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have on X is left truncated by the patient's age at entry into the hospital 
and right censored by the end of the study. 
(a) Plot the number at risk, K,  as a function of age. 
(b) Estimate the conditional survival function for a psychiatric patient 
who has survived to age 30 without entering a psychiatric hospital. 

4.9 Hoe1 and Walburg (1972) report results of an experiment to study the 
effects of radiation on life lengths of mice. Mice were given a dose of 

300 rads of radiation at 5-6 weeks of age and followed to death. 
death each mouse was necropsied to determine if the cause of death 
was thymic lymphoma, reticulum cell sarcoma, or another cause. ~h 
ages of the mice at death are shown below: 

- 
Cause Age at Death 

of Death (Days) 

Thymic 158, 192, 193, 194, 195, 202, 212, 215, 229, 230, 237, 240, 244, 
lymphoma 247, 259, 300, 301, 337, 415, 444, 485, 496, 529, 537,624, 707, 800 

Reticulum cell 430, 590, 606, 638, 655, 679, 691, 693, 696, 747, 752, 760, 778, 
sarcoma 821,986 I 
Other causes 136, 246, 255, 376, 421, 565, 616, 617, 652, 655, 658, 660, 662, 

675, 681, 734, 736, 737, 757, 769, 777, 801, 807, 825, 855, 857, 
864, 868, 870, 873, 882, 895, 910, 934, 942, 1,015, 1,019 

(a) For each of the three competing risks estimate the cumulative inci- 
dence function at 200,300, . . . ,1,000 days by considering the two other 
risks as a single competing risk. 
(b) Show that the sum of the three cumulative incidence functions 
found in part a is equal to the Kaplan-Meier estimate of the overall 
survival function for this set of data. 
(c) Repeat part a using the complement of the marginal Kaplan-Meier 
estimates. What are the quantities estimating and how different from 
the results found in part a are these estimates? 
(d) Compute the conditional probability function for thymic lymphoma 
at 500 and 800 days. What are the quantities estimating? 

4.10 Using the data reported in section 1.3 for the AML low risk and AMI 
high risk groups, find the following quantities for the two competing 
risks of relapse and death: 
(a) The estimated cumulative incidence at one year. 
(b) The standard errors of the two estimates in part a. 
(c) The estimated conditional probabilities of relapse and of death in 
remission. 
(dl The standard errors of the probabilities found in part c. 
(e) Graphically express the development of relapse and death in re- 
mission for these two disease groups. I 

Estimation of Basic 
Quantities for Other 

Sampling Schemes 

5.1 Introduction 

In Chapter 4, we examined techniques for estimating the survival func- 
tion for right-censored data in sections 4.24.5 and for left-truncated data 
in section 4.6. In this chapter, we discuss how to estimate the survival 
function for other sampling schemes, namely, left, double, and interval 
censoring, right-truncation, and grouped data. Each sampling scheme 
provides different information about the survival function and requires 
a different technique for estimation. 

In section 5.2, we examine estimating for three censoring schemes. 
In the h t  scheme, left censoring, censored individuals provide infor- 
mation indicating only that the event has occurred prior to entry into 
the study. Double-censored samples include some individuals that are 
left-censored and some individuals that are right-censored. In both sit- 
uations, some individuals with exact event times are observed. The last 
censoring scheme considered in this section is interval censoring, where 
individual event times are known to occur only within an interval. 
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In section 5.3, we present an estimator of the survival function for 
right-truncated data. Such samples arise when one samples individuals 
from event records and, retrospectively determines the time to event, 

In section 5.4, we consider estimation techniques for grouped data. 
In elementary statistics books, the relative frequency histogram is often 
used to describe such data. In survival analysis, however, the compli- 
cating feature of censoring renders this simple technique ineffective 
because we will not know exactly how many events would have oc- 
curred in each interval had all subjects been observed long enough 
for them to have experienced the event. The life table methodology 
extends these elementary techniques to censored data. 

Grouped survival data arises in two different situations. In the first, 
discussed in section 5.4, we follow a large group of individuals with a 
common starting time. The data consists of only the number who die 
or are lost within various time intervals. The basic survival quantities 
are estimated using a cohort (sometimes called a generation) life table. 

In the second, a different sampling scheme is considered. Here a 
cross-sectional sample of the number of events and number at risk at 
different ages in various time intervals are recorded. In this instance, the 
cohort life table, which is based on longitudinal data, is not appropriate, 
and the basic survival quantities are estimated by the cuwmt life table. 
We refer the reader to Chiang (1984) for details of constructing this type 
of life table. 

