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In Chapter 4, we presented two techniques for providing summary 
curves which tell us about the survival experience of a cohort of indi- 
viduals. These two estimators were the Kaplan-Meier estimator, which 
provides an estimate of the survival function, and the Nelson-Aalan 
estimator, which provides an estimate of the cumulative hazard rate. 
These statistics are readily available in many statistical packages. 

Although these two statistics provide an investigator with important 
information about the eventual death time of an individual, they provide 
only limited information about the mechanism of the process under 
study, as summarized by the hazard rate. The slope of the Nelson- 
Aalan estimator provides a crude estimate of the hazard rate, but this 
estimate is often hard to interpret. In section 6.2, we discuss how these 
crude estimates of the hazard rate can be smoothed to provide a better 
estimator of the hazard rate by using a kernel-smoothing technique. 

In some applications of survival analysis, an investigator has available 
very precise information about the mortality rates in a historical control 
or standard population. It is of interest to compare the hazard rates in 
the sample group to the known hazard rates in the reference popu- 
lation to determine how the mortality experience of the experimental 
subjects differs. The "excess" mortality in the experimental group can 

Day Date 
Arrival 

Day Date Time 
Arrival 

Day Date Time 



166 Chapter 6 Topics in Univariate Estimation - 
have either a multiplicative or additive effect on the reference hazard 
rate. In section 6.3, estimation techniques for both the additive and 
multiplicative models for excess mortality are developed. 

In section 6.4, the problem of estimation of the survival function for 
right censored data is considered from a Bayesian perspective. In this 
framework, an investigator has some prior idormation on the survival 
function from results of similar studies, from a group of experts, or 
from some reference population. The prior idormation is combined 
with sample data to provide a posterior distribution of the survival 
function on which the estimation is based. The combination of prior 
and sample information can be done analytically by Bayes theorem or 
by a Monte Carlo method via the Gibbs sampler. Both methods are 
illustrated. 

Estimating the Hazard Function 

The Nelson-Aalen estimator ~ ( t ) ,  discussed in sections 4.2 or 4.6, pro- 
vides an efficient means of estimating the cumulative hazard function 
H(t). In most applications, the parameter of interest is not H(t), but 
rather its derivative Mt), the hazard rate. As noted earlier, the slope 
of the Nelson-Aalen estimator provides a crude estimate of the hazard 
rate Mt). Several techniques have been proposed in the literature to 
estimate Mt). In this section, we shall concentrate on the use of kernel 
smoothing to estimate Mt). 

Kernel-smoothed estimators of h(t) are based on the Nelson-Aalen 
estimator ~ ( t )  and its variance V [ ~ ( t ) l .  The estimator H(t)  can be 
based on right-censored data (see section 4.2) of on left-truncated data 
(see section 4.6). Recall that, in either case, H(t) is a step function 
with jumps at the event times, 0 = < tl < < . < tD. Let 
AH(&) = ~ ( t , )  - ~ ( t , - ~ )  and A a ~ ( t ~ ) l  = f i ~ ( t ~ ) l  - i ' [~ ( t~ -1 )1  de- 
note th_e magnitude of the jumps in H(ti) and VIH(ti)l at time ti. Note 
that AH(ti) provides a crude estimator of Mt) at the death times. The 
kernel-smoothed estimator of h(t) is a weighted average of these crude 
estimates over event times close to t .  Closeness is determined by a 
bandwidth b, so that event times in the range t - b to t + b are in- 
cluded in the weighted average which estimates Kt) .  The bandwidth 
is chosen either to minimize some measure of the mean-squared error 
or to give a desired degree of smoothness, as illustrated in Example 
6.2. The weights are controlled by the choice of a kernel function, KO, 
defined on the interval [ - I ,  + I ] ,  which determines how much weight 
is given to points at a distance from t .  Common choices for the kernel 
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are the uniform kernel with 

K(x) = 1/2 for - 1 5  x 5 1, (6.2.1)  

the Epanechnikov kernel with 

K(x) = 0.75(1 - 2 )  for - 1 5 x 5 1, (6.2.2) 

and the biweight kernel with 

15 
K(X)  = --(I - 2 ) 2  for - 1 5 x 5 1. 

16 
(6.2.3) 

The uniform kernel gives equal weight to all deaths in the interval 
t - b to t + 6, whereas the other two kernels give progressively heavier 
weight to points close to t .  

