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90 Chapter 3 Censoring and Truncation 

the following intervals: 

(55,561, (58,591, (52,531, (59,601, r 6 0 , ~  Go,? 6 0 , ~  60. 

(a) What type of censoring or truncation is represented in this sample? 
(b) ~ssuming that the age at which breast cancer develops follows a 
Weibull distribution with parameters A and a, construct the likelihood 
function. 

3.8 Suppose that the time to death X has an exponential distribution *th 
hazard rate A and that the right-censoring time C is exponential with 
hazard rate 0. Let T = mid& C) and 6 = 1 if X 5 C;O, if X 1 C. 
Assume that X and C are independent. 

Nonparametric Estimation 
of Basic Quantities for 

3.9 An example of a counting process is a Poisson process N(t) with rate 
A. Such a process is defined by the following three properties: 
(a) N(0) = 0 with probability 1. 
(b) N(t) - N(s) has a Poisson distribution with parameter A(t - s) for 
any 0 5 s 5 t .  

(c) N(t) has independent increments, that is, for 0 tl < tz < t3 < 4, 
N(h) - N(tl) is independent of N(@ - N(t3). 
Let F, be the a-algebra defined by N(s). Define the process M(t) = 
N(t) - At. 

i. Show that Eb( t ) (  < a. 
ii. Show that AM(t) I N(s)l = M(s) for s < t, and conclude that M(t) 
is a martingale and that At is the compensator of N(t). (Hint: Write 
M(t) = M(t) - M(s) + M(s).) 

(a) Find P(6 = 1) 
(b) Find the distribution of T. 
(c) Show that 6 and T are independent. 
(d) Let (G, ti1), . . . , (T,, 6,) be a random sample from this model. Show 
that the maximum likelihood estimator of A is C,"=, st/C:,, T,. Use 
parts a-c to find the mean and variance of i. 

4.1 Introduction 

RightXensored and 
Left-Truncated Data 

In this chapter we shall examine techniques for drawing an inference 
about the distribution of the time to some event X, based on a sample 
of right-censored survival data. A typical data point consists of a time 
on study and an indicator of whether this time is an event time or a 
censoring time for each of the n individuals in the study. We assume 
throughout this chapter that the potential censoring time is unrelated to 
the potential event time. The methods are appropriate for Type I, Type 
11, progressive or random censoring discussed in section 3.2. 

To allow for possible ties in the data, suppose that the events occur at 
D d i c t  times tl < < ' a  - . < tD, and that at time ti there are 4 events 
(sometimes simply referred to as deaths). Let I: be the number of indi- 
viduals who are at risk at time ti. Note that Yi is a count of the number 
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of individuals with a time on study of ti or more (i.e., the number of 
individuals who are alive at ti or experience the event of interest at ti), 
The quantity d , /K  provides an estimate of the conditional probability 
that an individual who survives to just prior to time ti experiences the 
event at time ti. As we shall see, this is the basic quantity from which 
we will construct estimators of the survival function and the cumulative 
hazard rate. 

Basic estimators of the survival function S(t), the cumulative hazard 
function H(t), and their standard errors based on right-censored data 
are discussed in section 4.2. In section 4.3, confidence intervals for S(t) 
and ~ ( t )  for a fixed value of t are presented, and section 4.4 presents 
confidence bands which provide a specified coverage probability for 
a range of times. Section 4.5 discusses inference for the mean time to 
event and for percentiles of X based on right-censored data. The final 
section shows how the estimators developed for right-censored data 
can be extended to left-truncated data. Estimating for other censoring 
and truncating schemes is considered in Chapter 5. 

Estimators of the Survival and Cumulative 
Hazard Functions for Right-Censored Data 

The standard estimator of the survival function, proposed by Kaplan 
and Meier (1958), is called the Product-Limit estimator. This estimator 
is defined as follows for all values of t in the range where there is data: 

1 s t <  t,, 
= {n,.,o - ~ 1 ,  r tl s t 

For values of t beyond the largest observation time this estimator is not 
well defined (see Practical Notes 1 and 2 for suggestions as to solutions 
to this problem). 

The Product-Limit estimator is a step function with jumps at the o b  
served event times. The size of these jumps depends not only on the 
number of events observed at each event time ti, but also on the pattern 
of the censored observations prior to ti. 

The variance of the Product-Limit estimator is estimated by Green- 
wood's formula: 

The standard error of the Product-Limit estimator is given by {e [ ? ( t ) ~ } ' / ~  
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, 
EXAMPLE 4.1 We consider the data in section 1.2 on the time to relapse of patients 

in a clinical trial of 6-MP against a placebo. We shall consider only the 
6-MP patients. The calculations needed to construct the Product-Limit 
estimator and its estimated variance are in Table 4.1A. The Product-Limit 
estimator, found in Table 4.1B, is a step function. Figure 4.1A shows a 
plot of this estimated survival function. Note that the survival curve is 
defined only up to 35 weeks, the largest of the obsewation times. 

TABLE 4.1A 
Construction of the Product-Limit Estimator and its Estimated Variance for the 
6-MP Group 

Time Number Number Product-Limit 
tf of events at risk EFtimator 

dr r! S(t)  = nfls,h - $1  X ~ , S I  stt]' Ctlst &. 
6 3 21 [l - 41 = 0.857 = 0.0079 0.857' X 0.0079 = 0.0058 
7 1 17 [0.8571(1 - +) = 0.807 0.0079 + & = 0.0116 0.807' X 0.0116 = 0.0076 
10 1 15 [0.807I(l - &) = 0.753 0.0116 + & = 0.0164 0.753' X 0.0164 = 0.0093 

13 1 12 [0.7531(1 - &) = 0.690 0.0164 + & = 0.0240 0.696 X 0.0240 = 0.0114 
16 1 11 [0.690](1-+)=0.628 0.0240+&=0.0330 0.628'X0.0330=0.0130 
22 1 7 [0.628](1 - 4) = 0.538 0.0330 + = 0.0569 0.538' X 0.0569 = 0.0164 
23 1 6 [0.5381(1 - a) = 0.448 0.0569 + & = 0.0902 0.448' X 0.0902 = 0.0181 

TABLE 4.1 B 
l%e Product-Limit Estimator and Its Estimated Standard Error for the 6-MP 
Group 

Xme on Stuay Standard 
(t)  S 0 )  Error 

The Product-Limit estimator provides an efficient means of estirnat- 
ing the survival function for right-censored data. It can .also be used 
to e~timate~the curnulatiye hazard function H(t )  = - ln[S(t)l. The es- 
timator is H(t)  = - ln[S(t) l .  An alternate estimator of the cumulative 
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hazard rate, which has better small-sample-size performance than the 
estimator based on the Product-Limit estimator, was first suggested by 
Nelson (1972) in a reliability context. The estimator was rediscovered 
by Aalen (1978b) who derived the estimator using modern counting 
process techniques (see section 3.6 for a sketch of this derivation). This 
estimator, which shall be referred to as the Nelson-Aalen estimator of 
the cumulative hazard, is defined up to the largest observed time on 
study as follows: 

The estimated variance of the Nelson-Aalen estimator is due to Aden 
(1978b) and is given by 

Based on the Nelson-Aalen estimator of the cumulative hazard rate 
(4.2.3), an alternate estimator of the survival function is given by S(t) = 
exp[ - H( tll . 

The Nelson-Aalen estimator has two primary uses in analyzing data. 
The first is in selecting between parametric models for the time to 

TABLE 4.2 
Comhcction of the Nelson-Aah EshtrtmZtOr and its Estimated Variance for the 
6-MP Group 

Time Standard 
dr dr 

t No = Cl,,, , ai=C -. 
1 1 5 1  

Error 
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event. Here, one plots the Nelson-Aalen estimator on special paper 
so that, if a given parametric model fits the data, the resulting graph 
will be approximately linear. For example, a plot of ~ ( t )  versus t 
will be approximately linear if the exponential distribution, with hazard 
rate A ,  fits the data. The use of the Nelson-Aalen estimators in model 
identification is discussed further in Chapter 12. 

A second use of the Nelson-Aalen estimator is in providing crude 
estimates of the hazard rate h(t). These estimates are the slope of the 
Nelson-Aalen estimator. Better estimates of the hazard rate are obtained 
by smoothing the jump sizes of the Nelson-Aalen estimator with a 
parametric kernel (see Chapter 6). 

EXAMPLE 4.1 (continued) The construction of the Nelson-Aalen estimator of the 
cumulative hazard and its estimated variance for the 6-MP group is 
given in Table 4.2. 

Figure 4.1A Cornpadon of the Nelson-Aah (-) and Product-Limit 
) estimates of the survivalfunction for the 6-MPgroup. (- 
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hazard rate, which has better small-sample-size performance than the 
estimator based on the Product-Limit estimator, was first Suggested by 
Nelson (1972) in a reliability context. The estimator was rediscovered 
by Aalen (1978b) who derived the estimator using modern counting 
process techniques (see section 3.6 for a sketch of this derivation). This 
estimator, which shall be referred to as the Nelson-Aalen estimator of 
the cumulative hazard, is defined up to the largest observed time on 
study as follows: 

The estimated variance of the Nelson-Aalen estimator is due to Aalen 
(1978b) and is given by 

Based on the Nelson-Aalen estimator of the cumulative haza@ rate 
(4.2.3), an alternate estimator of the survival function is given by S(t) = 
exp[- H(t)l. 

The Nelson-Aalen estimator has two primary uses in analyzing data. 
The fist is in selecting between parametric models for the time to 

TABLE 4.2 
Construction o f  the Neko%Aalt?n Estimator and its Estimated Variance for the 
6-UP Group 

Time Standard 
di di 

t H(t) = Ellsl y 4, = Ells~ 3. Error 

4.2 Estimators of the Survival and Cumulative Hazard Functions for Right-Censored Data 95 

event. Here, one plots the Nelson-Aalen estimator on special paper 
so that, if a given parametric model fits the data, the resulting graph 
will be approximately linear. For example, a plot of H(t) versus t 
will be approximately linear if the exponential distribution, with hazard 
rate A, fits the data. The use of the Nelson-Aalen estimators in model 
identification is discussed further in Chapter 12. 