5.2 Estimation of the Survival Function for Left, 
Double, and Interval Censoring 

In this section we shall present analogues of the Product-Limit estimator 
of the survival function for left-, double-, and interval-censored data. As 
discussed in section 3.3, left-censoring occurs when some individuals 
have experienced the event of interest prior to the start of the period 
of observation, while interval censoring occurs when all that is known 
is that the event of interest occurs between two known times. Dou- 
ble censoring occurs when both left censoring and right censoring are 
present. In addition some exact event times are observed. Each censor- 
ing scheme requires a distinct construction of the survival function. 

For left censoring for some individuals, all we know is that they have 
experienced the event of interest prior to their observed study time, 
while for others their exact event time is known. This type of censoring 
is handled quite easily by reversing the time scale. That is, instead of 
measuring time from the origin we fix a large time T and define new 
times by T minus the original times. The data set based on these reverse 
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times is now right-censored and the estimators in sections 4.2-4.4 can 
be applied directly. Note that the Product-Limit estimator in this case is 
estimating P[T - X > tl = P[X < T - t]. Examples of this procedure 
are found in Ware and Demets (1976). 

Examples of pure left censoring are rare. More common are samples 
which include both left and right censoring. In this case a modified 
Product-Limit estimator has been suggested by Turnbull (1974). This 
estimator, which has no closed form, is based on an iterative procedure 
which extends the notion of a self-consistent estimator discussed in 
Theoretical Note 3 of section 4.2. To construct this estimator we assume 
that there is a grid of time points 0 = to < < < . < t, at which 
subjects are observed. Let d, be the number of deaths at time ti (note 
here the ti's are not event times, so di may be zero for some points). Let 
ti be the number of individuals right-censored at time ti (i.e., the number 
of individuals withdrawn from the study without experiencing the event 
at ti), and let cf be the number of left-censored observations at tf (i.e., 
the number for which the only information is that they experienced the 
event prior to ti). The only information the left-censored observations 
at ti give us is that the event of interest has occurred at some t, 5 ti. 
The self-consistent estimator estimates the probability that this event 
occurred at each possible tj less than ti based on an initial estimate 
of the survival function. Using this estimate, we compute an expected 
number of deaths at t,, which is then used to update the estimate of 
the survival function and the procedure is repeated until the estimated 
survival function stabilizes. The algorithm is as follows: 

Step 0: Produce an initial estimate of the survival function at each 
tj, So($). Note any legitimate estimate will work. Turnbull's suggestion is 
to use the Product-Limit estimate obtained by ignoring the leftcensored 
observations. 

Step (K + 111: Using the current estimate of S, estimate pfl = < 
S K ( ~  - I ) - ~ K ( $ )  X 5 ti I x 5 ti] by 

&(&) 
, for j 5 i .  

Step CR f 112: Using the results of the previous step, estimate the nurn- 
ber of events at time ti by 2, = d, + Czl cipfj. 

Step (K f 113: Compute the usual Product-Limit estimator (4.2.1) based . . 

on the estimated rightcensored data with events and r, right- 
censored observations at ti, ignoring the left-censored data. If this 
estimate, SK+l(t), is close to SK(t) for all ti, stop the procedure; if not, 
go to step 1. 

FXAMPLE5.1 To illustrate Turnbull's algorithm, consider the data in section 1.17 on 
the time at which California high school boys first smoked marijuana. 
Here left censoring occurs when boys respond that they have used 
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TABLE 5.1 
Initial Estimate of the Sunn'ual Function Formed by Ignoring the Left-Censored 
Obseruations 

- 
Number Number Number 

Left- of Right- 
Age Censored Eumts Censored 

m 

i tl C, 41 r~ Y, = c 4, + rj So(tl) 
j= I 

marijuana but can not recall the age of first use, while right-censored 
observations occur when boys have never used marijuana. Table 5.1 
shows the data and the initial Product-Limit estimator, So, obtained by 
ignoring the left-censored observations. 

In step 1 ,  we estimate the p i j ' s  Note we only need estimates for 
those i with ci > 0 for the computations in step 2. For the left-censored 
observation at 4 we have 

Similar computations yield the values for pfj in Table 5.2.  
Using these values, we have al = 4 + 0.067 X 1 + 0.048 X 2 + 0.039 x 

3 + 0.036 X 2 + 0.034 X 3 + 0.034 X 1 = 4.487, 4 = 13.461, & = 21.3U, 
24 = 26.963, 4 = 22.437, L& = 14.714, 2, = 3.417, & = 1.206, 4 = 0, 
and ale = 4. These values are then used in Table 5.3 to compute the 
updated estimate of the survival function, Sl(t) .  

