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have on X is left truncated by the patient’s age at entry into the hospity|
and right censored by the end of the study.

(a) Plot the number at risk, Y;, as a function of age.

(b) Estimate the conditional survival function for a psychiatric Patient
who has survived to age 30 without entering a psychiatric hospital,

Hoel and Walburg (1972) report results of an experiment to study the
effects of radiation on life lengths of mice. Mice were given a dose of
300 rads of radiation at 56 weeks of age and followed to death. a¢
death each mouse was necropsied to determine if the cause of death
was thymic lymphoma, reticulum cell sarcoma, or another cause, The
ages of the mice at death are shown below:

Cause Age at Death
of Death (Days)
Thymic 158, 192, 193, 194, 195, 202, 212, 215, 229, 230, 237, 240, 244,
lymphoma 247, 259, 300, 301, 337, 415, 444, 485, 496, 529, 537, 624, 707, 800
Reticulum cell 430, 590, 606, 638, 655, 679, 691, 693, 696, 747, 752, 760, 778,
sarcoma 821, 986
Other causes 136, 246, 255, 376, 421, 565, 616, 617, 652, 655, 658, 660, 662,

675, 681, 734, 736, 737, 757, 769, 777, 801, 807, 825, 855, 857,
864, 868, 870, 873, 882, 895, 910, 934, 942, 1,015, 1,019

(a) For each of the three competing risks estimate the cumulative inci-
dence function at 200, 300, .. ., 1,000 days by considering the two other
risks as a single competing risk.

(b) Show that the sum of the three cumulative incidence functions
found in part a is equal to the Kaplan-Meier estimate of the overall
survival function for this set of data.

(©) Repeat part a using the complement of the marginal Kaplan-Meier
estimates. What are the quantities estimating and how different from
the results found in part a are these estimates?

(d) Compute the conditional probability function for thymic lymphoma
at 500 and 800 days. What are the quantities estimating?

Using the data reported in section 1.3 for the AML low risk and AML
high risk groups, find the following quantities for the two competing
risks of relapse and death:

(a) The estimated cumulative incidence at one year.

(b) The standard errors of the two estimates in part a.

(c) The estimated conditional probabilities of relapse and of death in
remission.

(d) The standard errors of the probabilities found in part c.

(e) Graphically express the development of relapse and death in re-
mission for these two disease groups.

Estimation of Basic

Quantities for Other

5.1

Sampling Schemes

Introduction

In Chapter 4, we examined techniques for estimating the survival func-
tion for right-censored data in sections 4.2-4.5 and for left-truncated data
in section 4.6. In this chapter, we discuss how to estimate the survival
function for other sampling schemes, namely, left, double, and interval
censoring, right-truncation, and grouped data. Each sampling scheme
provides different information about the survival function and requires
a different technique for estimation.

In section 5.2, we examine estimating for three censoring schemes.
In the first scheme, left censoring, censored individuals provide infor-
mation indicating only that the event has occurred prior to entry into
the study. Double-censored samples include some individuals that are
left-censored and some individuals that are right-censored. In both sit-
uations, some individuals with exact event times are observed. The last
censoring scheme considered in this section is interval censoring, where
individual event times are known to occur only within an interval.
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In section 5.3, we present an estimator of the survival function for
right-truncated data. Such samples arise when one samples individug]g
from event records and, retrospectively determines the time to event.

In section 5.4, we consider estimation techniques for grouped dat,.
In elementary statistics books, the relative frequency histogram is oftey
used to describe such data. In survival analysis, however, the compli-
cating feature of censoring renders this simple technique ineffective
because we will not know exactly how many events would have oc.
curred in each interval had all subjects been observed long enough
for them to have experienced the event. The life table methodology
extends these elementary techniques to censored data.

Grouped survival data arises in two different situations. In the first,
discussed in section 5.4, we follow a large group of individuals with 3
common starting time. The data consists of only the number who die
or are lost within various time intervals. The basic survival quantities
are estimated using a cobort (sometimes called a generation) life table,

In the second, a different sampling scheme is considered. Here a
cross-sectional sample of the number of events and number at risk at
different ages in various time intervals are recorded. In this instance, the
cohort life table, which is based on longitudinal data, is not appropriate,
and the basic survival quantities are estimated by the current life table.
We refer the reader to Chiang (1984) for details of constructing this type
of life table.

5.2 Estimation of the Survival Function for Letft,

‘Double, and Interval Censoring

In this section we shall present analogues of the Product-Limit estimator
of the survival function for left-, double-, and interval-censored data. As
discussed in section 3.3, left-censoring occurs when some individuals
have experienced the event of interest prior to the start of the period
of observation, while interval censoring occurs when all that is known
is that the event of interest occurs between two known times. Dou-
ble censoring occurs when both left censoring and right censoring are
present. In addition some exact event times are observed. Each censot-
ing scheme requires a distinct construction of the survival function.
For left censoring for some individuals, all we know is that they have
experienced the event of interest prior to their observed study time,
while for others their exact event time is known. This type of censoring
is handled quite easily by reversing the time scale. That is, instead of
measuring time from the origin we fix a large time r and define new
times by T minus the original times. The data set based on these reverse
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EXAMPLE 5.1

times is now right-censored and the estimators in sections 4.2-4.4 can
be applied directly. Note that the Product-Limit estimator in this case is
estimating Plr — X > ] = P[X < 7 — {]. Examples of this procedure
are found in Ware and Demets (1976).

Examples of pure left censoring are rare. More common are samples
which include both left and right censoring. In this case a modified
Product-Limit estimator has been suggested by Tumbull (1974). This
estimator, which has no closed form, is based on an iterative procedure
which extends the notion of a self-consistent estimator discussed in
Theoretical Note 3 of section 4.2. To construct this estimator we assume
that there is a grid of time points 0 = 4 < f; < , < - ++ < &, at which
subjects are observed. Let d; be the number of deaths at time & (note
here the #s are not event times, so &; may be zero for some points). Let
1; be the number of individuals right-censored at time # (i.e., the number
of individuals withdrawn from the study without experiencing the event
at ), and let ¢, be the number of left-censored observations at & (i.e.,
the number for which the only information is that they experienced the
event prior to #). The only information the left-censored observations
at # give us is that the event of interest has occurred at some ¢ < ¢,
The self-consistent estimator estimates the probability that this event
occurred at each possible # less than ¢ based on an initial estimate
of the survival function. Using this estimate, we compute an expected
number of deaths at ¢, which is then used to update the estimate of
the survival function and the procedure is repeated until the estimated
survival function stabilizes. The algorithm is as follows:

Step 0: Produce an initial estimate of the survival function at each
4, S,(). Note any legitimate estimate will work. Tumbull’s suggestion is
to use the Product-Limit estimate obtained by ignoring the left-censored
observations. :

Step (K + 11: Using the current estimate of S, estimate p;, = P{t;_; <

X< 4| X =<4)by 5D for j< .