A second use of the Nelson-Aalen estimator is in providing crude 
estimates of the hazard rate h(t). These estimates are the slope of the 
Nelson-Men estimator. Better estimates of the hazard rate are obtained 
by smoothing the jump sizes of the Nelson-Aalen estimator with a 
parametric kernel (see Chapter 6). 

EXAMPLE 4.1 (continued) The construction of the Nelson-Aalen estimator of the 
cumulative hazard and its estimated variance for the 6-MP group is 
given in Table 4.2. 

Figure 4.1A Compa&on of the Neko%Aalt?n (-1 and Product-Limit 
1 &mates of the survival&nction for the 6-UPgroup. (- 
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Figure 4.18 Comparison of the Nekon-Aalm (-1 and Product-Limit 
) estimates of the cumulative hazard rate for the 6-MPgroup. (- 

Figure 4.1A shows the two estimates of the survival function for 
the 6-MP data and Figure 4.1B the two estimates of the cumulative 
hazard rate. Note that all estimates are step functions with jumps at the 
observed deaths. 

EXAMPLE 4.2 To illustrate the use of the Product-Limit estimator and the Nelson- 
Aalen estimator in providing summary information about survival, con- 
sider the data on the efficiency of a bone marrow transplant in acute 
leukemia. Using the data reported in section 1.3, we shall focus on the 
disease-free swival probabilities for ALL., AML low risk and AML high 
risk patients. An individual is said to be disease-free at a given time after 
transplant if that individual is alive without the recurrence of leukemia. 
The event indicator for disease-free survival is S3 = 1 if the individual 
has died or has relapsed (Sj = max(S1, &) in Table D.l of Appendix Dl. 
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The days on study for a patient is the smaller of their relapse or death 
time. 

Table 4.3 shows the calculations needed for constructing the esti- 
mated survival function and hazard rate for the ALL group. Similar 
calculations for the two AML groups are left as an exercise. 

Figure 4.2 shows a plot of the estimated disease-free survival curves 
(4.2.1) for the three groups. In this figure, first notice that the curves 
end at different points, because the largest times on study are different 
for the three groups (2081 days for ALL., 2569 for AML low risk, and 
2640 for AML high risk). Secondly, the figure suggests that AML low risk 
patients have the best and AML high risk patients the least favorable 
prognosis. The three year disease-free survival probabilities are 0.3531 
(SE = 0.0793) for the ALL group; 0.5470 (SE = 0.0691) for the AML 

TABLE 4.3 
Estimators of the Suwiual Function and Cumulatiue Hazard Rate for ALL Pa- 
tients 

Product-Limit Nelson-Aalen 
EFtfmator Wimator 
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Figure 4.2 Estimated dbeasefiee sum'val for the 13 7 F n t  
); Aha-High nkk 0; ALL (- - -) p~tients. M - L Q W  nkk (-- 

low risk group; and 0.2444 (SE = 0.0641) for the AML high risk group. 
Whether these apparent differences are statistically sigdicant will be 
addressed in later sections. 

Figure 4.3 is a plot of the estimated cumulative hazard rates (4.2.3) 
for the three disease groups. Again, this plot shows that AML high risk 
patients have the highest combined relapse and death rate, whereas 
AML low risk patients have the smallest rate. For each disease group, 
the cumulative hazard rates appear to be approximately linear in the first 
two years, suggesting that the hazard rate is approximately constant. A 
crude estimate of these constant hazard rates is the slopes of the Nelson- 
Aalen estimators. These estimates give a rate of about 0.04 events per 
month for ALL patients, 0.02 events per month for AML low risk patients, 
and 0.06 events per month for AML high risk patients. 

Figure 4.3 Estimated cumulative hazard rate for the 137 bone marrow trans- 
plantpatierzts. AML-Low nkk (-); AML-Hi@ risk (-); ALL (- - -) 

Practical Notes 

1. Both the Nelson-Aalen and Product-Limit estimator are based on an 
assumption of noninformative censoring which means that knowl- 
edge of a censoring time for an individual provides no further infor- 
mation about this person's likelihood of survival at a future time had 
the individual continued on the study. This assumption would be 
violated, for example, if patients with poor prognosis were routinely 
censored. When this assumption is violated, both estimators are es- 
timating the wrong function and the investigator can be appreciably 
misled. See Klein and Moeschberger (1984) for details. 

2. The Kaplan-Meier estimator of the survival function is well defined 
for all time points less than the largest observed study time &. If the 
largest study time corresponds to a death time, then, the estimated 
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survival curve is zero beyond this point. If the largest time point is 
censored, the value of S(t) beyond this point is undetermined be- 
cause we do not know when this last survivor would have died if 
the survivor had not been censored. Several nonparametric sugges. 
tions have been made to account for this ambiguity. Efron (1967) 
suggests estimating 5 (t) by 0 beyond the largest study time f, .  
corresponds to assuming that the survivor with the largest time on 
study would have died immediately after the survivor's censoring 
time and leads to an estimator which is negatively biased. Gill (1980) 
suggests estimating S (t) by ? ( t a x )  for t > tax, which corresponds 
to assuming this individual would die at m and leads to an estimator 
which is positively biased. Although both estimators have the same 
large-sample properties and converge to the true survival function for 
large samples, a study of small-sample properties of the two estima- 
tors by Klein(1991) shows that Gill's version of the Kaplan-Meier is 
preferred. 

3. The two nonparametric techniques for estimation beyond f ,  cor- 
respond to the two most extreme situations one may encounter. 
Brown, Hollander, and Kowar (1974) suggest completing the tail 
by an exponential curve picked to give the same value of S ( U .  
The estimated survival function for t > &- is given by S(t) = 
e x d t  ln[ $ (&,,,)I/&,,,). For the data in Example 4.2, this method yields 
estimates of S(t) = exp(-0.0005t) for t > 2081 days for the ALL 
Group; S(t) = exp(-0.00035t) for t > 2569 days for the AML low 
risk group; and i ( t )  = exp(-0.000053t) for t > 2640 for the AML 
high risk group. Based on these estimates, Figure 4.4 shows a com- 
parison of the disease-free survival of three-risk groups for the first 
eight years after transplant. Moeschberger and Klein (1985) have ex- 
tended these techniques to allow using the more flexible Weibull 
distribution to com~lete the tail of the Product-Limit estimator. 

4. An alternative estimator of the variance of SO), due to Aalen and 
Johansen (1978) is given by I 

Both this estimator and Greenwood's estimator tend to underestimate 
the true variance of the Kaplan-Meier estimator for small to moderate 
samples. On average, Greenwood's estimator tends to come closest 
to the true variance and has a smaller variance except when is 
very small (see Klein, 1991). 

5. An alternate estimator of the variance of ~ ( t )  is found in Klein (1991). 
This estimator is given as 
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Figure 4A Estimated dfieasefree suroival for the 137 bone marrow trans- 
plant patients using the Brown-Hollander-Kowar mil estimate. AML-[ow risk 
(-1; AM1;-high risk (-1; ALL (--) 

This estimator tends to be too small, whereas the estimator (4.2.4) 
tends to be too large. The estimator (4.2.4) has a smaller bias than 
(4.2.6) and is preferred. 

6. An estimator of the variabili6 of the Nelson-Aalen estimator of the 
survival function g(t) is found by substituting S(t) for ?(t) in either 
Eq. 4.2.2 or 4.2.5. 

7. When there is no censoring, the Product-Limit estimator reduces to 
the empirical survival function. 

8. The statistical packages SAS, BMDP, SPSS, and S-Plus provide proce- 
dures for computing the Product-Limit estimator and the estimated 
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cumulative hazard rate based on this statistic. S-Plus also provides 
the Nelson-Aalen estimator of the survival function and an estimate 
of its variance using (4.2.5). 

Theoretical Notes 

1. The Product-Limit estimator was first constructed by using a reduced- 
sample approach. In this approach, note that, because events are only 
observed at the times ti, S(t) should be a step function with jumps 
only at these times, there being no information on events occurring at 
other times. We will estimate S(t) by a discrete distribution with mass 
at the time points tl, t,, . . . , tD. We can estimate the Pr[T > ti I T 2 t,l 
as the fraction of individuals who are at risk at time ti but who do 
not die at this time, that is 

To estimate S(ti), recall that 

because S(0) = 1 and, for a discrete distribution, S(4-J = Pr[T > 
tr-J = Pr[T 2 ti]. Sirnphfying this expression yields the Product-Limit 
estimator (4.2.1). 

2. Redistribute to the right algorithm. This derivation is best explained 
by an example. Suppose we have ten individuals on study with the 
following times on study (+ denotes a censored observation): 3, 4, 
5+ ,6, 6+, 8+, 11, 14, 15, 16+. We start the algorithm by assigning 
mass l / n  to each observation (the estimator we would have if there 
was no censoring). Now, start at the far left and take the mass at each 
censored observation and redistribute it equally to each observation 
greater than this value. (Here censored observations tied with events 
are treated as being just to the right of the event.) This process is 
repeated until the largest observation is reached. The survival curve 
obtained from this final set of probabilities is the Kaplan-Meier esti- 
mate. If the largest observation is censored, the mass can be either 
left at that point, so that the Kaplan-Meier estimator drops to zero, or 
redistributed to +m, so that the curve is constant beyond this value. 