Then using these estimates of the survival function the pij's are re- 
computed, the Zl's are re-estimated, and the second step estimator S~(ti)  
is computed. This estimate is found to be within 0.001 of Sl for all ti, so 

0 0 
1 10 
2 11 
3 12 
4 13 
5 14 
6 15 
7 16 
8 17 
9 18 
10 >18 

Total 
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4 
12 
19 
24 
20 
13 
3 
1 
0 
4 

100 

0 
0 
0 
1 
2 
3 
2 
3 
1 
0 
12 

TABLE 5.2 
Values ofpi j  in St+ 1 

TABLE 5.3 
First Step of the Self-Cmbtettcy Algorithm 

0 
0 
2 
15 
24 
18 
14 
6 
0 
0 
79 

the iterative process stops. The final estimate of the survival function, 
to three decimal places, is given by Sl( t )  in Table 5.3. 

In some applications the data may be interval-censored. Here the 
only information we have for each individual is that their event time 
falls in an interval (&,&I, i = 1, . . ., n, but the exact time is unknown. 
An estimate of the survival function can be found by a modification 
of above iterative procedure as proposed by Turnbull (1976). Let 0 = 
TO < TI < - - < T ,  be a grid of time points which includes all the 
points 4 ,  Ri for i = 1, . . ., n. For the ith observation, define a weight 
aij to be 1 if the interval ( T ~ - ~ ,  T ~ ]  is contained in the interval ( 4 ,  Ril, and 
0 otherwise. Note that aij is an indicator of whether the event which 

179 
175 
163 
142 
103 
59 
28 
11 
4 
4 
0 

1.000 
0.978 
0.911 
0.804 
0.669 
0.539 
0.420 
0.375 
0.341 
0.341 
0.000 
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occurs in the interval (Li, R,1 could have occurred at T ~ .  An initial guess 
at S(T,) is made. The algorithm is as follows: 

Step 1: Compute the probability of an event's occurring at time 
- S(T,), j = 1, . . ., m. pj = S(7. 

Step 2: Estimate the number of events which occurred at T, by 

Note the denominator is the total probability assigned to possible event 
times in the interval (L,, R,]. 

Step 3: Compute the estimated number at risk at time T, by Y, = 
c;=, dk. 
Step 4: Compute the updated Product-Limit estimator using the pseudo 
data found in steps 2 and 3. If the updated estimate of S is close to the 
old version of S for all T ~ ' s ,  stop the iterative process, otherwise repeat 
steps 1-3 using the updated estimate of S. 

- - -- - - -- 

EXAMPLE5.2 To illustrate the estimation procedure for intervalcensored data con- 
sider the data on time to cosmetic deterioration for early breast cancer 
patients presented in section 1.18. 

Consider first the 46 individuals given radiation therapy only. The 
end points of the intervals for the individuals form the 7,'s as listed 
in Table 5.4. An initial estimate is found by distributing the mass of 
1/46 for the ith individual equally to each possible value of T con- 
tained in (L,, Ril. For example, the individual whose event time is in 
the interval (0,71 contributes a value of (1/46)(1/4) to the probability 
of the event's occurring at 4, 5, 6, and 7 months, respectively. Using 
this initial approximation in step 1, we can compute the p i s .  Here, for 
example, we have p, = 1. - 0.979 = 0.021, p2 = 0.979 - 0.955 = 
0.024, p3 = 0.0214, etc. The estimated number of deaths as shown 
in Table 5.4 is then computed. As an example, at T = 4 we have 
dl = 0.021/(0.021 + 0.024 + 0.021 + 0.029 + 0.031) + 0.021/(0.021 + 
0.024 + 0.02 1 + 0.029) + 0.021/(0.0201+ 0.024) = 0.842. These estimates 
are then used to compute the estimated number at risk at each T,. 

Using the estimated number of deaths and number at risk we compute 
the updated estimate of the survival function, as shown in Table 5.4. 
This revised estimate is then used to re-estimate the number of deaths, 
and the process continues until the maximum change in the estimate is 
less than lo-'. This requires, in this case, 305 iterations of the process. 
The final estimate is shown in the second half of Table 5.4. 

Figure 5.1 shows the estimated survival functions for the radiother- 
apy only and combination radiotherapy and chemotherapy groups. The 
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TABLE 5.4 
Calculations for &timating the Survival Function Based on Interval-Censored 
Data 

Estimated Estimuted 
Number Number 

Initial ofDeaths at Risk Updated 
7 S(t) d Y $0) Change 



146 Chapter 5 Estimation of Basic Quantities for Other Sampling Schemes ' '. 5.2 Estimation of the Survival Function for Left, Double, and Interval Censoring 147 

Figure 5.1 Estimated probability of no evidence of breast retraction based 
). Radiation plus on intetualcensored data. Radiation only group (- 

chemotherapy group (-I 

figure seems to indicate a longer time to cosmetic deterioration for pa- 
tients given only radiotherapy. 

Practical Notes 

1. ~n example of the left-censored Product-Limit estimator is found 
in Ware and DeMets (1976). A key assumption needed for these 
calculations is that the death and censoring times are independent. 