The kernel-smoothed hazard rate estimator is defined for all time 
points t > 0. For time points t for which b 5 t 5 tD - b, the kernel- 
smoothed estimator of Mt) based on the kernel K O  is given by 

The variance of &t) is estimated by the quantity 

t - t ,  
02[&t)l = b-2 x K (T) A a ~ ( t i l 1 .  

i=1 

When t is smaller than b, the symmetric kernels described in (6.2.11- 
(6.2.3) are not appropriate because no event times less than 0 are 
observable. In this region, the use of an asymmetric kernel is suggested. 
Let q = t /b .  We define a modified kernel which accounts for the 
restricted range of the data. Following Gasser and Miiller (1979) these 
modified kernels, for the uniform kernel ( 6 . 2 3 ,  are expressed by 

&(x) = - 4 ( 1 + 4 ) )  + - 6 ( 1 - q ) x ,  f o r - x  (6.2.6) 
(1 + 914  (1 + qI3 

for the Epanechnikov kernel (6.2.2), 

&(XI = K(x)(aE + &x), for -1 5 x 5 q, (6.2.7) 

where 

and 
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and for the biweight kernel (6.2.31, 

K,(x) = K(x)(agW + PBWx), for -1 x 5 q, (6.2.8) 

where 

and 

For time points in the right-hand tail (to - b < t < to) let q = ( t ~  - t)/b. 
The asymmetric kernel Kq(x) in (6.2.6H6.2.8) is used with x replaced 
by -x. The estimated, smoothed, hazard rate and its variance are given 
by (6.2.4) and (6.2.9, respectively, using the kernel Kg. 

Confidence intervals or confidence bands for the hazard rate, based 
on the smoothed hazard rate estimate, can be constructed similarly 
to those for the cumulative hazard rate discussed in Chapter 4. For 
example a (1 - a )  x 1000h pointwise confidence interval for the hazard 
rate, based on a log transformation, is expressed as 

Some care in interpreting this interval must be taken because the esti- 
mator &t) may be quite biased (See Practical Note 1). 

EXAMPLE 6.1 We shall find the smoothed hazard rate estimates, in the three disease 
categories, for the disease-free survival times of bone marrow transplant 
patients discussed in section 1.3. To illustrate the calculations, consider 
the group of ALL patients. In Example 4.2 the Nelson-Aalen estimator of 
the cumulative hazard rate of the disease-free survival time was found 
(see Table 4.3). For illustrative purposes, we shall use the Epanechnikov 
kernel with a bandwidth of 100 days. An estimate of Nt)  over the first 
two years (730 days) after transplant is desired. 

Table 6.1 shows some of the calculations needed to construct the 
estimate. First, consider the estimate at t = 150 days. Here, t is in the 
interval b to tD - b (662-loo), so that the symmetric kernel (6.2.2) is 
used. The estimate of the hazard rate is given by &150) = [0.0270 X 
0.0731 + 0.0278 X 0.3168 + 0.0286 X 0.4428 + 0.0294 X 0.5913 + 0.0303 x 
0.6113 + 0.0313 x 0.6239 + 0.0322 x 0.6300 + 0.0667 x 0.6912 + 0.0357X 
0.7169 + 0.0370 X 0.7137 + 0.0385 X 0.6177 + 0.0400 X 0.6048 + 0.0435 X 
0.2700]/100 = 0.00257. Simjlar calculations, using (6.2.6), yield an esti- 
mated standard error of u(N150)) = 0.00073. 
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TABLE 6.1 
Weights Used in Smoothing the Nelson-Aakm Estimator for the ALL Group 

I 150 - ti 
ti A iictoi A fiii(toi 50 - t, 

K(-) 
(G) 600 - ti (60:; ti) 