Step (K + 1)2: Using the results of the previous step, estimate the num-
ber of events at time f, by d; = d; + X2 ; CiDyy-

Step (K + 1)3: Compute the usual Product-Limit estimator (4.2.1) based
on the estimated right-censored data with d, events and n; right-
censored observations at , ignoring the left~censored data. If this
estimate, Sk41(9), is close to Sg(f) for all #, stop the procedure; if not,
goto step 1.

To illustrate Turnbull’s algorithm, consider the data in section 1.17 on
the time at which California high school boys first smoked marijuana.
Here left censoring occurs when boys respond that they have used
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TABLE 5.1
Initial Estimate of the Survival Function Formed by Ignoring the Left-Censoreq
Observations

Number Number Number

Left- of Right-
Age Censored Events Censored
i A ¢ 4 1 =Ydi+tr S
J=i
0 0 1.000
1 10 0 4 0 179 0.978
2 11 0 12 0 175 0911
3 12 0 19 2 163 0.804
4 13 1 24 15 142 0.669
5 14 2 20 24 103 0.539
6 15 3 13 18 59 0.420
7 16 2 3 14 28 0.375
8 17 3 1 6 11 0.341
9 18 1 0 0 4 0.341
10 >18 0 4 0 4 0.000
Total 12 100 79 0

marijuana but can not recall the age of first use, while right-censored
observations occur when boys have never used marijuana. Table 5.1
shows the data and the initial Product-Limit estimator, S,, obtained by
ignoring the left-censored observations.

In step 1, we estimate the p,’s. Note we only need estimates for
those i with ¢; > 0 for the computations in step 2. For the left-censored
observation at £ we have

_1.000—-0978 _ _ _ 09780911 _ _

0= Togg 0% Pe= ggg - 020
_0911—0804 _ _ _ 0.804—0.669 _

Po="T—gge 03 Pu= " _Ggo 0410

Similar computations yield the values for p,; in Table 5.2.

Using these values, we have @ = 4+ 0.067 X 1+ 0.048 X 2 +0.039 X
3+0.036X2+0.034X3+0034X 1= 4487, dy = 13461, dy = 21313,
dy = 26963, ds = 22437, ds = 14714, dy = 3417, dg = 1.206, dy =0,
and 2110 = 4, These values are then used in Table 5.3 to compute the
updated estimate of the survival function, $,(#.

Then using these estimates of the survival function the p;’s are re-
computed, the &’s are re-estimated, and the second step estimator S;(#)
is computed. This estimate is found to be within 0.001 of S, for all #, so
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TABLE 5.2
Values of pyj in Step 1

/i 4 5 6 7 8 9
1 0.067 0.048 0.039 0.036 0.034 0.034
2 0.202 0.145 0.116 0.107 0.102 0.102
3 0.320 0.230 0.183 0.170 0.161 0.161
4 0.410 0.295 0.234 0.218 0.206 0.206
5 0.281 0.224 0.208 0.197 0.197
6 0.205 0.190 0.180 0.180
7 0.072 0.068 0.068
8 0.052 0.052
9 0.000
TABLE 5.3
First Step of the Self-Consistency Algoritbm
4 d n Y, S
0 1.000
10 4.487 0 191.000 0.977
11 13.461 0 186.513 0.906
12 21313 2 173.052 0.794

13 26.963 15 149.739 0.651
14 22.437 24 107.775 0.516

15 14.714 18 61.338 0.392
16 3.417 14 28.624 0.345
17 1.207 6 11.207 0.308
18 0.000 0 4.000 0.308
>18 4.000 0 4.000 0.000

the iterative process stops. The final estimate of the survival function,
to three decimal places, is given by $;(9) in Table 5.3.

In some applications the data may be interval-censored. Here the
only information we have for each individual is that their event time
falls in an interval (Z;, R],7 = 1, ..., n, but the exact time is unknown.
An estimate of the survival function can be found by a modification
of above iterative procedure as proposed by Turnbull (1976). Let 0 =
<7 <-: - <r7,bea gid of time points which includes all the
points L, R, for i = 1, ..., n. For the ith observation, define a weight
ay, to be 1 if the interval (1,-;, 7,1 is contained in the interval (L;, R], and
0 otherwise. Note that ay; is an indicator of whether the event which
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EXAMPLE 5.2

occurs in the interval (L, R} could have occurred at 7;. An initial gyegg
at (1) is made. The algorithm is as follows:

Step 1: Compute the probability of an event’s occurring at time T,
pi=5SG)—-8Gtp, j=1....m
Step 2: Estimate the number of events which occurred at 7; by

n ayp
di — i )
; Zk @i Dp

Note the denominator is the total probability assigned to possible event
times in the interval (Z;, R;].

Step 3: Compute the estimated number at risk at time 7; by ¥, =
ZL’; J dk ‘

Step 4: Compute the updated Product-Limit estimator using the pseudo
data found in steps 2 and 3. If the updated estimate of S is close to the
old version of § for all 7,s, stop the iterative process, otherwise repeat
steps 1-3 using the updated estimate of S.

To illustrate the estimation procedure for interval-censored data con-
sider the data on time to cosmetic deterioration for early breast cancer
patients presented in section 1.18.