2. For the case of combined left and right censoring, Turnbd (1y74) 
shows that an estimator of the variancecovariance matrix of S(t) 
is given by the matrix V= ( x j ) ,  where K j  = ~oviS( t , ) ,  S(f/ll, con- 
structed as follows. Let 

Amm = 
dm ym + + -- cm . 

[S(tm-l> - S(t,~l' S(t,J2 [ I  - S(tm)l2 ' 

I; and 

A,, = 0 for 1 i - jI2 2. 

Define the matrix J to be the symmetric matrix given by 

where bi = A,, and qi = A,,,,. The inverse of this matrix is the 
estimated covariance matrix V. 

Using the data in Example 5.1, we lind that 

and the matrix V is 
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Thus, the estimated survival function and its standard error are 
obtained from the square root of the diagonal elements of the m a e  
V. In this example, 

Standard 
Error 

3. Standard errors for the estimator of the survival function based 
on interval-censored data are found in Tumbull (1976) or Finkel- 
stein and Wolfe (1985). Finkelstein (1986) and Finkelstein and Wolfe 
(1985) provide algorithms for adjusting these estimates for possible 
covariate effects. 

Theoretical Notes 

1. For left-censored data, Gomez et al. (1992) discuss the derivation 
of the left-censored Kaplan-Meier estimator and a "Nelson-Aden" 
estimator of the cumulative backward hazard function defined by 
G(t) = &. These derivations are similar to those discussed in 
the notes after section 4.2. Further derivations are found in Andersen 
et al. (1993), using a counting process approach. 

2. The estimator of the survival function, based on 'hrnbull's algorithms 
for combined left and right censoring or for interval censoring, are 
generalized maximum likelihood estimators. They can be derived by 
a self-consistency argument or by using a modified EM algorithm 
For both types of censoring, standard counting process techniques 
have yet to be employed for deriving results. 

5.3 Estimation of the Survival Function for 
Right-Tru ncated Data 

For right-truncated data, only individuals for which the event has oc- 
curred by a given date are included in the study. Right truncation arises 
commonly in the study of infectious diseases. Let T, denote the chrono- 
logical time at which the ith individual is infected and Xi the time 
between infection and the onset of disease. Sampling consists of ob- 
serving (&Xi) for patients over the period (0 to 7). Note that only 
patients who have the disease prior to T are included in the study. Es- 
timation for this type of data proceeds by reversing the time axis. Let 
Ri = T - Xi. The R,'s are now left truncated in that only individuals with 
values of Ti 5 Ri are included in the sample. Using the method dis- 
cussed in section 4.6 for left-truncated data, the Product-Limit estimator 
of Pr[R > t I R r 01 can be constructed. In the original time scale, this 
is an estimator of Prw < T - t I X 5 T)]. Example 5.3 shows that this 
procedure is useful in estimating the induction time for D S .  

EXAMPLE 5.3 To illustrate the analysis of right-truncated data, consider the data on the 
induction time for 37 children with transfusion-related AIDS, described 
in section 1.19. The data for each child consists of the time of infection T, 
(in quarter of years from April 1, 1978) and the waiting time to induction 
Xi. The data was based on an eight year observational window, so T = 8 
years. 

Table 5.5 shows the calculations needed to construct the estimate of 
the waiting time to infection distribution. Here Ri = 8 -Xi. The column 
headed di is the number of individuals with the given value of Ri or, in 
the original time scale, the number with an induction time of Xi. The 
number at risk column, E;, is the number of individuals with a value 
of R between Xi and Ri or, in the original time scale, the number of 
individuals with induction times no greater than Xi and infection times 
no greater than 8 - Xi. For example, when Xi = 1.0 (R, = 7.0) in 
the original time scale, there are 19 individuals with induction times 
greater than 1 and one individual with an infection time greater than 
7, so Y ,  = 37 - 19 - 1 = 17. The final column of Table 5.5 is the 
Product-Limit estimator for Ri based on d, and Y,. This is an estimate 
of the probability that the waiting time to AU)S is less than x, given X 
is less than 8 years, G(t) = P r R  < x 1 X 5 81. Figure 5.2 shows the 
estimated distribution of the induction time for AIDS for the 37 children 
and 258 adults. 
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TABLE 5.5 
Btimation of the Distribution of the Induction Time to AIDS Based on Right- 
Truncated Data 
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Figure 5.2 Estimated conditional distribution of the induction time f o r m  
for the 258 adults (- )and 37 chiMra (-1 

Practical Note 
1. For right-truncated data, standard errors of the survival estimator 

function folIow directly by using Greenwood's formula. Lagakos et 
al. (1988) discuss techniques for comparing two samples based on 
right-truncated data. Gross and Huber-Carol (1992) discuss regres- 
sion models for right-truncated data. 