100 

At t = 50 days, the asymmetric kernel (6.2.7) is used with q = 
50/100 = 0.5. We have a6 = 64(2 - 4 X 0.5 + 6 X c1.5~ - 3 X C1.5~)/[(1+ 
0.514(19 - 18 X 0.5 + 3 X 0S2)1 = 1.323 and BE = 240(1 - 0.5)2/[(1 + 
.5)4(19 - 18 X 0.5 + 3 X 0S2)1 = 1.102. Thus &,5(-o.05) = 0.75r1.323 + 
1.102(-0.0511 X (1 - 0.052) = 0.9485. Applying formulas (6.2.4) and 
(6.2.5) yields b 0 )  = 0.0015 and u [ b ) l  = 0.00052. Note that the tail 
adjustment using this kernel gives a higher weight to estimates of AH 
smaller than 50 to compensate for the fact that we can not observe any 
estimates in the range -50 to 0. 

At t = 600 days we make the upper tail correction. Here q = (662 - 
6OO)/lOO = 0.62, which yields a~ = 1.148 and PE = 0.560. Only 
deaths in the range 500-662 have a nonzero value of the kernel. For 
ti = 609 days ( x  = -0.09) the weght is K(-0.09) = 0.7511.148 + 
0.560(0.09)1(1 - 0.092) = 0.8918. Note that, because we are estimating 
h in the right-hand tail, we have replaced -0.09 by 0.09. Applying 
(6.2.4) and (6.2.5) yields &600) = 0.0013 and u[&600)1 = 0.00084. 
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Figure 6.1 Smoothedestimates of the hazard rates for bone marrow transplant 
patients based on the E@nechnikou kernel with a bandwidth of 100 days. ALL 
(-); ~-~ risk (-); M - H i g h  risk c---). 

Figure 6.1 shows the estimated hazard rates for the three disease 
groups, indicating that the risk of relapse or death increases in the first 
150 days after transplant after which the hazard rate decreases. The 
initial peak is higher for AML high-risk patients. The estimated hazard 
rates again contirm the impression that AML low-risk patients have the 
lowest rate of relapse or death. 

EXAMPLE 6.2 We shall illustrate the effects of changing the bandwidth and the choice 
of kernel on the kidney transplant data in section 1.7. Here, we shall 
ignore the age and race of the patient at the time of transplant. The es- 
timate of the hazard rate constructed serves as the unadjusted mortality 
rate for these transplant patients. 

Figure 6.2 Esh'mated cumulative hazard rate for kidney transplantpatients 

Figure 6.2 shows the Nelson-Aden estimate of the cumulative hazard 
rate on which the smoothed hazard rate estimator is based. Figure 6.3 
shows the estimated hazard rate based on a bandwidth of 1 year for the 
uniform, Epanechnikov, and biweight kernels. Note that the kernels 
provide merent degrees of smoothness. The biweight kernel is the 
smoothest, whereas the uniform kernel is rather jagged, typical of the 
performance of these kernels. 

Figure 6.4 shows the effects of changing the bandwidth on the esti- 
mate of h(t). In this figure, based on the Epanechnikov kernel, we see 
that increasing the bandwidth provides smoother estimates of the haz- 
ard rate. This increase in smoothness is at the expense of an increase 
in the bias of the estimate (see Practical Note 1). 
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Figure 6.3 Effects of changing the kernel on the smoothed hazard rate es- 
timates for kid- transphntpatietzts using a bandwidth of 1 year. Uniform 
kernel (-); Epanechnikou Kernel (--) Bi~er'ght kernel (---I 

One problem in using kernel smoothing to obtain an estimate of the 
hazard rate is the selection of the proper bandwidth. One way to pick a 
good bandwidth is to use a cross-validation technique for determining 
the bandwidth that minimizes some measure of how well the estirna- 
tor performs. One such measure is the mean integrated squared error 
(MSE) of b over the range rL to r u  defined by 
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d I 1 4 A Q 
Years Port Tranrplant 

Figure 6.4 Effects of changing the bandwicfth on the smoothed hazard 
rate estimates for kidney tmnsphnt patients using the Epanechnikat kernel. 
bandwidth = 0.5years (-1 bandwidth = 1.0 years (-1 bandwidth = 
1 . 5 y e a t ~  (---.I bandwidth = 2.0 years (- . - . -) 