Consider first the 46 individuals given radiation therapy only. The
end points of the intervals for the individuals form the 7’s as listed
in Table 5.4. An initial estimate is found by distributing the mass of
1/46 for the ith individual equally to each possible value of T con-
tained in (Z;, R]. For example, the individual whose event time is in
the interval (0,7] contributes a value of (1/46)(1/4) to the probability
of the event's occurring at 4, 5, 6, and 7 months, respectively. Using
this initial approximation in step 1, we can compute the p/'s. Here, for
example, we have p; = 1. — 0979 = 0.021, p, = 0979 — 0955 =
0.024, p; = 0.0214, etc. The estimated number of deaths as shown
in Table 5.4 is then computed. As an example, at 7 = 4 we have
4, = 0.021/(0.021 + 0.024 + 0.021 + 0.029 + 0.031) + 0.021/(0.021 +
0.024+0.021 +0.029) +0.021/(0.0201 +0.024) = 0.842. These estimates
are then used to compute the estimated number at risk at each 7,.

Using the estimated number of deaths and number at risk we compute
the updated estimate of the survival function, as shown in Table 5.4.
This revised estimate is then used to re-estimate the number of deaths,
and the process continues until the maximum change in the estimate is
less than 1077, This requires, in this case, 305 iterations of the process.
The final estimate is shown in the second half of Table 5.4.

Figure 5.1 shows the estimated survival functions for the radiother-
apy only and combination radiotherapy and chemotherapy groups. The
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Survival

Interval Probability
04 1.000
5-6 0.954
7 0.920
8-11 0.832
12-24 0.761
.25-33 0.668
34-38 0.586
4048 0.467
=48 0.000

TABLE 5.4 :
Calculations for Estimating the Survival Function Based on Interval-Censored
Data

Estimated Estimated
Number Number
Initial of Deaths at Risk Updated

T S d Y NG Change

0 1.000 0.000 46.000 1.000 0.000

4 0.979 0.842 46.000 0.982 —0.002

5 0.955 1.151 45.158 0.957 -0.002

6 0.934 0.852 44.007 0.938 —0.005

7 0.905 1.475 43.156 0.906 —0.001

8 0.874 1.742 41.680 0.868 0.006
10 0.848 1.286 39.938 0.840 0.008
11 0.829 0.709 38.653 0.825 0.004
12 0.807 1.171 37.944 0.799 0.008
14 0.789 0.854 36.773 0.781 0.008
15 0.775 0.531 35.919 0.769 0.006
16 0.767 0.162 35.388 0.766 0.001
17 0.762 0.063 35.226 0.764 -0.002
18 0.748 0.528 35.163 0.753 —0.005
19 0.732 0.589 34,635 0.740 —0.009
22 0.713 0.775 34.045 0.723 —0011
24 0.692 0.860 33.270 0.705 —-0.012
25 0.669 1.050 32.410 0.682 —0.012
26 0.652 0.505 31.360 0671 —0.019
27 0.637 0.346 . 30.856 0.663 —0.026
32 0.615 0.817 30.510 0.646 —0.031
33 0.590 0.928 29.693 0.625 ~-0.035
34 0.564 1.056 28.765 0.602 —0.039
35 0.542 0.606 27.709 0.589 —0.047
36 0.523 0.437 27.103 0.580 —0.057
37 0.488 1,142 26.666 0.555 —0.066
38 0.439 1.997 25.524 0.512 —0.073
40 0.385 2.295 23.527 0.462 —0.077
44 0.328 2.358 21.233 0410 -0.082
45 0.284 1.329 18.874 0.381 —0.097
46 0.229 1.850 17.545 0.341 —0.112
48 0.000 15.695 15.695 0.000 0.000




146  Chapter 5 Estimation of Basic Quantities for Other Sampling Schemes

Practical Notes

o]

o]

0.6+

Estimated Survival Function

0.4

0.2 i

oo

I 10 » £ 4 Iy 60
MantﬁwnSmdy
Figure 5.1 Estimated probability of no evidence of breast retraction based

on interval-censored data. Radiation only group ( ). Radiation plus
chemotherapy group(—)

figure seems to indicate a longer time to cosmetic deterioration for pa-
tients given only radiotherapy.

1. An example of the lefi-censored Product-Limit estimator is found
in Ware and DeMets (1976). A key assumption needed for these
calculations is that the death and censoring times are independent.

2. For the case of combined left and right censoring, Turnbull (1974)
shows that an estimator of the variance-covariance matrix of @)
is given by the matrix V= (V}), where V;; = CovIS(1), S, con-
structed as follows. Let
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M=y Gu bt 9 =12 m- 1,
(8- — SRR [SG) — SGaDl - SG2? Q- S
— G - + = fm + C:" ;
($Gp-) = SEIR - SG2 1 — SEPR
A‘+1,‘=A{’,-+1 = dH-l j = 1,2,‘..,m—1;and

99419 —2380.5 0 0 0 0 0 0 0 0 \
~2380.5 38951 —1514.7 0 0 Q 0 0 0 0
0 —15147 26915 —11737 0 0 0 0 0 0
0 0 —-1173.7 23146 -10974 0 0 0 0 0
J= 0 0 .0 —1097 4 20415 —845.5 0 0 0 0
0 0 0 0 —8455 23288 —1358.1 0 0 0
0 Q 4] Q Q —1358.1 22108 —730.5 0 Q
0 0 0 0 0 0 ~7305 800 0 0

k [4] Q 0 0 [4] Q 0 0 43 -422
0 0 4] 0 0 0 0 0 —422 42.2 /

T, !
(S — S DR

Define the matrix J to be the symmetric matrix given by

b ¢ 0 0 0 0

¢ b @ O 0 0

0 & b g 0 0

0 0 @ Y 0 0

J= . . . . 0 0
0 0

. . . . 0 0

0 0 0 0 ... buy Gm

0 0 0 0 ... Gui by

where b, = 44 and g, = A,;4,. The inverse of this matrix is the
estimated covariance matrix V.
Using the data in Example 5.1, we find that

and the matrix V is

00001 00001 00001 00001 0.0001 0.0000 0.0000 00000 00000 0.0000
00001 00005 00004 00003 00003 00002 0.0002 0.0002 00000 0.0000
0.0001 0.0004 00009 0.0008 00006 00004 0.0004 00004 00000 00000
00001 00003 00008 00013 00010 0.0007 00007 0.0006 00000 0.0000
00001 0.0003 00006 00010 00015 0.0011 0.0010 0.0009 0.0000 0.0000
0.0000 00002 00004 00007 00011 0.0017 00015 00014 00000 0.0000
00000 00002 00004 00007 00010 0.0015 0.0020 0.0018 0.0000 00000
0.0000 00002 00004 00006 0.0009 00014 00018 00029 00000 0.0000
00000 00000 00000 00000 0.0000 00000 0.0000 0.0000 03263 03187
00000 00000 00000 00000 0.0000 00000 00000 00000 03187 0‘3345/
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Thus, the estimated survival function and its standard error are
obtained from the square root of the diagonal elements of the matrix
V. In this example,