I Theoretjcal Note 
1. For right-truncated data, as for left censoring, the reversal of time 

allows direct estimation of the cumulative backward hazard function. 
Keiding and Gill (1990) discuss the large-sample-size properties of 
the estimated survival function for this type of data, using a counting 
process approach. 



Chapter 5 Estimation of Basic Quantities for Other Sampling Schemes 

Estimation of Survival in the 
Cohort Life Table 

A "cohort" is a group of individuals who have some common origin 
from which the event time will be calculated. They are followed over 
time and their event time or censoring time is recorded to fall in one 
of k + 1 adjacent, nonoverlapping intervals, ajl, j = 1, . . . , k + 1, 
A traditional cohort life table presents the actual mortality experience 
of the cohort from the birth of each individual to the death of the last 
surviving member of the cohort. Censoring may occur because some 
individuals may migrate out of the study area, drop out of observation, 
or die unrecorded. 

The cohort life table has applications in assessing survival in animal or 
human populations. The event need not be death. Other human studies 
may have, as an end point, the first evidence of a particular disease or 
symptom, divorce, conception, cessation of smoking, or weaning of 
breast-fed newborns, to name a few. 

The basic construction of the cohort life table is described below: 

1 The first column gives the adjacent and nonoverlapping fixed inter- 
vals, I' = a,], j = 1 , .  . ., k + 1, with @ = 0 and ak+l = m. 

Event and censoring times w~ll fall into one and only one of these 
intervals. The lower-limit is in the interval and the u&r limit is the 
start of the next interval. 

2 .  The second column gives the number of subjects $!, entering the 
jth interval who have not experienced the event. 

3. The third column gives the number of individuals Wj lost to follow- 
up or withdrawn alive, for whatever reason, in the jth interval. As for 
the product limit estimator, the censoring times must be independent 
of the event times. .q ,.... 

4. The fourth column gives an estimate of the number of individuals 
Y, at risk of experiencing the event in the jth interval, assuming 
that censormg times are uniformly distributed over the interval = 
l y  - w,/2. 

5 .  The lifth column reports the number of individuals d, who experi- 
enced the event in the jth interval. 
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6. The sixth c o l u y  gives the estimated survival function at the start of 
the jth interval S(al-l). For the first interval, S(@) = 1. Analogous 
to the product-limit estimator for successive intervals (see 4.2.11, 

7. p e  seventh column gives the estimated probability density function 
f (aml) at the midpoint of the jth interval, a,/ = (a, + al-,)/2. This 
quantity is defined as the probability of havlng the event in the jth 
interval per unit time, i.e., 

' 

8. The eighth column gives the estimated hazard rate, &aml) at the 
midpoint of the jth interval, aml. Based on (2.3.2), this quantity is 
defined in the usual way as 

Note that $(awl is based on a linear approximation between the 
estimate of S at the endpoints of the interval. 

It may also be calculated as the number of events per person-units, 
i.e., 

Because the last interval is theoretically infinite, no estimate of the 
hazard or probability density function (and, of course, their standard 
errors) may be obtained for this interval. 

Other useful quantities in subsequent calculations are the esti- 
mated conditional probability of experiencing the event in the jth 
interval, 3, = d , /q ,  and the conditional probability of surviving 
through the jth interval, p, = 1 - GI = 1 - d , / y /  Specifically, we 
could write (5.4.1) as 

Note, also, that (5.4.2) and (5.4.3) could be written as 

.?(amj) = i(a,-l>ij,/(a, - a,-,) and 

&aml) = 2Q,/[(al - a,-,XI + jI)], 
respectively. 

9. The ninth column gives the estimated standard deviation of survival 
at the beginning of the jth interval (see Greenwood, 1926) which is 
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approximately equal to 

for j = 2, . . . , k + 1, and, of course, the estimated standard deviation 
of the constant ?(a,) = 1 is 0. Note that this estimated Standard 
error is identical to the standard error obtained for the product limit 
estimator in (4.2.2). 

10. The tenth column shows the estimated standard deviation of the 
probability density function at the midpoint of the jth interval which 
is approxjmately equal to 

- 

11. The last column gives the estimated standard deviation of the hazard 
function at the midpoint of the jth interval which is approximately 
equal to 

As noted in Chapter 2, the mean would be computed as in formula 
(2.4.2) with S(x) replaced by ?(x). There is some ambiguity regarding 
the mean lifetime because ?(x) may be defined in several ways, as 
explained in Chapter 4, when the largest observation is a censored 
observation. For this reason, the median lifetime is often used. The 
median survival time may be determined by using relationship (2.4.4). 
For life tables, one first determines the interval where ?(aj) 5 0.5 and 
3(a1-,) 2 0.5. Then, the median survival time can be estimated by 
linear interpolation as follows: 