3. Self Consistency. If we had no censored observations, the estimator 
of the survival function at a time t is the proportion of observations 
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Data 
Points Step 0 Step 1 Step 2 Stqb 3 S 0) 

- 0.100 0.100 
10 

0.100 0.900 

1 - 
10 

0.100 0.100 0.100 0.800 

1 
5+ - 

10 
0.000 0.000 0.000 0.800 

1 
0.114 0.686 

1 
6+ - 

10 
0.000 0.686 

1 + -0.114 = 0.137 0.000 
5 

0.686 

1 
11 - 1 1 + -0.114 = 0.137 0.137 + -0 137 = 0.171 0.515 

5 4 '  
1 1 + -0.114 = 0.137 0.137 + -0 137 = 0.171 0.343 
5 4 '  

1 1 1 + -0.114 = 0.137 0.137 + -0 137 = 0.171 0.171 
5 4 '  

1 
16+ - 1 1 + -0.114 = 0.137 0.137 + -0.137 = 0.171 0.000' 

5 4 

'Ehon's Estimator 

which are larger than t, that is, 

where 

For rightcensored data, we want to construct our estimator in a sim- 
ilar manner by redefining the scoring function 4. Let Z, Tz, . . ., Tn 
be the observed times on study. If T, is a death time, we know with 
certainty whether T, is smaller or greater than t. If T, is a censored 
time greater than or equal to t, then, we know that the true death 
time must be larger than t because it is larger than T, for this indi- 
vidual. For a censored observation less than t, we do not know if 
the corresponding death time is greater than t because it could fall 
between T, and t. If we knew S(t), we could estimate the probability 
of this censored observation being larger than t by S(t)/S(T,). Using 
these revised scores, we will call an estimator i ( t )  a self-consistent 
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estimator of S if 1 @ 

To find ( t )  from this formula one starts with any estimate of S and 
substitutes this in the right hand side of (4.2.7) to get an updated 
estimate of S. This new estimate of S ( t )  is, then, used in the next 
step to obtain a revised estimate. This procedure continues until 
convergence. Efron (1967) shows that the final estimate of S is exactly 
the Product-Limit estimator for t less than the largest observed time, 

4. Both the Product-Limit estimator and the Nelson-Aalen estimator can 
be derived using the theory of counting processes. Details of 
construction can be found in Andersen et al. (1993) or Fleming and 
Harrington (1991). An outline of this approach is found in section 
3.6. 

5 .  Under certain regularity conditions, one can show that the Nelson- 
Aalen estimator and the Product-Lit estimator are nonparametric 
maximum likelihood estimators. 

6.  Both the Product-Lit and Nelson-Aalen estimators of either the 
survival function or the cumulative hazard rate are consistent. The 
statistics are asymptotically equivalent. 

7 .  The Nelson-Aalen estimator of the cumulative hazard rate is the first 
term in a Taylor series expansion of minus the logarithm of the 
Product-Limit estimator. 

8.  Small-sample-size properties of the Product-Limit estimator have been 
studied by Guerts (1987) and Wellner (1985). Small sample size prop 
erties of the variance estimators for the Product-Lit estimator and 
the Nelson-Aalen estimator are found in Klein (1991). 

9.  Under suitable regularity conditions, both the Nelson-Aalen and 
Product-Limit estimators converge weakly to Gaussian processes. This 
fact means that for fixed t ,  the estimators have an approximate normal 
distribution. 

4.3 Pointwise Confidence Intervals for 
the Survival Function 

The Product-Limit estimator provides a summary estimate of the mortal- 
ity experience of a given population. The corresponding standard error 
provides some limited information about the precision of the estimate. 
In this section, we shall use these estimators to provide confidence 
intervals for the survival function at a fixed time to. The intervals are 
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constructed to assure, with a given confidence level 1 - a that the true 
value of the survival function, at a predetermined time to, falls in the  
interval we shall construct. 

Before introducing the confidence intervals, we need some additional 
notation. Let a i ( t )  = P[?( t ) l /Sz( t ) .  Note that ui( t )  is the sum in 
Greenwood's formula (4.2.2). 

The most commonly used 100 x (1 - a)% confidence interval for 
the survival function at time to, termed the linear confidence interval, is 
defined by 

Here Z1-a/2 is the 1 - a / 2  percentile of a standard normal distribution. 
This is the confidence interval routinely constructed by most statistical 
packages. 

Better confidence intervals can be constructed by first transforming 
3 (to). These improved estimators were proposed by Borgan and Liesterl 
(1990). The first transformation suggested is a log transformation (see  
Theoretical Note 4) of the cumulative hazard rate. The 100 X (1 - a)% 
log-transformed confidence interval for the survival function at b is 
given by 

[?  (t0)'le, $(to)'l, where 8 = exp 

Note that this internal is not symmetric about the estimate of the survival 
function. 

The second transformation is an arcsine-square root transformation 
of the survival function which yields the following 100 X (1 - a)% 
confidence interval for the survival function: 

EXAMPLE 4;2 (continued) To illustrate these confidence intervals, we shall use the 
estimated disease-free survival function and cumulative hazard rate for 
ALL patients in Table 4.3. Note that at 1 year (365 days) the estimated 
survival function S(365) was found to be 0.5492 with an estimated 
variance of 0.0812~. Thus, ui(365) = (0.0812/0.5492)2 = 0.147g2. A 
95% linear confidence interval for the survival function at year one is 
0.5492 +- 1.96 X 0.1479 X 0.5492 = (0.3900, 0.7084). 
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To find the 95% log-transformed confidence interval for the one year 

1.96x0.1479] = 0.6165, SO that the survival function, we find that 0 = expi- 
interval is (0.54921' /~.~~~~,  0.5492~.~ '~~) = (0.3783, 0.691 1). 

The 95% arcsine-square root transformation confidence interval for 
the one year survival function is 

Table 4.4 shows the three possible 95% confidence intervals that can 
be constructed for the disease-free survival function for each of the 
three risk groups presented in Figures 4.2. We can see that AML high 
risk patients have a smaller chance of surviving beyond one year than 
the AML low risk patients. 

TABLE 4.4 
95% Confidence Intervals for Disease-Free Sunrival One Year After Transplant I 

W AML low risk AMZ high risk 

.? (365) 0.5492 0.7778 0.3778 

[ .? (36511 0.08122 0.05662 0.07232 

US (365) 0.1479 0.0728 0.1914 
Linear confidence interval 0.3900, 0.7084 0.6669, 0.8887 0.2361, 0.5195 

for S(365) 
Log-transformed confidence interval 0.3783, 0.6911 0.6419, 0.8672 0.2391, 0.5158 - 

for S(365) 
Arcsine square-root confidence interval 0.3903, 0.7032 0.6583, 0.8776 0.2433, 0.5221 

for S(365) 

Practica 1 Notes 

1. Bie et al. (1987) have presented 100(1 - a)% pointwise confidence 
intervals for the cumulative hazard function. Similar to the cad-  
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dence intervals constructed for the survival function, there are three 
possible intervals, which correspond to the three transformations of 
the cumulative hazard function. The intervals are 

Linear 

Log-Transformed 

['(t0)/4, 4 ~ ( t O l  where 4 = exp[ Zl-a/2~H(to) I.  (4.3.5) 
ii<to) 

Arcsine-Square Root Transformed 

Using the data in Example 4.2, we have the following 95% con- 
fidence intervals for the cumulative hazard rate at one year after 
transplant: 

W AMZ lau risk A M  b i ~ b  tfrk 

Linear confidence interval 0.3034,0.8713 0.1076, 0.3898 0.5875, 1.3221 
for Ha651 

Log-transformed confidence interval 0.3622, 0.9524 0.1410, 0.4385 0.6499, 1.4028 
for H(365) 

Arcsin square mt confidence interval 0.3451, 0.9217 0.1293, 0.4136 0.6366, 1.3850 
for H065) 

2. Borgan and Liestpll(1990) have shown that both the log-transformed 
and arcsine-square root transformed confidence intervals for S per- 
form better than the usual linear confidence interval. Both give about 
the correct coverage probability for a 95% interval for samples as 
small as 25 with a s  much as 50% censoring except in the extreme 
right-hand tail where there will be little data. The sample size needed 
for the standard linear confidence interval to have the correct cover- 
age probability is much larger. For very small samples, the arcsine- 
square root interval tends to be a bit conservative in that the actual 
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coverage probability is a bit greater than (1 - a ) ,  whereas, for the 
log-transformed interval, the coverage probability is a bit smaller 
than (1 - a ) .  The coverage probability for the linear interval in these 
cases is much smaller than (1 - a).  Similar observations were made 
by Bie et al. (1987) for the corresponding interval estimates of the 
cumulative hazard rate. For very large samples, the three methods 
are equivalent. 

3. Alternative confidence intervals for the cumulative hazard rate can 
be found by taking (minus) the natural logarithm of the confidence 
intervals constructed for the survival function. Similarly the expo. 
nential of (minus) the confidence limits for the cumulative hazard 
yields a confidence interval for the survival function. 

4. Both the log-transformed and arcsine-square root transformed con- 
fidence intervals, unlike the linear interval, are not symmetric about 
the point estimator of the survival function or cumulative hazard rate. 
This is appropriate for small samples where the point estimators are 
biased and the distribution of the estimators is skewed. 

5. The confidence intervals constructed in this section are valid only 
at a single point to. A common incorrect use of these intervals is to 
plot them for all values of t and interpret the curves obtained as 
a confidence band, that is, these curves are interpreted as  having, 
for example, 95% confidence that the entire survival function lies 
within the band. The bands obtained this way are too narrow to 
make this inference. The proper bands are discussed in the following 
section. 

6. Confidence intervals for the survival function are available in the 
S-Plus routine surv.fit. The intervals can be constructed using either 
the linear or the log-transformed method. 

Theoretical Notes 

1. Construction of the linear confidence intervals follows directly from 
the asymptotic normality of the Product-Limit or Nelson-Aalen esti- 
mators. 