Standard

Age KO Error
0.000 1.000 0.000
10.000 0.977 0.011
11.000 0.906 0.022
12.000 0.794 0.031
13.000 0.651 0.036
14.000 0516 0.039
15.000 0.392 0.041
16.000 0.345 0.044
17.000 0.308 0.054
18.000 0.308 0.571

> 18 0.000 0.578

3. Standard errors for the estimator of the survival function based

i i Finkel-
on interval-censored datz are found in Tumbl._lll (1976) or
stein and Wolfe (1985). Finkelstein (1986) and Fm'kelstem and ngfe
(1985) provide algorithms for adjusting these estimates for possible
covariate effects.

. For left-censored data, Gomez et al. (1992) discuss the derivation

-censored Kaplan-Meier estimator and a “Nelson-Aalen’
ggti?nitﬁﬁcffeme cumulgtive backward hazard function ('jeﬁned l?y
GO=[ -F%) dx. These derivations are similar to those §1scussed in
the notes after section 4.2. Further derivations aLe found in Andersen

ing a counting process approacii. .
%Zlégi?r?;)oyrug? tt%e survival firll)ction, based on Turnbull's algpnthms
for combined left and right censoring or for interval censon-ng,d a;e
generalized maximum likelihood estimators. They can be denvgthnz’
a self-consistency argument or by using a rpodiﬁed EM algor} ues.
For both types of censoring, standard counting process techniq
have vet to be employed for deriving results.
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'5.3 Estimation of the Survival Function for

Right-Truncated Data

EXAMPLE 5.3

For right-truncated data, only individuals for which the event has oc-
curred by a given date are included in the study. Right truncation arises
commonly in the study of infectious diseases. Let 7; denote the chrono-
logical time at which the ith individual is infected and X; the time
between infection and the onset of disease. Sampling consists of ob-
serving (T;,X,) for patients over the period (0 to 7). Note that only
patients who have the disease prior to 7 are included in the study. Es-
timation for this type of data proceeds by reversing the time axis. Let
R, = 71— X,. The R’s are now left truncated in that only individuals with
values of 7; = R, are included in the sample. Using the method dis-
cussed in section 4.6 for left-truncated data, the Product-Limit estimator
of Pr[R> t| R = 0] can be constructed. In the original time scale, this
is an estimator of PriX < 7~ #| X = 7)]. Example 5.3 shows that this
procedure is useful in estimating the induction time for AIDS.

To illustrate the analysis of right-truncated data, consider the data on the
induction time for 37 children with transfusion-related AIDS, described
in section 1.19. The data for each child consists of the time of infection T;
(in quarter of years from April 1, 1978) and the waiting time to induction
X;. The data was based on an eight year observational window, so 7 = 8
years. :

Table 5.5 shows the calculations needed to construct the estimate of
the waiting time to infection distribution. Here R, = 8 — X,. The column
headed d, is the number of individuals with the given value of R, or, in
the original time scale, the number with an induction time of X,. The
number -at risk column, ¥, is the number of individuals with a value
of R between X; and R, or, in the original time scale, the number of
individuals with induction times no greater than X; and infection times
no greater than 8 — X,. For example, when X; = 1.0 (B = 7.0) in
the original time scale, there are 19 individuals with induction times
greater than 1 and one individual with an infection time greater than
7,80 Y, = 37—-19~ 1 = 17. The final column of Table 5.5 is the
Product-Limit estimator for R, based on d, and ¥,. This is an estimate
of the probability that the waiting time to AIDS is less than x, given X
is less than 8 years, G(H) = PriX < x| X = 8. Figure 5.2 shows the
estimated distribution of the induction time for AIDS for the 37 children
and 258 adults.
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TABLE 5.5 ' ' '
Estimation of the Distribution of the Induction Time to AIDS Based on Right-
Truncated Data
T, X R a Y; Prix<xlx=8
I

5.25 0.25 7.75

7.25 0.25 7.75 2 2 0.0000

5.00 0.50 7.50

5.50 0.50 7.50

6.00 0.50 750

6.25 0.50 7.50

6.75 0.50 7.50 5 7 0.0243

3.50 0.75 7.25

3,75 0.75 7.25

5.00 0.75 7.25

6.50 0.75 725

6.75 075 7.25

7.00 0.75 7.25 6 13 0.0850

275 1.00 7.00

3.75 1.00 7.00

4,00 1.00 7.00

475 1.00 7.00

5.50 1.00 7.00 5 17 0.1579

6.00 1.25 6.75

6.25 1.25 6,75 2 18 0.2237

5.00 1.50 6.50

5.25 1.50 6.50

5.50 1.50 6.50 3 19 0.2516

3.00 1.75 6.25

4.25 1.75 6.25

5.75 1.7% 6.25 3 21 0.2988

1.50 2.25 5.75

475 2.25 575 2 19 0.3486

5.00 2.50 5.50

5.25 2.50 5.50 2 20 gzggg

3.75 275 5.25 1 18 X

2.25 3.00 5.00

375 3.00 5.00 2 17 0282

4.50 3.25 475 1 14 2.5534

375 3.50 450 1 13 0.6061

3.75 4.25 3.75 1 11 0'6667

1.00 5.50 250 1 3 [
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Figure 5.2  Estimated conditional distribution of the induction time for AIDS
Sor the 258 adults (- Yand 37 children (——)

1. For right-truncated data, standard erfors of the survival estimator
function follow directly by using Greenwood’s formula. Lagakos et
al. (1988) discuss techniques for comparing two samples based on

right-truncated data. Gross and Huber—Carol (1992) discuss regres-
sion models for right-truncated data.