This function depends both on the kernel used to estimate h and on the 
bandwidth b. Note that, although the last term depends on the unknown 
hazard rate, it is independent of the choice of the kernel and the band- 
width and can be ignored when finding the best value of b. The fmt 
term can be estimated by $,: %(u)du. If we evaluate b at a grid of points 
rL = t ~ 1  < - - < u,,, = rU :  then, an approximation to this integral by 
the trapezoid rule is ~ : i ~ ( y ) [ % ( u ~ )  + %(U,+~)I. The second term 
can be estimated by a cross-validation estimate suqested by e a u -  
Hansen (1983a and b). This estimate is b-l K(~)AH(~, )AH(~, ) ,  
where the sum is over the event times between r~ and 7". Thus, to find 
the best value of b which minimizes the MISE for a fixed kernel, we 
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find b which minimizes the function 

UYAMPLE 6.2 (continued) To find the best bandwidth for the kidney transplant pa- 
tients, in Figure 6.5 we show a plot of b versus g(b) for the three kernels 
with rL = 0, rU = 6 years. This figure is based on a grid of 100 equally 
spaced values for b over the range 0.01-1.00. The optimal values of b 
are 0.17 for the uniform kernel, 0.20 for the Epanechnikov kernel and 

Figure 6.5 Estimated ni-k function, g(b), for use in determination of the bat 
bandwidth for the kidney transphnt data. Uniform kernel (-); ~panech- 
nikoo kernel (-) Biweight kernel (---). 
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Figure6.6 Smoothed estimate ofthe hazard rate (-) and9596 conjkknce 
interval (-1 for the time to death following a kidney tramplant based on the 
biweight kernel and the best bandwidth. 

0.23 for the biweight kernel. Figure 6.6 shows the estimated hazard rate 
and a 95% pointwise confidence interval based on the biweight kemel 
with this optimal bandwidth. 

EXAMPLE 6.1 (continued) The cross validation technique yields optimal band- 
widths, based on the Epanechnikov kemel, of 161 days for the ALL 
group, 50 days for the AML low-risk group, and 112 days for the A m  
high-risk group for the estimates of the hazard rate over the m g e  
0-730 days. Figure 6.7 shows the estimated hazard rates using these 
values of 6. 
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Figure 6.7 Smoothed ofthe hazard rates for bone marrow transplant 
patien& based on the Epanechnikar kernel using optimal bandwidths. AMI-Low 
risk (-1 AML-High risk (---) ALL (-) 

Pra ctica 1 Notes 

1 .  One must be very careful in interpreting the kernel-smoothed es- 
timates constructed by these techniques. What these statistics are 
estimating is not the hazard rate h(t), but rather a smoothed ver- 
sion of the hazard rate h*(t). This quantity is defined by h'(t) = 
b-' J K(q)h(u)du.  It depends on both the bandwidth b and the 
kernel used in estimation. The confidence interval formula is, 
faa, a confidence interval for h'. 

2. All that is required to apply the techniques in this section is an estima- 
tor of the cumulative hazard rate and its variance. Hence, these tech- 
niques apply equally well to right-censored or left-truncated &ta. 
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3. The smoothed estimator of the hazard rate was first introduced in 
Rarnlau-Hansen (1983a and b). A detailed discussion of the large- 
sample properties of this estimator can be found in Andersen et al. 
(1993). A good general survey of smoothing techniques is found in 
Izenrnan (1991). 

Theoretics 1 Notes 

1 .  The mean integrated squared error (MISE) measures E{J;[&U) - 
h(u)12du}. This quantity is asymptotically approximately equal to 
the sum of a "bias" term, J{h*(u) - h ( ~ ) } ~ d u  and a "variance" term 
S E{[&u) - h'(u)12)du. A small bandwidth produces a small bias 
term, but a large variance term, whereas the reverse holds for a 
large bandwidth. The optimal bandwidth is a trade-off between the 
two terms. 

2. The bias of the smoothed hazard rate estimator, for large n, is ap- 
proximately, 0.5bZhN(t)k', where h" is the second derivative of h 
and k' = J!, ?K(s)ds. 