Because we are often interested in the amount of life remaining after 
a particular time, the mean residual liietime and the median residual 
lifetime are descriptive statistics that will estimate this quantity. For 
reasons stated above, the median residual liietime at time x is often 
the preferable quantity. If the mean residual lifetime can be estimated 
without ambiguity, then, formula (2.4.1) with S(x) replaced by ?(XI is 
used. If the proportion of individuals surviving at time a,-l is S(4-I), 
then the median residual lifetime is the amount of time that needs to 
be added to a,-] so that S(U,-~)/~ = S(U,-~ + mdrl(~,-~)), i.e., the 
mdrl(ai-I] is the increment of time at which half of those alive at 
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time ai-l are expected to survive beyond. Suppose the jth interval 
contains the survival probability S(a,-I + mdrl(a,-l)), then an estimate 
of mdrl(a,-I), determined in a similar fashion as (5.4.8) is given by 

Hence the median residual lifetime at time 0 will, in fact, be the median 
lifetime of the distribution. 

The variance of this estimate is approximately 

hh 

Var [mdrl(a,- = 
[?(al-1)12 

4 Hf (am1)l2 

Some major statistical packages will provide the median residual life- 
time and its standard error at the beginning of each interval. 

- -  

EXAMPLE 5.4 Consider The National Labor Survey of Youth (NLSY) dak set discussed 
in section 1.14. Beginning in 1983, females in the survey were asked 
about any pregnancies that have occurred since they were last inter- 
viewed (pregnancies before 1983 were also documented). Questions 
regarding breast feeding are included in the questionnaire. 

This data set consists of the information from 927 first-born children 
to mothers who chose to breast feed their child and who have complete 
information for all the variables of interest. The universe was restricted 
to children born after 1978 and whose gestation was between 20 and 
45 weeks. The year of b i  restriction was included in an attempt to 
eliminate recall problems. 

The response variable in the data set is the duration of breast feeding 
in weeks, followed by an indicator if the breast feeding is completed 
(i.e., the infant is weaned). 

The quantities described above are shown in Table 5.6 for this data 
set. Because none of the mothers claimed to wean their child before 
one week, the first interval will be from birth to two weeks. As always, 
when data are grouped, the selection of the intervals is a major deci- 
sion. Generally, guidelines used in selecting intervals for frequency his- 
tograms apply, namely, the number of intervals should be reasonable, 
there should be enough observations within each interval to adequately 
represent that interval, and the intervals should be chosen to reflect the 
nature of the data. For example, in this data set, it is of interest to ex- 
amine early weaners in smaller intervals and later weaners in broader 
intervals. This principle is also true in most population momlity studies 
where one wishes to study infant mortality in smaller intervals and later 
mortality may be studied in broader intervals. 
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Life Table for Weaning Example 
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Pra ctica l Notes 

An interesting feature of these data is that the hazard rate for weaning 
is high initially (many mothers stop breastfeeding between I and 5 
weeks), levels off between 5 and 37 weeks, and begins to rise after 37 
weeks as can be seen in Figure 5.3. 

The median weaning time for all mothers starting to breast-feed is 
determined from (5.4.8) to be 11.21 weeks (with a standard error of 
0.5678 weeks) and the median residual weaning time at 25 weeks is 
15.40 weeks (with a standard error of 1.294 weeks). 

1. Summarizing the assumptions made in the lie table methodology, 
we have seen that i) censored event times (including loss or with- 
drawal) are assumed to be independent of the time those individu- 
als would have realized the event had they been observed until the 
event occurred, ii) the censoring times and death times are assumed 
to be uniformly distributed withii each interval, (hence Y,' - W,/2 
is taken to be the number exposed (or at risk) in the jth interval 
(see the number of people at risk in column 4 and the calculation 
of the number of person-units in the denominator of eq. (5.4.4), and 
iii) the hazard rate is assumed constant within intervals. 

2. Individuals lost to follow-up are lost to observation if they move, fail 
to return for treatment, or, for some other reason, their survival status 
becomes unknown in the jth interval. On the other hand, individuals 
withdrawn alive are those known to be alive at the closing date of the 
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study. Such observations typically arise in cohort studies or clinical 
trials. One assumption, as stated in the preceding note, is that the 
survival experience after the date of last contact of those lost to 
follow-up and withdrawn alive is similar to that of the individuals 
who remain under observation. Cutler and Ederer (1958) point out 
that the survival experience of lost individuals may be better than, 
the same as, or worse than individuals continuing under observation. 
Thus, every attempt should be made to trace such individuals and 
to minimize the number of individuals lost. 