. For right-truncated data, as for left censoring, the reversal of time
allows direct estimation of the cumulative backward hazard function.
Keiding and Gill (1990) discuss the large-sample-size properties of

the estimated survival function for this type of data, using a counting
process approach.
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5.4 Estimation of Survival in the
Cohort Life Table

A “cohost” is a group of individuals who have some common origin
from which the event time will be calculated. They are followed over
time and their event time or censoring time is recorded to fall in ope
of k + 1 adjacent, nonoverlapping intervals, (@;-1, 4], j=1,..., k+1,
A traditional cohort life table presents the actual mortality experience
of the cohort from the birth of each individual to the death of the [agt
surviving member of the cohort. Censoting may occur because some
individuals may migrate out of the study area, drop out of observation,
or die unrecorded.

The cchort life table has applications in assessing survival in animal or
human populations. The event need not be death. Other human studies
may have, as an end point, the first evidence of a particular disease or
symptom, divorce, conception, cessation of smoking, or weaning of
breast-fed newborns, to name a few.

The basic construction of the cohort life table is described below:

1. The first column gives the adjacent and nonoverlapping fixed inter-
vals, I, = (@;-q,al,j=1,.. .kt 1, with gy = 0 and g,4; = =,
Event and censoring times will fall into one and only one of these
intervals. The lower limit is in the interval and the upper limit is the
start of the next intesval.

2. The second column gives the number of subjects Y], entering the
jth interval who have not experienced the event.

3. The third column gives the number of individuals W; lost to follow-
up or withdrawn alive, for whatever reason, in the jth interval. As for
the product limit estimator, the censoring times must be independent
of the event times.

4. The fourth column gives an estimate of the number of individuals
Y; at risk of experiencing the event in the jth interval, assuming
that censoring times are uniformly distributed over the interval ¥; =
Y- W/

5. The fifth column reports the number of individuals d; who experi-
enced the event in the jth interval.

6. The sixth column gives the estimated survival function at the start of
the jth interval 8(a,-1). For the first interval, S(c) = 1. Analogous
to the product-limit estimator for successive intervals (see 4.2.1),

e
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SCap = $(a;-00 ~ d;/ 7). (5.4.1)

E
=[la-a/w
=1

. The seventh column gives the estimated probability density function

f(a,,,j) at the midpoint of the jth interval, a,, = (a4, + a;-1) /2. This
quantity is defined as the probability of having the event in the jth
interval per unit time, i.e.,

) =18Cay-) — Sapl/(a; — a,-) (5.4.2)

. The eighth column gives the estimated hazard rate, Ka,,) at the

midpoint of the jth interval, @, Based on (2.3.2), this quantity is
defined in the usual way as

Kamj) = f(amj)/s(amj) .
= Flanp/{SCap + 18Ca;-) — $Ca)l/2}

2 } (amj)
= e —— (54.3)
[S(a_/) + S(aj_l)]
Note that $(a,,) is based on a linear approximation between the
estimate of § at the endpoints of the interval.
It may also be calculated as the number of events per person-units,
ie.,

Kan) = d,/Wa; — a;- XY, ~ d;/ D). (5.4.4)

Because the last interval is theoretically infinite, no estimate of the
hazard or probability density function (and, of course, their standard
errors) may be obtained for this interval.

Other useful quantities in subsequent calculations are the esti-
mated conditional probability of experiencing the event in the jth
interval, g, = d,;/Y;, and the conditional probability of surviving

- through the jth interval, p; = 1~ g, = 1 — 4;/¥,. Specifically, we

could write (5.4.1) as
S(ap = S(a,-)py.
Note, also, that (5.4.2) and (5.4.3) could be written as
Fnp = $(ay-Dg;/(a; — a;-1) and
Kanp) = 2g;/a; — a, X1 + p)),
respectively.

. The ninth column gives the estimated standard deviation of survival

at the beginning of the jth interval (see Greenwood, 1926) which is
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approximately equal to

. il d; - d;
(1), Z; Y5 = S(a;-1) ;m, (5.45)

for j =2,...,k+1, and, of course, the estimated standard deviatiop
of the constant S(a,) = 1 is 0. Note that this estimated standarg
error is identical to the standard error obtained for the product limjt
estimator in (4.2.2).

10. The tenth column shows the estimated standard deviation of the
probability density function at the midpoint of the jth interval which
is approximately equal to

PN N -1
S8 IS G. /b + (b, (X)) 546
(“J Y =1

11. The last column gives the estimated standard deviation of the hazard
function at the midpoint of the jth interval which is approximately
equal to

3 _ 2 1/2 R
{1 e af—1>/2]} Wam) 4D
j4

As noted in Chapter 2, the mean would be computed as in formula
(2.4.2) with S(x) replaced by S(x). There is some ambiguity regarding
the mean lifetime because $(x) may be defined in several ways, as
explained in Chapter 4, when the largest observation is a censored
observation. For this reason, the median lifetime is often used. The
median survival time may be determined by using relationship (2.4.4).
For life tables, one first determines the interval where S(4,) = 0.5 and
3‘(aj_1) = 0.5. Then, the median survival time can be estimated by
linear interpolation as follows:

o5 = a1+ 8Ca;-) — 0.5Wa; — a0 /18Ca;-) — $(ap) (548
= a;1 +18(a;-) — 051/ F (amp

Because we are often interested in the amount of life remaining after
a particular time, the mean residual lifetime and the median residual
lifetime are descriptive statistics that will estimate this quantity. For
reasons stated above, the median residual lifetime at time x is often
the preferable quantity. If the mean residual lifetime can be estipated
without ambiguity, then, formula (2.4.1) with S(x) replaced by S(x) is
used. If the proportion of individuals surviving at time &;; is S(&-1),
then the median residual lifetime is the amount of time that needs to
be added to 4,_; so that S(#-1)/2 = S(@-, + mdil(a;_;)), ie., the
mdrl(g;_1) is the increment of time at which half of those alive at
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EXAMPLE 5.4

time g,-, are expected to survive beyond. Suppose the jth interval
contains the survival probability S(4;-; + mdrl(g,-,)), then an estimate
of mdrl(4;_,), determined in a similar fashion as (5.4.8) is given by

mdrl(a;,_;) = (5.4.9)
(aj—l -4+ [3'(511_1) - 3(611—1)/2](61] - aj—])/[g(a_/—l) - 3(“])]
Hence the median residual lifetime at time 0 will, in fact, be the median

lifetime of the distribution.
The variance of this estimate is approximately

(Sa-1)F

Var [mdrl(g;-D) = ——a 22
Var [mdrl(g;- ] 4Y:[f(amj)]2

(5.4.10)

Some major statistical packages will provide the median residual life-
time and its standard error at the beginning of each interval.