2. The log-transformed interval was first suggested by Kalbfleisch and 
prentic; (1980). 

3. The arcsine-square root transformed interval was first suggested by 
Nair (1984). 

4. The "logn-transformed confidence interval is based on first finding 
a confidence interval for the log of the cumulative hazard func- 
tion. This is sometimes called a log-log transformed interval since 
the cumulative hazard function is the negative log of the survivd 
function. 

4.4 Confidence Bands for the 
Survival Function 

In section 4.3, pointwise confidence intervals for the survival function 
were presented. These intervals are valid for a single k e d  time at 
which the inference is to be made. In some applications it is of interest 
to h d  upper and lower confidence bands which guarantee, with a 
given confidence level, that the survival function falls within the band 
for all t in some interval, that is, we wish to find two random functions 
L(t) and U(t), so that 1 -a = PrE(t) 5 S(t) 5 U(t), for all tL 5 t I. tell. 
We call such a [ a t ) ,  U(t)l a (1 - a )  X 10M confidence band for S(t) .  

We shall present two approaches to constructing confidence bands 
for SO). The first approach, originally suggested by Nair (1984), pro- 
vides confidence bounds which are proportional to the pointwise con- 
fidence intervals discussed in section 4.3. These bands are called the 
equal probability or EP bands. To implement these bands we pick 
tL < tu so that tL is greater than or equal to the smallest observed event 
time and tU is less than or equal to the largest observed event time. 
To construct confidence bands for S(t), based on a sample of size n, 
d e h e  

and 

The construction of the EP confidence bands requires that 0 < aL < 
au < 1. 

To construct a 100(1- a)% confidence band for S(t) over the range 
itL, tU], we, first, h d  a confidence coefficient, cU(aL, a,) from Table C.3 
in Appendix C. As in the case of 100(1- a)% pointwise confidence in- 
tervals at a k e d  time, there are three possible forms for the confidence 
bands. The three bands are the linear bands, the log-transformed bands, 
and the arcsine-square root transformed bands expressed as follows: 

Linear 

where 8 = exp [ c ~ ( ~ L ,  M au)uS(t)] 3 ( t ) ~  



Arcsine-Square Root Transformed: 

sin '{rnax[O, arcsin(? (t)'/') - 0.5ca(aL, au)us( t ) [ i  ( t ) / ( l  - i (t))1'/~1) 

5 S(t) 5 (4.4.4) 

sin ' {min [:, arcsinii (t)'/') + 0.5c.(a~,  au)us( t ) [ i  ( t ) / ( ~  - i (t))ll/' . I I 
EXAMPLE 4.2 (continued) To illustrate these confidence intervals, we shall use the 

estimated disease-free survival function for ALL patients in Table 4.3. 
We construct confidence bands for S(t)  over the range 100 5 t 5 600 
days. Here, we have uz(100) = uz(86) = 0.04982/0.89472 = 0.0031 
and ~ ~ ( 6 0 0 )  = ui(526) = 0.08092/0.41192 = 0.0386. From 4.4.1 we 
find aL = 38(0.0031)/[1 + 38(0.0031)1 = 0.1 and au = 38(0.0386)/[1+ 
38(0.0386)1 = 0.6. For a 95% confidence band, we find, from Table C.3 
in Appendix C, that %,(O .I, 0.6) = 2.8826. 

Table 4.5 shows the three 95% confidence bands for the survival 
function based on the EP method. Note that the calculation of the 
entries in this table is identical to the calculations performed in section 
4.3 for the 95% pointwise confidence intervals at day 365 with the 
exception that the Z coefficient, 1.96 is replaced by the appropriate 
value from Table C.3 of Appendix C. 

An alternate set of confidence bounds has been suggested by Hall 
and Wellner (1980). These bands are not proportional to the pointwise 
confidence bounds. For these bounds, a lower limit, tL, of zero is al- 
lowed. To construct a 100 X (1 - a)O/o confidence band for S(t) over the 
region [tL, tUl, we find the appropriate confidence coefficient $(&, aU), 
from Table C.4 of Appendix C. Again, there are three possible forms for 
the confidence bands. These are the linear bands, the log-transformed 
bands and the arcsine-transformed bands. These 100 X (1 - a)% cod-  
dence bands are expressed as 
Linear: 

Log-Transformed: 

ka(aL, aU>[l + nuz(t)l 
where 8 = exp 
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TABLE 4.5 
95% EP ConJkhzce Bands for the &ease Free Sunrival Function 

ti 2 (ti) ,/m (ti)] u: Linear Log-Transformed Ansine-Transformed 

TABLE 4.6 
95% Hall- W e l l w  ConJkhzce Bands for the &ease-Free Sum'ual Function 

Linear 

0.6804 1.0000 
0.6541 1.0000 
0.6277 1.0000 
0.6015 1.0000 
0.5752 1.0000 
0.5225 0.9511 
0.4%1 0.9249 
0.4699 0.8985 
0.4435 0.8723 
0.4172 0.8460 
0.3894 0.8188 
0.3616 0.7918 
0.3337 0.7647 
0.3057 0.7377 
o.ms 0.7107 
0.2500 0.6836 
0.2221 0.6567 
0.1942 0.6296 
0.1942 0.6296 

Log-Transformed 

0.3837 0.9872 
0.4445 0.9757 
0.4696 0.%17 
0.4771 0.9455 
0.4747 0.9278 
0.4532 0.8888 
0.4377 0.8682 
0.4205 0.8468 
0.4018 0.8251 
0.3822 0.8029 
0.3606 0.796 
0.3383 0.7561 
0.31% 0.7324 
0.2925 0.7087 
0.2694 0.6849 
0.2462 0.6609 
0.2230 0.6372 
0.2000 0.6133 
0.2000 0.6133 

Am'ne-square root 
nnnsformed 

0.6050 1.0000 
0.5%6 0.9971 
0.5824 0.9869 
0.5652 0.9723 
0.5459 0.9550 
O.%% 0.9152 
0.4810 0.8939 
0.4582 0.8718 
0.4349 0.8492 
0.4114 0.8262 

0.8021 
0.3612 0386P 0.7779 
0.3359 0.7535 
0.3104 0.7290 
0.2851 0.7046 
0.2599 0.6799 
0.2347 0.6555 
0.2097 0.6310 
0.2097 0.6310 
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Arcsine-Square Root Transformation: 7 

sinz{max[O, arcsin(i (t)'IZ) - 0.5 ka(a~9 a ~ ) [ l  n l / z  + nu%t)][(i ( t ) / ( l  - i (t))~l/zl} 

r S(t) r (4.4.7) 

ka(aL, aU>{l + nui( t ) )  
sir? {min [:, arcsin{? (0'") + 0.5 n l / z  [ ? ( t ) / ( l  - 5 (t))ll/z . 11 

EXAMPLE 4.2 (continued) To illustrate the Hall-Weher confidence bands, again, 
we consider the disease-free survival estimates for S(t) obtained from 
the 38 ALL patients in Table 4.3. As for the EP bands, we construct 95% 

Figure 4.5 Comparison of 95% pointwise confidence interval, fl con* 
band and Hall-Welllner confidence band for the diseasefree sunn'ualfirnclion 
based on the untransformed sunrival functions for patients. ,Estimated 
SumuaI(-1; Pointwiseconfictence interval(---); EP conjiahce bad 
(-); Hall- Wellner band (--I 
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confidence bands for S(t) in the range 100 5 t 5 600. The required 
confidence coefficient, from Table C.4 of Appendix C, is kos(O.l, 0.6) = 
1.3211. Table 4.6 shows the Hall-Wellner 95% confidence bands based 
on the three transformations. 

Figures 4.5-4.7 show the 95% confidence bands for the disease-free 
survival function based on either the EP or Hall-Wellner bands for the 
three transformations. Also included are the 95% pointwise confidence 
intervals obtained from the results of section 4.3. These figures show 
that the Hall-Weher bands are wider for small t and shorter for large 
t. Both bands are wider than the curves one obtains by using pointwise 
confidence intervals. 

Days Pmt Tmnqlrnt 

Figure 4.6 Comparison of 95%pointwise confidence interval, EP confidence 
band and Hal l -Weh  confidence band for the disease free survival func- 
tion found using the log transformation for W patients. Esrimated Survival 
(-1; Poinme confidence intern1 (---I; EP confidence band (-1; 
Hall- Wellner band (--I 
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Figure 4.7 Compa&on of 95%pointwise confidence interval, EP con@dme 
band and Hall-Wellner confidence band for the disease free survivalfunction 
found using the arc sine transformation for ALL patients. Estimated Survioal 

); Pointwise confidence interval (---I; EP confidence band (-4; (- 
Hall- We l lw  band (-- 1 

Figure 4.8 shows the 95% EP arcsine-square root transformed cod- 
dence bands for the three disease categories over the range of 100 to 

Practica 1 Notes 

1. Confidence bands for the cumulative hazard rate can also be con- 
structed by either the EP or Hall-Weher method. To construct these 
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Figure 4.8 EP confidence bands for the diseasefree survivalfunction based 
on the arc sine transformation for bone mamow transplantpatients. AML-Low 
risk (-); AML-High &k (-); ALL (- - -) 

bands, we first compute 

and 

The EP confidence bands, which are valid over the range tL 5 t 5 
t ~ ,  with 0 < aL < aU < 1, are found by substituting for Z1-=12 in 
(4.3.4)-(4.3.6) the appropriate confidence coefficient c,(aL, a") from 
Table C.3 of Appendix C. 
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Figure 4.9 Comparison of 95%poinWe conJidence interval, EP con-ce 
band and HalLWeNner conJidence band f w  the cumulatioe hazardfincrion 
found using the arc sine tmnsformation for ALL patients. Estimated Sum'val 
(-1; Pointwise conjidence interval (---I; EP conJidence band (-1; 
Hall- Wellner band (--I 

The Hall-Wellner confidence bands for the cumulative hazard rate 
are found by substituting b"("'au~~n"2"'" for Z l - a / 2 ~ H ( t )  in (4.3.4h 
(4.3.6). 