6.3 Estimation of Excess Mortal ity 

In some applications of survival analysis techniques, it is of interest 
to compare the mortality experience of a group of individuals to a 
known standard survival curve. The reference survival curve, which 
may be different for each individual in the sample, could be drawn from 
published mortality tables or other population-based mortality studies. 
Two simple models have been proposed to provide an inference on 
how the study population's mortality differs from that in the reference 
population. 

Suppose we have data on n individuals. Let Oj(t) be the reference 
hazard rate for the jth individual in the study. This known reference 
hazard rate typically depends on the characteristics of the jth patient, 
such as race, sex, age, etc. The first model for excess mortality, com- 
monly known as the relative mortality model, assumes that the hazard 
rate at time t for the jth patient under study conditions, hj(t), is a 
multiple, P(t), of the reference hazard rate for this individual, that is, 

Here, if P(t) is greater than 1 ,  then, individuals in the study group 
are experiencing the event of interest at a faster rate than comparable 
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individuals in the reference population. Let B(t) = J; P(u)du be the 
cumulative relative excess mortality. 

The data available for estimating B(t), for each individual, consists 
of study times and death indicators. For the jth individual, let ~ / ( t )  
be 1 if the individual is at risk at time t and 0 ,  otherwise. Note that 
this definition of Y/(t) allows for left-truncated and right-censored &b, 
Define the function Q(t)  = Oj(t) Yj(t). To allow for ties in the dab, 
let tl < t2 < . . - < t, be the times at which the events occur and di the 
number of events observed at time ti. The estimator of B(t) is given by 

An estimator of the variance of ~ ( t )  is given by 

The statistic h( t )  has a large-sample normal distribution so that confi- 
dence intervals or confidence bands for the cumulative relative mortality 
can be constructed by replacing the Nelson-Aalen estimator and its vari- 
ance by h( t )  and its variance in the appropriate formulas in sections 
4.4 and 4.5. A crude estimator of the relative risk function P(t) is given 
by the slope of the estimated cumulative relative mortality estimator. 
An improved estimator of h(t )  can be found by a kernel smoothing of 
h( t )  similar to that developed for the estimated cumulative hazard rate 
discussed in the previous section. 

EXAMPLE 6.3 To illustrate the estimation of the relative mortality function consider 
the data on the 26 psychiatric patients in Iowa described in section 
1.15. We shall use the 1959-1961 Iowa State life tables (US Dept. of 
Health and Human Services (1959)) as the reference population. This 
life table in Table 6.2 is based on the 1960 census and the average 
number of deaths in the period 195F1961 and provides the population 
survival functions S ( )  for males and females. For the population hazard 
rates, we assume that the hazard rates are constant over each one 
year interval reported in the table, so that the hazard rate at age a 
is Ma) = - ln[S(a)l - {- ln[S(a + 1)). Table 6.2 shows values of the 
estimated hazard rates for males and female for a = 18,19, . . . ,77. 

The time scale used in this example is the time on study for each 
patient. A patient who enters the study at age a has Oi(t) found by 
using the hazard rate in the ( a +  0th row of Table 6.2. For example, the 
female who entered the study at age 36 has O(1) = AF(36+1) = 0.00130, 
O(2) = AF(38) = 0.00140, etc. Table 6.3 shows the estimate of B(t) 
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TABLE 6.2 
1960 Iowa Standard Mortality 

Males 

. Sum'val Hazard Sum'val Hazard 
4 e  Function Rate 4 e  Function Rate 

and its standard error. Figure 6.8 shows the estimated value of B(t) 
and a 95% pointwise confidence interval for B(t) based on the log- 
transformed confidence interval formula for the cumulative hazard rate. 
(See Practical Note 1 in section 4.3. Here we use Eq. 4.3.5 and replace 
~ ( 6 )  by k( t )  and aH(i&) by the standard error of k(t) . )  

The slope of &t) in Figure 6.8 provides a crude estimate of P(t). 
Here, we see that, in the first two years of observation, psychiatric pa- 
tients were 20-30 times more likely to die than comparable individuals 
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TABLE 6.2 
1960 Iowa Standard Mortality 

Females 

Sum'val Hazard 
- 

Suruival Hazard 
h e  Function Rate h e  Function Rate 

in the standard population. In years 3-40, the patients were between 
2-5 times more likelv to die. 