Consider The National Labor Survey of Youth (NLSY) data set discussed
in section 1.14. Beginning in 1983, females in the survey were asked
about any pregnancies that have occurred since they were last inter-
viewed (pregnancies before 1983 were also documented). Questions
regarding breast feeding are included in the questionnaire.

This data set consists of the information from 927 first-born children
to mothers who chose to breast feed their child and who have complete
information for all the variables of interest. The universe was restricted
to children born after 1978 and whose gestation was between 20 and
45 weeks. The year of birth restriction was included in an attempt to
eliminate recall problems.

The response variable in the data set is the duration of breast feeding
in weeks, followed by an indicator if the breast feeding is completed
(i.e., the infant is weaned).

The quantities described above are shown in Table 5.6 for this data
set, Because none of the mothers claimed to wean their child before
one week, the first interval will be from birth to two weeks. As always,
when data are grouped, the selection of the intervals is a major deci-
sion. Generally, guidelines used in selecting intervals for frequency his-
tograms apply, namely, the number of intervals should be reasonable,
there should be enough observations within each interval to adequately
represent that interval, and the intervals should be chosen to reflect the
nature of the data. For example, in this data set, it is of interest to ex-
amine early weaners in smaller intervals and later weaners in broader
intervals. This principle is also true in most population mortality studies
where one wishes to study infant mortality in smaller intervals and later
mortality may be studied in broader intervals.
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TABLE 5.6 .
study. Such observations typically arise i h di ini
Life Table for Weaning Example : ! pically in cohort studies or clinical
ife f ing Examp ma!g. One assumption, as stated in the preceding note, is that the
survival experience after the date of last contact of those lost to
Ey}z Bta Bt folljlow-up and v;ivithdrawn alive is similar to that of the individuals
stand.  stand.  stang, who remain under observation. Cutler and Ederer (1958) poi
Number g Est. Cum. Est. Est. dev.of  devof deyof , 4 . haban point out
infantsf Number lost to proportion  pdf bazard survival  pdf. ;,azaorfd that the survival experience O_f .lost individuals may be better than,
not follow-up ~ Number not weaned  at at g at at at gllf same as, or worse than individuals continuing under observation
weaned  or withdrawn  exposed at middle middle inning  middle  middl, us, every attempt should be s .
Week weaned  entering without to  Number beginning of of of of o o € .Z the n \i)mber of indi I}:ladel t;) trace such individuals and
flower, upper)  interval  being weaned weaning weaned  of interval  imterval interval  interval  interval interyg) minimizs 1viduals lost.
0-2 927 2 926 77 10000  0.0416 0.0434 0 00045  0.0049 .
2-3 848 3 846.5 71 09168 00769 00875 || 0.0091 00088 00104 :
35 774 6 771 119 08399 00648 00836 | 00121 00055  0.007%
57 649 9 644.5 75 07105 00413 00618 || 00149 00046  0.0071
711 565 7 615 109 06276 00305 00537 | 00160 00027 00051
11-17 449 5 446.5 148 0.5058 0.0279 00662 | 00166  0.0021  0.0053
17-25 296 3 945 107 03381 00154 00555 || 00158 00014 00052 » 00
25-37 186 0 186 74 02155 00071 00414 || 00138 00008  0.0047
3753 112 0 112 85 01296 00061 00764 | 00114 00006 00066
53- 27 0 27 27 0.0313 0.0059
i 0.
An interesting feature of these data is that the hazard rate for weaning 3
is high initially (many mothers stop breastfeeding between 1 and 5 5
weeks), levels off between 5 and 37 weeks, and begins 1o rise after 37 2
weeks as can be seen in Figure 5.3. g o
The median weaning time for all mothers starting to breast-feed is g oﬂ
determined from (5.4.8) to be 11.21 weeks (with a standard error of
0.5678 weeks) and the median residual weaning time at 25 weeks is
15.40 weeks (with a standard error of 1.294 weeks). 00
I L
Practical Notes voel
1. Summarizing the assumptions made in the life table methodology,
we have seen that i) censored event times (including loss or with- T T . : ,
drawal) are assumed to be independent of the time those individu- 20 30 @
als would have realized the event had they been observed until the _ . Time to Weaning (Weeks)
event occurred, ii) the censoring times and death times are assumed Figure 5.3 Li o esti
to be uniformly distributed within each interval, (hence Y — w,/2 gure 5. ife table estimate of the bazard rate of the time to infant weaning
is taken to be the number exposed (or at risk) in the jth interval : »
(see the number of people at risk in column 4 and the calculation : 3. SAS and SPSS have routines which reproduce the cohort life table.
of the number of person-units in the denominator of eq. (5.4.9), and
iii) the hazard rate is assumed constant within intervats, . Th .
2. Individuals lost to follow-up are lost to observation if they move, fail Theoretical N oles
to return for treatment, or, for some other reason, their survival status
becomes unknown in the jth interval. On the other hand, individuals h L. An alternative estimator of the hazard function is given by Sacher
withdrawn alive are those known to be alive at the closing date of the (1956) assuming that the hazard rate is constant within each interval
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5.5 Exercises

but is allowed to vary between intervals. This estimator is given by
Ka,,,j) = (—Inpp/(a; — a;-1), which, Gehan and Siddiqui (1973)
show, is slightly more biased than (5.4.3).

2. If the lengths of the grouping intervals approach 0, then, the life
table estimates of the survival function are equivalent to the Kaplan-
Meier estimate (Thompson, 1977). This limiting process provides a
framework to link life table estimates with those using exact lifetimes,
even in the presence of covariates.

5.1 A study of 190 first-year medical students asked the question, How old
were you when you first smoked a cigarette? Responses were either
the exact ages at which they started smoking, that they never smoked,
or that they currently smoke but cannot remember when they started,
The data is summarized below. Using this sample, estimate the survival
function to within 0.001.