Figure 4.9 shows the 95% arcsine-square root transformed EP and 
Hall-Wellner confidence bands and the 95% pointwise confidence 
interval for the cumulative hazard rate of the W patients over the 
interval 100 to 600 days. 

2. For the EP bounds for the survival function, Borgan and Liest01 (11990) 
have shown that the linear confidence band given by formula (4.4.2) 
performs very poorly when the sample size is small (< 200). The 
coverage probability for this bound is considerably smaller than the 
target level. For both the log- and arcsine-square root transformed 
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bands, the coverage probability is approximately correct for smaller 
sample sizes. Both seem to give reasonable results for samples with 
as few as 20 observed events. The arcsine-square root transformed 
band seems to perform a bit better than the log-transformed interval 
and is recommended. Similar properties hold for the confidence 
bands for the cumulative hazard rate as discussed in Bie et al. (1987). 

3. For the Hall-Weher bounds, Borgan and Liest01 (1990) show that 
all three bands for S(t) perform reasonably well for samples with as 
few as 20 observed events. For H(t), Bie et al. (1987) show that the 
performance of the linear bands is poor for small samples, whereas 
the two transformed bands perform well for relatively small samples. 

4. For the confidence bands for H(t),  linear EP confidence bands tend 
to have an upper band which is a bit too low, whereas the log- 
transformed lower band is too high for small t and the upper band 
too low for large t .  For the EP arcsine-square root band, the majority 
of the errors occur when the upper boundary is too low. For the HW 
bands, the majority of the errors occur in the midrange of t .  

I :Theoretical Notes 
1. These bounds are based on weak convergence of the Product-Limit 

estimator or the Nelson-Aden estimator to a mean zero Gaussian 
process. The EP bounds are based on the transformation q(x )  = 
[ d l  - X)I-'/~ of the standardized estimator, whereas for the Hall- 
Wellner bounds, no transformation of this process is made. 

2. The critical values found in Table C.3 of Appendix C are the up IF ath fractile of the random variable U = sup(1 W " ( x ) [ d l -  xll- 1 
a, 5 x 5 a"), where W" is a standard Brownian bridge (see Nair, 
1984). Miller and Siegmund (1982) show that, for large d, Pr[U 2 

d) 4+(d)/d++(&d-d-') log[f iI ,  where 40 is the standard 
normal density' function. 

3. The critical values for the Hall-Wellner bands (Table C.4 of Appendix 
C) are the upper uth fractile of a Brownian bridge, computed from 
results in Chung (1986). 

4.5 Point and Interval Estimates of the Mean 
and ~ e d i a n  Survival Time 

The Product-Limit estimator provides an estimator of the survival func- 
tion S(t). In section 2.4, we saw that other summary measures of an 
individual's survival experience, such as the mean or median time to 
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the event, are functions of the survival function. Nonparametric esti- 
mates of these quantities can be obtained in a straightforward manne, 
by substituting the Product-Limit estimator for the unknown survival 
function in the appropriate formula. 

In section 2.4, it was shown that the mean time to the event /.L is given 
by p = Som ~ ( t ) d t .  A natural estimator of p is obtained by substituting 
$ ( t )  for S(t) in this expression. This estimator is appropriate only when 
the largest observation corresponds to a death because in other cases, 
the Product-Limit estimator is not defined beyond the largest 0bse~2. 
tion. Several solutions to this problem are available. ~irst,-one can 
Efron's tail correction to the Product-Limit estimator (see Practical Note 
2 of section 4.2) which changes the largest observed time to a death 
if it was a censored observation. An estimate of the mean restricted 
to the interval 0 to C, is made. A second solution is to estimate the 
mean restricted to some preassigned interval [O, TI, where T is chosen by 
the investigator to be the longest possible time to which anyone could 
survive. For either case, the estimated mean restricted to the interval 
[o, TI, with T either the longest observed time or preassigned by the 
investigator, is given by 

The variance of this estimator is 

A 100(1- a)% confidence interval for the mean is expressed by 

EXAMPLE 4.1 (continued) Consider estimating the mean survival time for the 6-MP 
patients based on the Product-Limit estimator presented in Table 4.1. 
Because the largest observation is censored, an estimate of the mean 
restricted to 35 weeks will be constructed. The following integrals are 
needed as intermediate calculations in estimating the variance of our es- 
timate and serve as a convenient bookkeeping method for constructing 
the estimate of the mean: 
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Thus, fi35 = 23.286 weeks, and 

The standard error of the estimated mean time to relapse is 7.993"' = 
2.827 weeks. 

EXAMPLE 4.2 (continued) Using Efron's tail correction, the estimated mean diiease- 
free survival time for ALL patients is bwl = 899.28 days with a standard 
error of 150.34 days. A 95% confidence interval for the mean disease- 
free survival time for ALL patients is 899.28 ? 1.96(150.34) = (606.61, 
1193.95) days. Similar calculations for the AML low risk group yields 

estimated mean disease-free survival time of &569 = 1548.84 days 
with a standard error of 150.62 days (95% confidence interval: (1253.62, 
1844.07) days.) For the AML high- risk group, = 792.31 days with a 
standard error of 158.25 days (95% confidence interval: (482.15, 1102.5) 
days). 

Comparison of the duration of the mean disease-free survival time 
for the three disease categories is complicated by the differences in the 
largest study times between the groups. To make comparisons which 
adjust for these differences, the estimated mean, restricted to the interval 
0 to 2081 days, is computed for each group. Here, we fmd the following 
estimates: 
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- 
--... 

Mean Resticted to 95% Confidence 
Disease Group 2081 days Standard Error Interval - 

ALL 899.3 days 150.3 days 606.61193.9 days 
AML low risk 1315.2 days 118.8 days 1082.4-1548.0 by, 
AML high risk 655.67 days 122.9 days 414.8-896.5 Qys 

Again, these results suggest that AML high risk patients have a lower 
survival rate than AML low risk patients, whereas ALL patients may be 
comparable with either of the two AML risk groups. 

The product-Limit estimator can also be used to provide estimates of 
quantiles of the distribution of the time-to-event distribution. Recall that 
the pth quantile of a random variable X with survival function S(x), is 
defined by xp = inf{t : S(t) 5 1 - p}, that is, xp is the smallest time 
at which the survival function is less than or equal to 1 - p. When 
p = 1/2, xp is the median time to the event of interest. To estimate xp, 
we find the smallest time jib for which the Product-Limit estimator is less 
than or equal to 1 - p. That is, $ = inf{t : ? (t) 5 1 - P}. In practice, 
the standard error of jcp is difficult to compute because it requires an 
estimate of the density function of X at 2p (see Practical Note 3 below). 
Brookrneyer and Crowley (1982a) have constructed confidence intervals 
for $, based on a modification of the confidence interval construction 
for S(t) discussed in section 4.3, which do not require estimating the 
density function. A 100(1 - a)% confidence interval for xp, based on 
the linear confidence interval, is the set of all time points t which satisfy 
the following condition: 

The 100(1- a)% confidence interval for xp based on the log-transformed 
interval is the set of all points t which satisfy the condition: 

The 100(1- a)% confidence interval for xp based on the arcsine-square 
root transformation is given by 

EXAMPLE 4.2 (continued) We shall estimate the median dis~ase-free survival time 
for the ALL group. From Table 4.3 we see that S(383) = 0.5217 > 0.5 

TABLE 4.7 
Construction of a 95% Confidence Interoal for the Median 

and S(418) = 0.4943 5 0.5, so jg.5 = 418 days. To construct 95% 
'confidence intervals for the median, we complete Table 4.7. To illustrate 
the calculations which enter into construction of this Table, consider 
the first row. Here the entry in the fourth column is the middle term in 
(4.5.41, namely, (0.9737 - 0.5)/0.0260 = 18.242. The entry in the fifth 
column is the middle term in (4.5.51, namely, 

Linear Log Arcsine 

ti ?(ti) (4.5.4) (4.5.5) (4.5.6) 

and the entry in the last column is the middle term in (4.5.6), namely, 
2[arcsine( Jm) - arcsine(JS)1[0.9737(1 - 0.973n1'/~/0.0260 = 
7.674. To find the linear 95% confidence interval, we find all those 
values of t, which have a value, in column four between -1.96 and 
1.96. Thus the 95% linear confidence interval for 36.5  is 36.0~ > 194 
days. The upper limit of this interval is undetermined because (4.5.4) 

1 
55 
74 
86 
104 
107 
109 
110 
122 
129 
172 
192 
194 
230 
276 
332 
383 
418 
468 
487 
526 
609 
662 
2081 

0.9737 0.0260 18.242 3.258 7.674 
0.9474 0.0362 12.350 3.607 6.829 
0.9211 0.0437 9.625 3.691 6.172 
0.8947 0.0498 7.929 3.657 5.609 
0.8684 0.0548 6.719 3.557 5.107 
0.8421 0.0592 5.783 3.412 4.645 
0.8158 0.0629 5.022 3.236 4.214 
0.7895 0.0661 4.377 3.036 3.- 
0.7368 0.0714 3.316 2.582 3.042 
0.7105 0.0736 2.862 2.334 2.679 
0.6842 0.0754 2.443 2.074 2.326 
0.6579 0.0770 2.052 1.804 1.981 
0.6316 0.0783 1.681 1.524 1.642 
0.6041 0.0795 1.309 1.220 1.290 
0.5767 0.0805 0.952 0.909 0.945 
0.5492 0.0812 0.606 0.590 0.604 
0.5217 0.0817 0.266 0.263 0.266 
0.4943 0.0819 -0.070 -0.070 -0.070 
0.4668 0.0818 -0.406 -0.411 -0.405 
0.4394 0.0815 -0.744 -0.759 -0.741 
0.4119 0.0809 -1.090 -1.114 -1.078 
0.3825 0.0803 -1.464 -1.497 -1.437 
0.3531 0.0793 -1.853 -1.886 -1.798 
0.3531 0.0793 -1.853 -1.886 -1.798 
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never drops below - 1.96 due to the heavy censoring. Based on the log 
transformation, a 95% confidence interval for xp is 36.05 > 192 days. ~ h ,  
interval based on the arcsine-transformed interval is 36 05 > 194 days, 

Similar calculations for the two groups of AML patients show that 
the median disease-free survival time, for the low risk group, is 2204 
days and, for the high risk group, is 183 days. For the low risk group, 
the lower end points of the 95% confidence intervals for the median 
disease-free survival time are 704 days, based on the linear approxi- 
mation and 641 days based on either the log or arcsine transformation, 
For the high risk group, the 95% confidence intervals for the median 
are (115,363) days for the linear and arcsine-square root tralEf0rined 
intervals and (113.363). based on the log-transformed interval. 