A second model, which can be used for comparing the study popula- 
tion to a reference population is the excess or additive mortality model. 
Here, we assume that the hazard rate at time t for the jth individual 
under study is a sum of the population mortality rate and an ex- 
cess mortality function a(t). The function &), which is assumed to be 
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TABLE 6.3 
Computation of Cumulative Relative Mortality for 26 Psychiatric Patients 

tl d, Q(t,) h(t) fi&t)l .\/'%Zi 
1 2 0.05932 33.72 568.44 23.84 
2 1 0.04964 53.86 974.20 31.21 
11 1 0.08524 65.59 1111.84 33.34 
14 1 0.10278 75.32 1206.51 34.73 
22 2 0.19232 85.72 1260.58 35.50 
24 1 0.19571 90.83 1286.69 35.87 

Figure 6.8 Estimated cumulative relative mortaliw (solid line) and 95%point- 
wise confidence interval (dashed line) for Iowapsychiatn'c patients 
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the same for all individuals in the study group, can be positive when 
study patients are dying faster than those in the reference population 
or be negative when the study group has a better survival rate than the 
reference population. The model is 

in the case of the multiplicative model, direct estimation of a() is 
difficult. Instead, we estimated the cumulative excess mortality function 
A(t) = Jd a(u)du. The estimator of A(t) is constructed from the differ- 
ence of the observed hazard rate, _estimated by the ordinary Nelson- 
h l e n  estimator (see section 4.2) H(t) and an "expected" cumulative 
hazard rate O(t) based on the reference hazard rates. The expected cu- 
mulative hazard rate is a weighted average of the reference cumulative 
hazard rates at each time, where the weights are based on the fraction 
of individuals at risk at time t,  that is, 

where Y(t) = Cy=l Y/(t) is the number at risk at time t .  
The estimated excess mortality is given by 

The estimated variance of the cumulative excess mortality function is 
given by the variance of the Nelson-Aalen estimator, namely, 

As for the relative mortality model, confidence intervals and confidence 
bands for A(t) can be computed using the techniques in sections 4.3 
and 4.4, and smoothed estimates of a ( t )  can be constructed using the 
methods of the previous section. 

The A(t) may be either negative or positive. It will be decreasing and 
negative for times smaller than the smallest death time. With this caution 
in mind, one may use these estimates to construct "corrected survid 
curves. The Kaplan-Meier estimator, S(t), provides an estimate of the 
observed or uncorrected survival curve. The survival curve, Sb(t) = 
exp[-O(t)], provides an estimate of the expected survival curve if the 
reference mortality model is the same as the study population. The 
ratio of these two survival functions, SC(t) = S(t)/s8(t), is taken as 
a "corrected" survival function estimate for the study population. Cm 
must be taken in using this curve because the ratio of the two curves 
may be greater than one (especially for small t) and the corrected 
survival curve need not be noninaeasing. 

1 EXAMPLE 6.3 
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(continued] To estimate the expected hazard rate using the stan- 
dard Iowa mortality data, we first compute O(t). Here, we assume, 
again, that the hazard rates are constant over each age interval of unit 
length which simplifies computations. At one year after entry into the 
study, @(I) = C;=, As(aj)/26, where aj is the age of the jth indi- 
vidual at entry into the study and As() is the value of the hazard 
rate from Table 6.2 for the patient's sex. For an integer age t > 1 ,  
O(t) = O(t - 1) + C, As(aj + t - l ) /Y ( t ) ,  where the sum is over all 
patients under observation in the interval [ t  - 1, t). For noninteger times, 
O(t) is found by linear interpolation. 