Number of Age t Who
Age Number Who Started Smoke Now but Do Not Number of Age t Who Do
() Smoking at Age t Know the Age They Started Not Smoke
14 2 0 0
15 3 0 0
16 10 0 0
17 13 0 0
18 5 0 0
19 3 0 1
20 2 4 13
21 1 6 44
22 2 8 39
23 1 2 19
24 0 0 3
25 0 0 4
26 1 0 4
Total 43 20 127
5.2 A study involving 100 veterinarians was performed to estimate the time

until their first needlestick injury. They completed a survey which asked,
How many years after graduation from veterinarian school did you
experience your first needlestick injury? Many of them could reme;rgbef
or determine from their records the month and year their first injury
occurred, but others could only say that it happened before a certain
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5.3

5.4

time. Others had had no needlestick injury yet at the time of the survey.
The data below reflects these times after graduation.

Time (1) After Number Who Had Number Who Had  Number Who Never
Graduation (in  Needlestick Injury at  Needlestick Injury Had Needlestick
Months) Time t Prior to Time t Injury at Time t

)
NOOOCOOO R NWWARBRNRENW
NONER NN ARRBORANDNNNDNE,OOO
AR AR NN NNRL, P OOOCOO

g
N
A3
N

Estimate the survival (injury-free) function to an accuracy of three
decimal places.

Eighteen elderly individuals who had entered a nursing home in the
past five years were asked when they experienced their first fall (post-
admittance). Some of the individuals only indicated that it occurred
within a certain time period (in months), whereas others said they had
never had a fall. The data (in months post-admittance) is as follows:

Falls occurred in (6-12], (48-601, (24-36], (12-24}, (18-24], (9-12], (36—
42}, (12-36]

Times since admittance for individuals who never had a fall: 23, 41, 13,
25, 59, 39, 22, 18, 49, 38.

Estimate the survival function of the time from admittance to first fall
to within three decimal places.

Twenty women who had a lumpectomy as a primary treatment for
breast cancer were followed periodically for the detection of 2 metasta-
sis. When a metastasis was detected it was only known that the time of
the clinical appearance of the metastasis was between the times of the
last two visits to the physician, so the data is interval-censored. Suppose
the data is as follows:
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5.5

Times in months between which a metastasis could be detecteq.
(12,18], (20,24], (10,13), (14,15], (25,33], (33,44], (18,22], (19,25]
(13,22], (11, 15].

Times last seen for patients disease free at the end of study:
25, 27, 33, 36, 30, 29, 35, 44, 44, 44.

Estimate the survival time for the distribution of the time from surgery
to first clinical evidence of a metastasis.

A study was performed to estimate the distribution of incubation times
of individuals known to have a sexually transmitted disease (STD),
Twenty-five patients with a confirmed diagnosis of STD at a clinic were
identified on June 1, 1996. All subjects had been sexually active with a
partner who also had a confirmed diagnosis of a STD at some point after
January 1, 1993 (hence 7 = 42 months). For each subject the date of the
first encounter was recorded as well as the time in months from that first
encounter to the clinical confirmation of the STD diagnosis. Based on
this right-truncated sample, compute an estimate of the probability that

Date of First Months From 1/93 to Time (in montbs) until STD
Encounter Encounter Diagnosed in Clinic
2/93 2 30
4/93 4 27
7/93 7 25
2/94 14 19
8/94 20 18
6/94 18 17
8/93 8 16
1/94 13 16
5/94 17 15
2/95 26 15
8/94 20 15
3/94 15 13
11/94 23 13
5/93 5 12
4/94 16 11
3/94 15 9
11/93 11 8
6/93 6 8
9/95 33 8
4/93 4 7
8/93 8 6
11/95 35 6
10/93 10 6
12/95 36 4
1/95 25 4
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5.6

5.7

58

5.9

the infection period is less than x months conditional on the infection
period’s being less than 42 months.
Estimate the distribution of infection-free time (survival).

Using the data on 258 adults with AIDS reported in section 1.19, estimate
the probability that the waiting time to AIDS is less than x, given the
waiting time is less than eight years.

The following data is based on a cohort of 1,571 men in the Framingham
Heart Study who were disease free at age 40 and followed for a period
of 40 years. (See Klein, Keiding, and Kreiner (1995) for a detailed
description of the cohort.) Of interest is the distribution of the time
to development or coronary heart disease (CHD). The following life
table data is available to estimate this distribution.

Age Interval Number of CHD Events Number Lost to Follow-Up
45-50 17 29
50-55 36 60
55-60 62 83
60-65 76 441
65-70 50 439
70-75 9 262
75-80 0 7

Construct a cohort life table for this data.

Individuals seen at a large city sexually transmitted disease (STD) clinic
are considered at high risk for acquiring HIV. The following data is
recorded on 100 high-risk individuals who are infected with some STD,
but did not have HIV, when they were seen at the clinic in 1980. Their
records were checked at subsequent visits to determine the time that
HIV was first detected.

Number of HIV-
Year Intervals Positive Number Lost to Follow-Up

0-2 2 3

24 1 2

46 4 8

68 3 10

8-10 2 18
10-12 2 21
12-14 3 21

Construct a cohort life table for the incidence of HIV.

An investigator, performing an animal study on mammary carcinogen-
esis risk, wants to describe the distribution of times (in days) until the
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5.10

onset of the first palpable tumor for rats fed a control diet. Mammary

tumors were induced by a single oral dose (5 mg dissolved in 1.0 m],
com oil) of 7,12-dimethylbenz(a)anthracene (DMBA) administered by

intragastric intubation when the animals were seven weeks old. Startm

six weeks after DMBA administration, each rat was examined once daily

and the time (in days) until the onset of the first palpable tumor was
recorded. Three rats had a palpable tumor when the first examination
was made at day 62. The remaining times when the first palpable tumor
was detected are below.

Times (in days) when the first palpable tumor was detected:
46, 49, 54, 61, 62, 64, 68, 120, 150, 160.