Practical Notes 

1. If there is no censoring, then, the estimator of the mean time to death 
reduces to the sample mean. In addition, if there are no ties, then 
the estimated variance of the mean estimate reduces to the sample 
variance divided by n. 

2. Alternate estimators of the mean survival time can be found by find- 
ing the area under one of the tail-corrected Product-Limit estimators 
discussed in Practical Note 2 of section 4.2. 

3. An estimator of the large sample variance of the estimator of the pth 
i'[S(x )I percentile is given by fi jcpl = -&, where ](xp) is an estimate of 

the density function at the pth percentile. A crude estimate of J( t )  
is .?(I-6)-S(t+b ,, 1 based on a uniform kernel density estimate. Here, b 
is some small number. 

4.  Most major statistical packages provide an estimate of the mean 
lifetime. When the largest observation is censored, one must carefully 
examine the range over which the mean is computed. 

Theoretical Notes 

1. The asymptotic properties of the estimators of the mean and pth 
quantile follow directly from the weak convergence of the Product- 
Limit estimator. Details can be found in Andersen et al. (1993). 

2. Details of constructing the confidence interval for median survival 
are found in Brookmeyer and Crowley (1982a) who also present a 
Monte Carlo study of the performance of the linear interval. 

4.6 Estinlators of the Survival Function for 
Left-Truncated and Right-Censored Data 

The estimators and confidence intervals presented in sections 4.2-4.5 
were based on right-censored samples. In this section, we shall show 
how these statistics can be modified to handle left-truncated and right- 
censored data. Here, we have associated, with the jth individual, a 
random age Lj at which he/she enters the study and a time T, at which 
he/she either dies or is censored. As in the case of right-censored data, 
define ti < t.L < . < tD as the distinct death times and let di be the 
number of individuals who experience the event of interest at time ti. 
The remaining quantity needed to compute the statistics in the previous 
sections is the number of individuals who are at risk of experiencing 
the event of interest at time ti, namely x. For rightcensored data, this 
quantity was the number of individuals on study at time 0 with a study 
time of at least ti. For left-truncated data, we redefine as the number 
of individuals who entered the study prior to time ti and who have a 
study time of at least ti, that is, x is the number of individuals with 
Lj < ti 5 Tj .  

Using Yf as redefined for left-truncated data, all of the estimation 
procedures defined in sections 4 . 2 4 . 4  are now applicable. However, 
one must take care in interpreting these statistics. For example, the 
Product-Limit estimator of the survival function at a time t  is now an 
estimator of the probability of survival beyond t ,  conditional on survival 
to the smallest of the entry times L, PYK > t  1 X 2 Ll = S(t)/S(L). 
Similarly the Nelson-Aalen statistic estimates the integral of the hazard 
rate over the interval L to t .  Note that the slope of the Nelson-Aden 
estimator still provides an estimator of the unconditional hazard rate. 

Some care in directly applying these estimators is needed. For left- 
truncated data, it is possible for the number at risk to be quite small 
for small values of t,. If, for some 4,  x and d, are equal, then, the 
Product-Limit estimator will be zero for all t  beyond this point, even 
though we are observing survivors and deaths beyond this point. In 
such cases, it is common to estimate the survival function conditional 
on survival to a time where this will not happen by considering only 
those death times beyond this point. This is illustrated in the following 
example. 

EXAMPLE 4.3 To illustrate how the statistics developed in the previous sections can 
be applied to left-truncated data, consider the Channing House data 
described in section 1.16. The data is found in Table D.5 of Appendix D. 
Here the truncation times are the ages, in months, at which individuals 
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Figure 4-10 Number at n3k as a function of age for the 97 m a k  (-) 
and the365 femak (-) in the Channing house data set 

entered the community. We shall focus on estimating the conditional 
survival function. 

Figure 4.10 shows the number of individuals at risk as a function of 
the age at which individuals die for both males and females. Note that 
the number at risk initially increases as more individuals enter into the 
study cohort and that this number decreases for later ages as individuals 
die or are censored. 

Consider the data on males. Here the risk set is empty until 751 
months when one individual enters the risk set. At 759 months, a second 
individual enters the risk set. These two individuals die at 777 and 781 
months. A thirdhdividual enters the risk set at 782 months. Computing 
the Product-Limit estimator of S(t) directly by (4.2.1) based on this 
data would yield an estimate of i ( t )  = 1 for t < 77'7, i ( t )  = 112 
for 777 5 t < 781, and i ( t )  = 0 for t r 781. This estimate has little 

meaning since the majority of the males in the study clearly survive 
beyond 781 months. 

Rather than estimating the unconditional survival function, we esti- 
mate the conditional probability of surviving beyond age t ,  given sur- 
vival to age a. We estimate S,(t) = Pr[X > t I X 2 a1 by considering 
only those deaths that occur after age a, that is, 

Similarly for Greenwood's formula (4.2.2) or for the Nelson-Aden esti- 
mator (4.2.31, only deaths beyond a are considered. 

Figure 4.11 shows the estimated probability of surviving beyond 
age t ,  given survival to 68 or 80 years for both males and females. 

Figure 4.1 1 EsCimuted conditionalsurvival functions for Channing house res- 
idents. 68 year old f m a k  (-); 80year old f m a k  (-); 68year old 
males (---); 80 year old males (--). 
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As in the unconditional Product-Limit estimator, the estimates are corn- 
puted only over the range where I: > O. These estimates could be Summary Curves for Competing Risks 
extended beyond this time by the methods discussed in Practical Note 3 
of section 4.2. - 

Practical Notes 

1. A key assumption needed for making an inference with left-truncated + 

data is the notion of 'independent truncation', that is, the Product. 
Limit estimator is a maximum likelihood estimator of the survival 
function if i 

Theoretics I Note 

the hazard rate of X. Tsai (1990) provides a formal test of this 
hypothesis which is valid under independent censoring. See Kei- 
ding (1992) for further discussion of this point and further ex- 
amples. 

2. When the data is left truncated and right censored, the Product-Limit 
estimator may have a relatively large variance for small t ,  where the 
risk sets are small, and also for large t .  This early instability in the 
point estimator of the survival function may propagate throughout 
the entire curve. Lai and Ying (1991) suggest a solution to this prob 
lem by a slight modification of the Product-Limit estimators where 
deaths are ignored when the risk set is small. Their estimator is given 
by 

where I is the indicator of the set A, n is the sample size, and 
c > 0,  0 < a < 1 are constants. This estimator is asymptotically 
equivalent to the usual product limit estimator. 

1. The derivation of the Product-Limit estimator and the  els son-Aden 
estimator follows directly from the theory of counting processes as 
presented in section 3.6 with the modified definition of Y( t )  as dis- 
cussed in Practical Note 2 of that section. 

The summary survival curves presented in sections 4.24.6 are based 
on the assumption that the event and censoring times are independent. 
In the case of competing risks data, as discussed in section 2.7, this 
untestable assumption may be suspect. In this section we present three 
techniques for summarizing competing risks data. 

To help in understanding the difference between the three estirna- 
tors and their interpretation, consider the bone marrow transplant study 
discussed in section 1.3. In earlier sections of this chapter we con- 
sidered estimation of the survival function for the time to treatment 
failure. Recall that treatment failure is defined as death in rernission 
or relapse, whichever comes first. Here death in remission and re- 
lapse are competing risks and we are interested in summary curves 
that tell us how the likelihood of these events develops over time. 
Occurrence of one of the events precludes occurrence of the other 
event. 

The first estimator which is commonly used is the complement of 
the Kaplan-Meier estimator. Here occurrences of the other event are 
treated as censored observations. For example, the estimated probability 
of relapsing before time t is one minus the Kaplan-Meier estimator 
of relapse obtained by treating occurrences of relapse as events and 
occurrences of death before relapse as censored observations. This 
estimator is an attempt to estimate the probability of relapsing before 
time t. It can be interpreted as the probability of relapse by time t 
if the risk of non-relapse death was removed. It is the probability of 
relapse in a hypothetical world where it is impossible for patients to 
die in remission. Reversing the roles of death in remission and relapse 
yields the treatment-related mortality or death in remission probability. 
Here this is an estimate of death in the world where relapse is not 
possible. These are rarely the probabilities of clinical interest and we 
cannot recommend the use of this estimator. 

The second estimator is the cumulative incidence function. This es- 
timator is constructed as follows. Let < < . < tK be the distinct 
times where one of the competing risks occurs. At time ti let Y, be 
the number of subjects at risk, ri be the number of subjects with an 
occurrence of the event of interest at this time, and d, be the number 
of subjects with an occurrence of any of the other events of interest at 
this time. Note that di + ri is the number of subjects with an occurrence 
of any one of the competing risks at this time. Independent random 
censoring due to a patient being lost to follow-up is not counted here 
as one of the competing risks and affects only the value of x. The 
cumulative incidence function is defined by 
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Note that for t 2 tl the cumulative incidence function is 

where &ti-) is the Kaplan-Meier estimator, evaluated at just before 
&, obtained by treating any one of the competing risks as an event, 
The cumulative incidence function estimates the probability that the 
event of interest occurs before time t and that it occurs before any of 
the competing causes of failure. It is the estimate of the probability 
of the event of interest in the real world where a subject may fail 
from any of the competing causes of failure. For example, the relapse 
cumulative incidence is the chance a patient will have relapsed in the 
interval 0 to t in the real world where they may die in remission. The 
treatment related mortality cumulative incidence is the chance of death 
before relapse in the real world. Note that the sum of the cumulative 
incidences for all the competing risks is 1 - S(t), which in the bone 
marrow transplant example is the complement of the treatment failure 
Kaplan-Meier estimate found in section 4.2. 

