in Chapter 6, 
most of the k-sample nonparametric tests discussed in Chapter 7, and 
the regression methods discussed in Chapters 8, 9, and 10. A check of 
the martingale property is used to test model assumptions for regres- 
sion models, as discussed in Chapter 11. Most of the statistics devel- 
oped in the sequel can be shown to be stochastic integrals of some 
martingale, so large sample properties of the statistics can be found 
by using the predictable variation process and the martingale central 
limit theorem. In the theoretical notes, we shall point out where these 
methods can be used and provide references to the theoretical de- 
velopment of the methods. The books by Andersen et al. (1993) or 
Fleming and Harrington (1991) provide a sound reference for these 
methods. 

txercises 

3.1 Describe, in detail, the types of censoring which are present in the 
following studies. 
(a) The example dealing with remission duration in a clinical trial for 
acute leukemia described in section 1.2. 

(b) The example studying the time to death for breast cancer patients 
described in section 1.5. 

3.2 A large number of disease-free individuals were enrolled in a study 
beginning January 1, 1970, and were followed for 30 years to assess 
the age at which they developed breast cancer. Individuals had clinical 
exams every 3 years after enrollment. For four selected individuals 
described below, discuss in detail, the types of censoring and truncation 
that are represented. 
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(a) A healthy individual, enrolled in the study at age 30, never devel- 
oped breast cancer during the study. 
(b) A healthy individual, enrolled in the study at age 40, was diagnosed 
with breast cancer at the fifth exam after enrollment (i.e., the disease 
started sometime between 12 and 15 years after enrollment). 
(c) A healthy individual, enrolled in the study at age 50, died from a 
cause unrelated to the disease (i.e., not diagnosed with breast cancer 
at any time during the study) at age 61. 
(d) An individual, enrolled in the study at age 42, moved away from 
the community at age 55 and was never diagnosed with breast cancer 
during the period of observation. 
(e) Confining your attention to the four individuals described above, 
write down the likelihood for this portion of the study. 

3.3 A n  investigator, performing an animal study designed to evaluate the 
effects of vegetable and vegetable-fiber diets on mammary carcinogen- 
esis risk, randomly assigned female Sprague-Dawley rats to five dietary 
groups (control diet, control diet plus vegetable mixture, 1; control diet 
plus vegetable mixture, 2; control diet plus vegetable-fiber mixture, 1; 
and control diet plus vegetable-fiber mixture, 2). Mammary tumors were 
induced by a single oral dose (5 mg dissolved in 1.0 rnl. corn oil) of 
7,12dimethylbenz(a)anthracene (DMBA) administered by intragastric 
intubation, i.e., the starting point for this study is when DMBA was 
given. 

Starting 6 weeks after DMBA administration, each rat was examined 
once weekly for 14 weeks (post DMBA administration) and the time 
(in days) until onset of the first palpable tumor was recorded. We wish 
to make an inference about the marginal distribution of the time until 
a tumor is detected. Describe, in detail, the types of censoring that are 
represented by the following rats. 

(a) A rat who had a palpable tumor at the first examination at 6 weeks 
after intubation with DMBA. 
(b) A rat that survived the study without having any tumors. 
(c) A rat which did not have a tumor at week 12 but which had a tumor 
at week 13 after inturbation with DMBA. 
(d) A rat which died (without tumor present and death was unrelated 
to the occurrence of cancer) at day 37 after intubation with DMBA. 
(e) Confining our attention to the four rats described above, write down 
the likelihood for this portion of the study. 

3.4 In section 1.2, a clinical trial for acute leukemia is discussed. In this 
trial, the event of interest is the time from treatment to leukemia re- 
lapse. Using the data for the 6-MP group and assuming that the time to 
relapse distribution is exponential with hazard rate A, construct the like- 
lihood function. Using this likelihood function, find the maximum likeli- 

hood estimator of A by finding the value of A which maximizes this 
likelihood. 

3.5 Suppose that the time to death has a log logistic distribution with param- 
eters A and a. Based on the following left-censored sample, construct 
the likelihood function. 

DATA: 0.5, 1, 0.75, 0.25-, 1.25-, where - denotes a left- censored 
observation. 