1 Time to Wanin5 Week) 
I 

Figure 5.3 Life tab& aimat+? of the hazard rate of the time to infant weaning 

3. SAS and SPSS have routines which reproduce the cohort life table. 1 :. 

1 Theoretical Notes 

1. An alternative estimator of the hazard function is given by Sacher 
(1956) assuming that the hazard rate is constant within each interval 
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but is allowed to vary between intervals. This estimator is given by 
&a,,) = (- ln&,)/(a, - a,-,), which, Gehan and Siddiqui (1973) 
show, is slightly more biased than (5.4.3). 

2. If the lengths of the grouping intervals approach 0, then, the life 
table estimates of the survival function are equivalent to the Kaplan- 
Meier estimate (Thompson, 1977). This limiting process provides a 
framework to link life table estimates with those using exact lifetimes, 
even in the presence of covariates. 

Exercises 

5.1 A study of 190 first-year medical students asked the question, How old 
were you when you first smoked a cigarette? Responses were either 
the exact ages at which they started smoking, that they never smoked, 
or that they currently smoke but cannot remember when they started. 
The data is summarized below. Using this sample, estimate the survival 
function to within 0.001. 

Number of Age t Who 
Age Number Who Started Smoke N m  but Do Not Number of Age t Who Do 
( t )  Smoking at Age t Know tbe Age ?hey Started Not Smoke 

14 2 0 0 
15 3 0 0 
16 10 0 0 
17 13 0 0 
18 5 0 0 
19 3 0 1 
20 2 4 13 
21 1 6 44 
22 2 8 39 
23 1 2 19 
24 0 0 3 
25 0 0 4 
26 1 0 4 

Total 43 20 127 

5.2 A study involving 100 veterinarians was performed to estimate the time 
until their first needlestick injury. They completed a survey which asked, 
How many years after graduation from veterinarian school did you 
experience your first needlestick injury? Many of them could remember 
or determine from their records the month and year their first injury 
occurred, but others could only say that it happened before a cemin 
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time. Others had had no needlestick injury yet at the time of the survey. 
The data below reflects these times after graduation. 

Time ( t )  After Number Who Had Number #%o Had Number Who Never 
Graduation (in Needlestick Injuty at Needlestick Injuty Had Needlestick 

Months) Time t Prior to Time t Iniuw at Time t 

2 3 0 0 
4 2 0 0 
8 1 0 0 

10 2 1 0 
12 4 2 0 
15 6 2 1 
20 3 4 1 
24 3 3 2 
28 2 3 3 
34 1 4 5 
41 0 2 3 
62 0 3 4 
69 0 2 6 
75 0 1 6 
79 0 2 3 
86 0 3 7 

Total 27 32 41 

Estimate the survival (injury-free) function to an accuracy of three 
decimal places. 

5.3 Eighteen elderly individuals who had entered a nursing home in the 
past five years were asked when they experienced their first fall (post- 
admittance). Some of the individuals only indicated that it occurred 
within a certain time period (in months), whereas others said they had 
never had a fall. The data (in months post-admittance) is as follows: 

Falls occurred in (6-121, (48-601, (24-363, (12-241, (18-241, (3-121, (36- 
421, (12-361 

Times since admittance for individuals who never had a fall: 23, 41, 13, 
25, 59, 39, 22, 18, 49, 38. 

Estimate the survival function of the time from admittance to first fall 
to within three decimal places. 

5.4 Twenty women who had a lumpectomy as a primary treatment for 
breast cancer were followed periodically for the detection of a metasta- 
sis. When a metastasis was detected it was only known that the time of 
the clinical appearance of the metastasis was between the times of the 
last two visits to the physician, so the data is interval-censored. Suppose 
the data is as follows: 
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Times in months between which a metastasis could be detected, 
(12,181, (20,241, (10,131, (14,151, (25,331, (33,441, (18,221, (19,251, 
03,221, (11,151. 

Times last seen for patients disease free at the end of study: 
25, 27, 33, 36, 30, 29, 35, 44, 44, 44. 

Estimate the survival time for the distribution of the time from surgery 
to first clinical evidence of a metastasis. 

5.5 A study was performed to estimate the distribution of incubation times 
of individuals known to have a sexually transmitted disease (Sm). 
Twenty-five patients with a confirmed diagnosis of STD at a clinic were 
identified on June 1, 19%. All subjects had been sexually active with a 
partner who also had a confirmed diagnosis of a STD at some point after 
January 1,1993 (hence T = 42 months). For each subject the date of the 
first encounter was recorded as well as the time in months from that first 
encounter to the clinical confirmation of the STD diagnosis. Based on 
this right-truncated sample, compute an estimate of the probability that 

Date of First Months From 1/93 to Time (in months) until K7D 
Encounter Encounter Dimnosed in Clinic 
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the infection period is less than x months conditional on the infection 
period's being less than 42 months. 

Estimate the distribution of infection-free time (survival). 