The variance of the cumulative incidence is estimated by 

Confidence pointwise (1 - a) 100% confidence intervals for the curnu- 
lative incidence are given by CI(t) 5 Z,-,/, V[c~(t)]l/~. 

The third probability used to summarize competing risks data is the 
conditional probability function for the competing risk. For a particular 
risk, K, let CIK(~) and CIKc(t) be the cumulative incidence functions for 
risk K and for all other risks lumped together, respectively. Then the 
conditional probability function is defined by 

The variance of this statistic is estimated by 
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The conditional probability is an estimate of the conditional probabil- 
ity of event K's occurring by t given that none of the other causes 
have occurred by t. In the bone marrow transplantation example the 
conditional probability of relapse is the probability of relapsing before 
time t given the patient is not dead from other causes prior to t. It is 
the probability of relapsing among survivors who have not died from 
non-relapse-related toxicities. 

To understand these probabilities better, consider a hypothetical bone 
marrow transplant experiment involving 100 patients. Suppose that 
there is no independent censoring and at one year after transplant 10 
patients have relapsed and 30 patients have died in remission. When 
there is no censoring the cumulative incidence reduces to the cumu- 
lative number of events of the given type divided by n so the relapse 
cumulative incidence is 10/100 and the death in remission cumulative 
incidence is 30/100. The death in remission incidence is clearly inter- 
preted as the proportion of patients who died in complete remission 

TABLE 4.8 
Estimates of Rehpse and Death in Rentision (1IZM) for ALL Patients 
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prior to one year. The conditional probabilities estimates are 10/70 for 
relapse and 30/90 for death in remission. Here the death in remission 
probability is estimated by the number who die in remission divided 
by the number who could have died in remission which is the num- 
ber at risk at one year who have yet to relapse. The complement of 
the Kaplan-Meier estimate depends on the pattern of occurrences of 

deaths and relapses. If all deaths occur before the first relapse then 
the relapse probability is 10/70 while if all the relapses occurred be- 
fore the first death we get an estimate of 10/100. Any value between 
these two extremes is possible. Clearly this estimate has no meaningful 
interpretation. 

EXAMPLE 
- 

4.2 (continued) We consider the data on the 38 patients with ALL given 
a transplant and examine the three probabilities for relapse and for 
death in remission (TRM). Table 4.8 provides the estimates for the three 
probabilities. The estimated standard error for the relapse cumulative 
incidence at 1 year is 0.069 so an approximate 95% confidence interval 
for the probability of relapsing before death is 0.238 2 1.96 X 0.069 = 

Figure 4.1 2 Comparison estimated probability of relapse for ALL patients 
~ i m ~ l e m e n t  ofKaplan-Meier (-1, cumulative incidence (-. --), conditional 
probability (- - -) 
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(0.103,0.373). The estimated conditional probability of relapse at 1 year 
was 0.302 with a standard error of 0.087. A 95% confidence interval 
for the conditional probability of relapse is 0.302 + 1.96 X 0.087 = 
(0.131,0.473). 

Figures 4.12 and 4.13 show the estimated probabilities for relapse 
and death in remission, respectively. Note that the conditional proba- 
bility curve changes value at the occurrence of either of the two com- 
peting risks. The probabilities have the characteristic property of the 
conditional probability estimate being the largest and the cumulative 
incidence estimate the smallest. 

It is important that summary curves for all the competing risks be 
presented since changes in the likelihood of one event cause changes 
in the probabilities for the other events. A nice summary curve is shown 
in Figure 4.14. Here we plot the relapse cumulative incidence and the 
sum of the relapse and death in remission cumulative incidences. The 
complement of the sum of the two cumulative incidences is the disease 
free survival probability found in section 4.2. At a given time the height 
of the first curve is the probability of relapsing, the distance between 

D m  Post 'Rensplant 

Figure 4.1 3 Comparison estimated probability of death in rmission for ALL 
patients. Complemerzt of Kaplan-Meier (-1, cumulative incidence (-. - .), 
conditionalprobability (- - -) 
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Theoretica 1 Notes 

Disease Free Survival Pmbability 

Death in Remianion PmbabiliB 

"7 I? Relapse P m w i  

Dcvg Past Transplant 

Figure 4.1 4 Interaction between the relapse and death in remission 

the first and second curves the probability of death in remission, and 
the distance of the second curve from 1.0 the disease free survival 
function. For example, at 400 days the relapse probability is 0.2654, 
the death in remission probability is 0.4982 - 0.2654 = 0.2328, and the 
disease-free survival function is 1 - 0.4982 = 0.5018. This graph allows 
us dynamically to access the relationship between the competing risks. 

1. Suppose we have two competing risks X and Y and let T = 
rnin(X, Y )  and I = 1 if X < Y, 0 if X > Y. The cause-specific 
hazard rate for X is 

h , ( t ) = H t ~ X < t + A t I m i n ( X , Y ) > t ] A t .  

The Kaplan-Meier estimator obtained by treating times with I = 
0 as censored observations provides a consistent estimator of 
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exp{- J,'hx(u) du}. This quantity has no interpretation as a proba- 
bility. 

2. The cumulative incidence estimator was first proposed by Kalbfleisch 
and Prentice (1980). The estimator can be derived using techniques 
described in Andersen et al. (1993) as a special case of a more 
general theory for product-limit estimators for the transitions of a 
non-homogeneous Markov process. 

3. Pepe and Mori (19931, Pepe et al. (1993), and Gooley et al. (1999) 
provide a nice discussion of these three estimates and present alter- 
native derivations of the variance estimates. 

1. A SAS macro to compute the cumulative incidence curves can be 
found on our web site. 

4.8 Exercises 

4.1 In section 1.11 we discussed a study of the effect of ploidy on the sur- 
vival of patients with cancer of the tongue. Using the data on aneuploid 
tumors found in Table 1.6. 

(a) Estimate the survival function at one (12 months) and five years (60 
months) after transplant. Find the standard errors for your estimates. 
Cb) Estimate the cyulative hazard rate, H(t), at 60 months. Find the 
standard error of H(t). Estimate S(60) by exd-&t)) and compare to 
your estimate in part a. 
(c) Find a 95% linear confidence interval for S(60). 

(dl Find a 95% log-transformed confidence interval for S(60). 
(el Find a 95% arcsine-square root confidence interval for S(60). 

(0 Using the log transformation find a 95% EP confidence band for 
the survival function over the range three years to six years (i.e., 36-72 
months). 
(g) Using the log transformation find a 95% Hall-Wellner confidence 
band for the survival function over the range three years to six years 
(i.e., 36-72 months). 
Q Estimate the mean survival time restricted to 400 months. Also pro- 
vide a 95% confidence interval for the restricted mean survival time. 
(i) Estimate the median time to death and find a 95% confidence interval 
for the median survival time based on a linear confidence interval. 
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4.2 Using the data reported in section 1.3, find the quantities Specified 

below for the AML low risk and AML high risk groups. Note that most 
of these quantities are worked out in detail in Example 4.2 and its 
continuations for the ALL group. 
(a) Estimate the survival functions and their standard errors for the AML 
low risk and AML high risk groups. 
(b) Estimate the cumulative hazard rates and their standard errors for 
the AML low risk and AML high risk groups. 
(c) provide a crude estimate of the hazard rates for each group based 
on the estimates obtained in (b). 
(d) Estimate the mean time to death and find 95% confidence intervals 
for the mean survival time for both the AML low risk and AML high risk 
groups. (Answers are given in section 4.5.) 
(e) Work out estimates of the median time to death and find 95% con- 
fidence intervals for the median survival time for both the AML low risk 
and AML high risk groups using the linear, log-transformed, and arcsine 
formulas. (Answers are given in section 4.5.) 
(f) Find 95% confidence intervals for the survival functions at 300 days 
post-transplant for both the AML low risk and AML high risk groups 
using the log- and arcsine-transformed formulas. 
(g) Find 95% EP confidence bands for the survival functions over the 
range 100-400 days post-transplant for both the AML low risk and 
AML high risk groups using the linear, log-transformed, and arcsine- 
transformed formulas. 
(h) Find 95% HW confidence bands for the survival functions over 
the range 100-400 days post-transplant for both the AML low risk and 
AML high risk groups using the linear, log-transformed, and arcsine- 
transformed formulas. 
(i) Based on the results above and those discussed in Example 4.2 and 
its continuations, how do the survival experiences of the ALL, AML low 
risk, and AML high risk groups compare? 

4.3 The following table contains data on the survival times of 25 patients 
with inoperative lung cancer entered on a study between November 1, 
1979, and December 23, 1979. Complete follow-up was obtained on d 
patients so that the exact date of death was known. The study had one 
interim analysis conducted on March 31, 1980, by which time only 13 
patients had died. 
(a) Estimate the survival function based on the available sample in- 
formation at the time of the interim analysis on 3/31/80. Provide the 
standard error of your estimate. 
(b) Use the Brown, Hollandar, and Kowar technique (Practical Note 
2 of section 4.1) to complete the right-hand tail of the ~roduct-limit 
estimate found in part a. 