3.6 The following data consists of the times to relapse and the times to 
death following relapse of 10 bone marrow transplant patients. In the 
sample patients 4 and 6 were alive in relapse at the end of the study 
and patients 7-10 were alive, free of relapse at the end of the study. 
Suppose the time to relapse had an exponential distribution with hazard 
rate A and the time to death in relapse had a Weibull distribution with 
parameters 8 and a. 

Patient Relapse Time Death Time 
(months) (months) 

1 5 11 
2 8 12 
3 12 15 
4 24 33+ 
5 32 45 
6 17 28' 
7 16+ 16+ 
8 17' 17+ 
9 19' 19' 
10 MC 30+ 

+ Censored observation 

(a) Construct the likelihood for the relapse rate A.  

(b) Construct a likelihood for the 8 and a. 

(c) Suppose we were only allowed to observe a patients death time if 
the patient relapsed. Construct the likelihood for 8 and a based on this 
truncated sample, and compare it to the results in (b). 

3.7 To estimate the distribution of the ages at which postmenopausal 
woman develop breast cancer, a sample of eight 50-year-old women 
were given yearly mammograms for a period of 10 years. At each exam, 
the presence or absence of a tumor was recorded. In the study, no 
tumors were detected by the women by self-examination between the 
scheduled yearly exams, so all that is known about the onset time of 
breast cancer is that it occurs between examinations. For four of the 
eight women, breast cancer was not detected during the 10 year study 
period. The age at onset of breast cancer for the eight subjects was in 
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the following intervals: 

(55,561, (58,591, (52,531, (59,601, r 6 0 , ~  Go,? 6 0 , ~  60. 

(a) What type of censoring or truncation is represented in this sample? 
(b) ~ssuming that the age at which breast cancer develops follows a 
Weibull distribution with parameters A and a, construct the likelihood 
function. 

3.8 Suppose that the time to death X has an exponential distribution *th 
hazard rate A and that the right-censoring time C is exponential with 
hazard rate 0. Let T = mid& C) and 6 = 1 if X 5 C;O, if X 1 C. 
Assume that X and C are independent. 

Nonparametric Estimation 
of Basic Quantities for 

3.9 An example of a counting process is a Poisson process N(t) with rate 
A. Such a process is defined by the following three properties: 
(a) N(0) = 0 with probability 1. 
(b) N(t) - N(s) has a Poisson distribution with parameter A(t - s) for 
any 0 5 s 5 t .  

(c) N(t) has independent increments, that is, for 0 tl < tz < t3 < 4, 
N(h) - N(tl) is independent of N(@ - N(t3). 
Let F, be the a-algebra defined by N(s). Define the process M(t) = 
N(t) - At. 

i. Show that Eb( t ) (  < a. 
ii. Show that AM(t) I N(s)l = M(s) for s < t, and conclude that M(t) 
is a martingale and that At is the compensator of N(t). (Hint: Write 
M(t) = M(t) - M(s) + M(s).) 

(a) Find P(6 = 1) 
(b) Find the distribution of T. 
(c) Show that 6 and T are independent. 
(d) Let (G, ti1), . . . , (T,, 6,) be a random sample from this model. Show 
that the maximum likelihood estimator of A is C,"=, st/C:,, T,. Use 
parts a-c to find the mean and variance of i. 

4.1 Introduction 

RightXensored and 
Left-Truncated Data 

In this chapter we shall examine techniques for drawing an inference 
about the distribution of the time to some event X, based on a sample 
of right-censored survival data. A typical data point consists of a time 
on study and an indicator of whether this time is an event time or a 
censoring time for each of the n individuals in the study. We assume 
throughout this chapter that the potential censoring time is unrelated to 
the potential event time. The methods are appropriate for Type I, Type 
11, progressive or random censoring discussed in section 3.2. 

To allow for possible ties in the data, suppose that the events occur at 
D d i c t  times tl < < ' a  - . < tD, and that at time ti there are 4 events 
(sometimes simply referred to as deaths). Let I: be the number of indi- 
viduals who are at risk at time ti. Note that Yi is a count of the number 