Using the data on 258 adults with AIDS reported in section 1.19, estimate 
the probability that the waiting time to AIDS is less than x,  given the 
waiting time is less than eight years. 

The following data is based on a cohort of 1,571 men in the Framingham 
Heart Study who were disease free at age 40 and followed for a period 
of 40 years. (See Klein, Keiding, and Kreiner (1995) for a detailed 
description of the cohort.) Of interest is the distribution of the time 
to development or coronary heart disease (CHD). The following life 
table data is available to estimate this distribution. 

Age Interval Number of CHD Events Number Lost to Follow-Up 

Construct a cohort life table for this data. 

Individuals seen at a large city sexually transmitted disease (STD) clinic 
are considered at high risk for acquiring HIV. The following data is 
recorded on 100 high-risk individuals who are infected with some STD, 
but did not have HTV, when they were seen at the clinic in 1980. Their 
records were checked at subsequent visits to determine the time that 
HIV was first detected. 

Number of HN- 
Year Intervals Positive Number Lost to Follow-IID 

Construct a cohort life table for the incidence of HlV. 

An investigator, performing an animal study on mammary carcinogen- 
esis risk, wants to describe the distribution of times (in days) until the 
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onset of the first palpable tumor for rats fed a control diet. Mammary 
tumors were induced by a single oral dose (5 mg dissolved in 1.0 M, 
corn oil) of 7,12-dimethylbenz(a)anthracene (DMBA) administered by 
intragastric intubation when the animals were seven weeks old. Start. 

'"g six weeks after DMBA administration, each rat was examined once dally 
and the time (in days) until the onset of the first palpable tumor was 
recorded. Three rats had a palpable tumor when the first examination 
was made at day 62. The remaining times when the first palpable tumor 
was detected are below. 

Times (in days) when the first palpable tumor was detected: 
46, 49, 54, 61, 62, 64, 68, 120, 150, 160. 

Estimate the survival time for the distribution of the time from DBMA 
administration until the fmt palpable evidence of a tumor occurred. 

5.10 Wagner and Altmam (1973) report data from a study conducted in the 
Amboseli Reserve in Kenya on the time of the day at which members 
of a baboon troop descend from the trees in which they sleep. The 
time is defined as the time at which half of the troop has descended 
and begun that day's foraging. On some days the observers arrived 
at the site early enough to observe at what time this event occurred, 
whereas on other days they arrived after this median descent time, so 
that day's observation was left censored at their amval time. That data 
is in the following tables. By reversing the time scale to be the number 
of minutes fiom midnight (2400 hours), estimate the distribution of the 
time to descent for a randomly selected troop of baboons. 
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Obsetved Tim ofDay when Half of the Troop Descendedfrom the Trees 
p~ - - 

Descent 
Day Date T i e  1 Day 

- - 

Descent 
Date Tim 

Descent 
Day Date 

39 10/6/64 
40 11/3/64 
41 23/7/64 
42 27/2/64 
43 31/3/64 
44 10/4/64 
45 22/4/64 
46 7/3/64 
47 29/2/64 
48 13/5/64 
49 20/4/64 

1 50 27/4/64 
1 51 28/4/64 

I :: 23/4/64 
4/3/64 

54 6/5/64 
55 26/6/64 
56 25/3/64 
57 8/7/64 

1 58 21/4/64 

Time 

0859 
0900 
0904 
0905 
0905 
0907 
0908 
0910 
0910 
0915 
0920 
0930 
0930 
0932 
0935 
0935 
0945 
0948 
0952 
1027 
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i- 

i Topics in Univariate 
Estimation 

observer Arrival Time on Days Where themcent Time Was Not Observed 

In Chapter 4, we presented two techniques for providing summary 
curves which tell us about the survival experience of a cohort of indi- 
viduals. These two estimators were the Kaplan-Meier estimator, which 
provides an estimate of the survival function, and the Nelson-Aalan 
estimator, which provides an estimate of the cumulative hazard rate. 
These statistics are readily available in many statistical packages. 

Although these two statistics provide an investigator with important 
information about the eventual death time of an individual, they provide 
only limited information about the mechanism of the process under 
study, as summarized by the hazard rate. The slope of the Nelson- 
Aalan estimator provides a crude estimate of the hazard rate, but this 
estimate is often hard to interpret. In section 6.2, we discuss how these 
crude estimates of the hazard rate can be smoothed to provide a better 
estimator of the hazard rate by using a kernel-smoothing technique. 

In some applications of survival analysis, an investigator has available 
very precise information about the mortality rates in a historical control 
or standard population. It is of interest to compare the hazard rates in 
the sample group to the known hazard rates in the reference popu- 
lation to determine how the mortality experience of the experimental 
subjects differs. The "excess" mortality in the experimental group can 

Day Date 
Arrival 

Day Date Time 
Arrival 

Day Date Time 