Date of Days to 
Patient Diagnm Date of Death Days to death 3/31/80(Status) 

1 1/11/79 5/30/79 139 139(Dead) 
2 1/23/79 1/21/80 363 363(Dead) 
3 2/15/79 8/27/79 193 193(Dead) 
4 3/7/79 11/10/79 248 248(Dead) 
5 3/12/79 4/8/79 27 27(Dead) 
6 3/25/79 10/21/79 210 21NDead) 
7 4/4/79 8/16/79 134 134(Dead) 
8 4/30/79 11/19/79 203 203(Dead) 
9 5/16/79 5/9/81 724 320 (Alive) 

10 5/26/79 7/15/79 50 5NDead) 
11 5/30/79 10/22/80 511 306Wve) 
12 6/3/79 6/25/79 22 22(Dead) 
13 6/15/79 12/27/80 561 290(ALive) 
14 6/29/79 1/29/81 580 276(Alive) 
15 7/1/79 11/14/79 136 136(Dead) 
16 8/13/79 6/16/80 308 231(ALive) 
17 8/27/79 4/7/80 224 217Wve) 
18 9/15/79 1/9/81 482 198(Alive) 
19 9/27/79 4/5/80 191 186(Alive) 
20 10/11/79 3/3/80 144 144Dead) 
21 11/17/79 1/24/80 68 @Dead) 
22 11/21/79 10/4/81 683 131CAlive) 
23 12/1/79 8/13/80 256 l2 lWve)  
24 12/14/79 2/27/81 441 108Wve) 
25 12/23/79 4/2/80 101 99CAlive) 

- 

(c) Compute the estimate of the survival function and an estimate of its 
standard error using the complete follow-up on each patient. Compare 
this estimate to that found in part a. 

(dl Estimate the mean time to death restricted to 683 days based on 
the product-limit estimator found in part c. 

(e) Estimate the mean time to death by finding the area under the 
survival curve found in part c. Find the standard error of your estimate. 

(f) Compute the usual estimate of the time to death based on complete 
follow-up data by finding the arithmetic mean of the complete follow- 
up data. Find the standard error of this estimate in the usual way as 
the sample standard deviation divided by the square root of the sample 
size. Compare your answers to those obtained in part e. 

4.4 In section 1.4 the times to first exit site infection (in months) of patients 
with renal insufficiency was reported. In the study 43 patients had a 
surgically placed catheter (Group 1) and 76 patients had a percutaneous 
placement of their catheter (Group 0). 
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(a) For each group plot the estimated survival function. Which tech- 
nique seems better in delaying the time to infection? 
(b) Estimate the cumulative hazard rate for each group of patients. 
Provide a crude estimate of the hazard rate at 5 months after placement 
of the catheter in each group. 
(c) Find a 95% confidence interval for the mean time to first exit site 
infection restricted to 36 months for both groups. 

4.5 Using the survival times of 59 black females given a kidney transplant 
at the OSU transplant center discussed in section 1.7- 
(a) Estimate the distribution of the time to death, measured from trans 
plant, for black female kidney transplant patients. Provide the standard 
error of the estimated survival function. 
(b) Find a 95% confidence interval, based on the linear transformation, 
for the probability a black female will survive at least 12 months (365 
days) after transplantation. 
(c) Repeat b using the log-transformed confidence interval. 
(d) Repeat c using the arcsine-transformed confidence interval. Corn- 
pare the intervals found in parts c-e. 

4.6 In section 1.6 a study is described to evaluate a protocol change in 
disinfectant practice in a large midwestern university medical center. 
Control of infection is the primary concern for the 155 patients entered 
into the burn unit with varying degrees of burns. The outcome vari- 
able is the time until infection from admission to the unit. Censoring 
variables are discharge from the hospital without an infection or death 
without an infection. Eighty-four patients were in the group which had 
chlorhexidine as the disinfectant and 72 patients received the routine 
disinfectant povidone-iodine. 
(a) Estimate the survival (infection-free) functions and their standard 
errors for the chlorhexidine and povidone-iodine groups. 
(b) Estimate the cumulative hazard rates and their standard errors for 
the chlorhexidine and povidone-iodine groups. Plot these estimates. 
Does it appear that the two cumulative hazard rates are proportional to 
each other? 
(c) Provide estimates of the median time to infection and find 95% con- 
fidence intervals for the median time to infection for both the chlorhexi- 
dine and povidone-iodine groups using the linear, log-transformed, and 
arcsine formulas. 
(d) Find 95% confidence intervals for the survival (infection-free) 
functions at 10 days postadmission for both the chlorhexidine and 
povidone-iodine groups using the log transformed and arcsine trans- 
formed formulas. 
(e) Find 95% confidence bands for the infection-free functions over the 
range 8-20 days postinfection for both the chlorhexidine and povidone- 
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iodine groups using the linear, log transformed, and arcsine transformed 
formulas. 
(0 Find 95% HW confidence bands for the infection-free functions 
over the range 8-20 days postinfection for both the chlorhexidine and 
povidone-iodine. 
(g) Based on the results above, how does the infection experience of 
the chlorhexidine and povidone-iodine groups compare? 

4.7 Consider a hypothetical study of the mortality experience of diabetics. 
Thirty diabetic subjects are recruited at a clinic and followed until death 
or the end of the study. The subject's age at entry into the study and 
their age at the end of study or death are given in the table below. Of 
interest is estimating the survival curve for a 60- or for a 70-year-old 
diabetic. 
(a) Since the diabetics needed to survive long enough from birth until 
the study began, the data is left truncated. Construct a table showing 
the number of subjects at risk, Y, as a function of age. 
(b) Estimate the conditional survival function for the age of death of a 
diabetic patient who has survived to age 60. 
(c) Estimate the conditional survival function for the age of death of a 
diabetic patient who has survived to age 70. 
(d) Suppose an investigator incorrectly ignored the left truncation and 
simply treated the data as right censored. Repeat parts a-c. 

- 

4.8 Table 1.7 reports the results of a study on the survival times of patients 
admitted to a psychiatric hospital. In this data set patients were admitted 
to the hospital at a random age and followed until death or the end of 
the study. Let X be the patient's age at death. Note that the data we 

Entty Erft Death 
Age Age Indkator 

58 60 1 
58 63 1 
59 69 0 
60 62 1 
60 65 1 
61 72 0 
61 69 0 
62 73 0 
62 66 1 
62 65 1 
63 68 1 
63 74 0 
64 71 1 
66 68 1 
66 69 1 

Entry &it Death 
Age Age Indkator 

67 70 1 
67 77 1 
67 69 1 
68 72 1 
69 79 0 
69 72 1 
69 70 1 
70 76 0 
70 71 1 
70 78 0 
71 79 0 
72 76 1 
72 73 1 
73 80 0 
73 74 1 
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have on X is left truncated by the patient's age at entry into the hospital 
and right censored by the end of the study. 
(a) Plot the number at risk, K,  as a function of age. 
(b) Estimate the conditional survival function for a psychiatric patient 
who has survived to age 30 without entering a psychiatric hospital. 

4.9 Hoe1 and Walburg (1972) report results of an experiment to study the 
effects of radiation on life lengths of mice. Mice were given a dose of 

300 rads of radiation at 5-6 weeks of age and followed to death. 
death each mouse was necropsied to determine if the cause of death 
was thymic lymphoma, reticulum cell sarcoma, or another cause. ~h 
ages of the mice at death are shown below: 

- 
Cause Age at Death 

of Death (Days) 

Thymic 158, 192, 193, 194, 195, 202, 212, 215, 229, 230, 237, 240, 244, 
lymphoma 247, 259, 300, 301, 337, 415, 444, 485, 496, 529, 537,624, 707, 800 

Reticulum cell 430, 590, 606, 638, 655, 679, 691, 693, 696, 747, 752, 760, 778, 
sarcoma 821,986 I 
Other causes 136, 246, 255, 376, 421, 565, 616, 617, 652, 655, 658, 660, 662, 

675, 681, 734, 736, 737, 757, 769, 777, 801, 807, 825, 855, 857, 
864, 868, 870, 873, 882, 895, 910, 934, 942, 1,015, 1,019 

(a) For each of the three competing risks estimate the cumulative inci- 
dence function at 200,300, . . . ,1,000 days by considering the two other 
risks as a single competing risk. 
(b) Show that the sum of the three cumulative incidence functions 
found in part a is equal to the Kaplan-Meier estimate of the overall 
survival function for this set of data. 
(c) Repeat part a using the complement of the marginal Kaplan-Meier 
estimates. What are the quantities estimating and how different from 
the results found in part a are these estimates? 
(d) Compute the conditional probability function for thymic lymphoma 
at 500 and 800 days. What are the quantities estimating? 

4.10 Using the data reported in section 1.3 for the AML low risk and AMI 
high risk groups, find the following quantities for the two competing 
risks of relapse and death: 
(a) The estimated cumulative incidence at one year. 
(b) The standard errors of the two estimates in part a. 
(c) The estimated conditional probabilities of relapse and of death in 
remission. 
(dl The standard errors of the probabilities found in part c. 
(e) Graphically express the development of relapse and death in re- 
mission for these two disease groups. I 

Estimation of Basic 
Quantities for Other 

Sampling Schemes 

5.1 Introduction 

In Chapter 4, we examined techniques for estimating the survival func- 
tion for right-censored data in sections 4.24.5 and for left-truncated data 
in section 4.6. In this chapter, we discuss how to estimate the survival 
function for other sampling schemes, namely, left, double, and interval 
censoring, right-truncation, and grouped data. Each sampling scheme 
provides different information about the survival function and requires 
a different technique for estimation. 

In section 5.2, we examine estimating for three censoring schemes. 
In the h t  scheme, left censoring, censored individuals provide infor- 
mation indicating only that the event has occurred prior to entry into 
the study. Double-censored samples include some individuals that are 
left-censored and some individuals that are right-censored. In both sit- 
uations, some individuals with exact event times are observed. The last 
censoring scheme considered in this section is interval censoring, where 
individual event times are known to occur only within an interval. 