Estimate the survival time for the distribution of the time from DBMA
administration until the first palpable evidence of a tumor occurred,

Wagner and Altmann (1973) report data from a study conducted in the
Amboseli Reserve in Kenya on the time of the day at which members
of a baboon troop descend from the trees in which they sleep. The
time is defined as the time at which half of the troop has descended
and begun that day’s foraging. On some days the observers arrived
at the site early enough to observe at what time this event occurred,
whereas on other days they arrived after this median descent time, so
that day’s observation was left censored at their arrival time. That data
is in the following tables. By reversing the time scale to be the number
of minutes from midnight (2400 hours), estimate the distribution of the
time to descent for a randomly selected troop of baboons.
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Observed Time of Day When Half of the Troop Descended from the Trees

Descent { Descent Descent

Day Date Time Day Date Time Day Date Time
1 25/11/63 0656 20 12/7/64 0827 39 10/6/64 0859
2 29/10/63 0659 21 " 30/6/64 0828 40 11/3/64 0900
3 5/11/63 0720 22 5/5/64 0831 41 23/7/64 0904
4 12/2/64 0721 23 12/5/64 0832 42 27/2/64 0905
5 29/3/64 0743 24 25/4/64 0832 43 31/3/64 0905
6 " 14/2/64 0747 25 26/3/64 0833 44 10/4/64 0907
7 18/2/64 0750 26 18/3/64 0836 45 22/4/64 0908
8 1 /4/64 0751 27 15/3/64 0840 46 7/3/64 0910
9 8/2/64 0754 28 6/3/64 0842 47 29/2/64 0910
10 26/5/64 0758 29 11/5/64 0844 48 13/5/64 0915
1 19/2/64 0805 30 5/6/64 0844 49 20/4/64 0920
12 7/6/64 0808 31 17/7/64 0845 50 27/4/64 0930
13 22/6/64 0810 32 12/6/64 0846 51 28/4/64 0930
14 24/5/64 0811 33 28/2/64 0848 52 23/4/64 0932
15 21/2/64 0815 34 14/5/64 0850 53 4/3/64 0935
16 13/2/64 0815 35 7/7/64 0855 54 6/5/64 0935
17 11/6/64 0820 36 6/7/64 0858 55 26/6/64 0945
18 21/6/64 0820 37 2/7/64 0858 56 25/3/64 0948
19 13/3/64 0825 38 17/3/64 0859 57 8/7/64 0952
J 58 21/4/64 1027
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Observer Arrival Time on Days Where the Descent Time Was Not Observed

Arrival Arrival Arriyg)
Day Date Time Day Date Time Day Date Time
1 1/12/63 0705 32 13/10/63 0840 63 2/5/64 1012
2 6/11/63 0710 33 4/7/64 0845 64 1/3/64 1018 ® ® ° °
3 24/10/63 0715 34 3/5/64 0850 65 17/10/63 1020
4 26/11/63 0720 35 25/5/64 0851 66 23/10/63 1020 O I CS I n n Iva r I a e
5 18/10/63 0720 36 24/11/63 0853 67 25/7/64 1020
6 7/5/64 0730 37 15/7/64 0855 68 13/7/64 1031 ° °
7 7/11/63 0740 38 16/2/64 0856 69 8/6/64 1050
8 23/11/63 0750 39 10/3/64 0857 70 9/3/64 1050 S I m a I O n
9 28/11/63 0750 40 28/7/64 0858 71 26/4/64 1100
10 27/11/63 0753 41 18/6/64 0858 72 14/10/63 1205
11 28/5/64 0755 42 20/2/64 0858 73 18/11/63 1245
12 5/7/64 0757 43 2/8/64 0859 74 2/3/64 1250
13 28/3/64 0800 44 27/5/64 0900 75 8/5/64 1405
14 23/3/64 0805 45 28/10/64 0905 76 1/7/64 1407
15 26/10/63 0805 46 15/5/64 0907 77 12/10/63 1500
16 11/7/64 0805 47 10/5/64 0908 78 31/7/64 1531
17 27/7/64 0807 48 27/6/64 0915 79 6/10/63 1535
18 9/6/64 0810 49 11/10/63 0915 80 19/6/64 1556
19 24/6/64 0812 50 17/2/64 0920 81 29/6/64 1603
20 16/ 10/63 0812 51 22/10/63 0920 82 9/5/64 1605
21 25/2/64 0813 52 10/7/64 0925 83 9/10/63 1625 6 1 I d t,
22 6/6/64 0814 53 14/7/64 0926 84 8/3/64 1625
23 22/11/63 0815 54 11/4/64 0931 85 11/2/64 1653 * _ ntroauc lon
24 10/10/63 0815 55 23/5/64 0933 86 30/5/64 1705
25 2/11/63 0815 56 30/7/64 0943 87 5/3/64 1708
26 23/6/64 0817 57 18/7/64 0945 88 26/2/64 1722 In Chapter 4, we presented two techniques for providing summary
27 24/4/64 0823 58 29/7/64 0946 89 4/5/64 1728 curves which tell us about the survival experience of a cohort of indi-
28 3/7/64 0830 59 16/7/64 0950 90 12/3/64 1730 viduals. These two estimators were the Kaplan-Meier estimator, which
29 29/4/64 0831 60 22/7/64 0955 91 25/10/63 1730 » provides an estimate of the survival function, and the Nelson-Aalan
30 4/8/63 0838 61 15/10/63 0955 92 29/11/63 1750 estimator, which provides an estimate of the cumulative hazard rate.
3 7/10/63 0840 62 15/10/63 1005 gz ;i//zgi :gg; These statistics are readily available in many statistical packages.
Although these two statistics provide an investigator with important

information about the eventual death time of an individual, they provide
only limited information about the mechanism of the process under
study, as summarized by the hazard rate. The slope of the Nelson-
Aalan estimator provides a crude estimate of the hazard rate, but this
estimate is often hard to interpret. In section 6.2, we discuss how these
crude estimates of the hazard rate can be smoothed to provide a better
estimator of the hazard rate by using a kernel-smoothing technique.

In some applications of survival analysis, an investigator has available
very precise information about the mortality rates in a historical control
or standard population. It is of interest to compare the hazard rates in
the sample group to the known hazard rates in the reference popu-
lation to determine how the mortality experience of the experimental
subjects differs. The “excess” mortality in the experimental group can