Table 6.4 shows the results of the computations. Figure 6.9 shows 
the observed cumulative hazard rate [ ~ ( t l l ,  the expected cumulative 
hazard rate [O(tll and the cumulative excess mortality [&tll. Notice that 
the expected cumulative hazard function is a smooth function of the 
number of years on study, whereas the Nelson-Aalen estimator is a step 
function with jumps at the observed death times. The excess mortality 
function has jumps at the death times and is decreasing between the 
death times. From this figure, we see that a crude estimate of a( t ) ,  
given by the slope of &), is a function which is about 0.05 for t < 2, 
about 0 for 2 < t < 21, and, then, about 0.05 for t > 21. After 30 years 
on study, the cumulative excess mortality is about 0.35, so we estimate 
that, in a group of 100 patients, we would see 35 more deaths after 30 
years than we would expect to see in a standard population. A crude 
95% confidence interval for the excess number of deaths after 30 years 
is 0.3592 + 1.96(0.1625) or (0.0407,0.677'7). These estimates are a bit 
imprecise due to the relatively small sample size of this study. 

Figure 6.10 depicts the adjusted survival curves for this study. Again, 
the expected survival function is a smooth curve, and the observed 
survival curve is a step function. It is of interest here to note that the 
"correctedn sunival curve is not monotone decreasing and, as such, is 
not strictly a survival curve. A better graphical representation is to plot 
this function by connecting the points g ( t , ) / ~ * ( f )  only at the death 
times. 

Practica 1 Notes 

1. The estimator of relative mortality is a time-varying extension of 
the standard mortality ratio ( S M R )  estimator (Breslow, 1975) which 
assumes a constant relative mortality over time. For this estimator, 
one computes E(t) = Q(u)du, which is thought of as the expected 
number of deaths before time t.  If P(t) = Po, a constant, then, the 
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TABLE 6.4 
Computation for the Bcess Mortality Model 
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/ 

1 

I I I I 
0 10 u) 30 40 

Years on Smdy 

Figure 6.9 Estimated cumulatfw excess mortality forlowapsychiatricpafients. 
Nekon-Aalen estimator (-) Expected cumulatiw hazard (-) Cumula- 
tive excess mortality (---) 

maximum likelihood estimator of P, is the total number of deaths 
divided by E(tMkY), where & is the largest on study time. The SMR 
is 100 times this value. If the constant mortality model holds, then, 
a plot of h(t)  versus t should be a straight line through the origin. 
Andersen and Vzeth (1989) present a test for constant mortality and a 
version of the total time on test plot which can be used as a graphical 
check of the assumption of constant relative mortality. 

2. An estimator of constant excess mortality a(t)  = a,, was proposed 
by Buckley (1984). For this estimator, let T( t )  = S,' Y(u)du be the 
total time on test at time t, that is, the number of person-years of 
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Figure 6.1 0 Adjusted sunrival c u m  for Iowa psychiatric patients. Observed 
sunrival (-1 Expected survival (-) Cowected sunrival (---) 

observation prior to time t .  At the largest study time, h, T(thLY3 
is the total years of exposure of all study individuals. The statistic 
D-E'hd estimates q. Here D is the total number of deaths. This esti- T ~ ~ )  
mate is the difference between the occurrence/exposure rate and the 
expected number of deaths per time on test. BucMey also presenb 
a maximum likelihood estimator that must be found numerically. 
Again, the constant excess mortality model is reasonable if the plot 
of &t) versus t is linear. Andersen and Vzth (1989) present a formal 
test. 

3. A more general model .for excess mortality is a mixed model. Here, 
b,(t) = P(t)e,(t) + a( t ) .  This model can be fit into an additive 
regression formulation discussed in Chapter 10. 

Theoretical Note 

1 .  Detailed derivation of the estimators for excess and relative mortality 
are found in Andersen and Vzth (1989). These statistics can be 
derived using a counting process technique as discussed in Andersen 
et al. (1993). 

6.4 Bayesian Nonparametric Methods 

An alternative to the classical nonparametric approach to estimating 
the survival function discussed in Chapters 4 and 5 is to use Bayesian 
nonparametric methods. In applying these methods, an investigator's 
a priori belief in the shape of the survival function is combined with the 
data to provide an estimated survival function. The prior information, 
which may be based on previous experience with the process under 
observation or based on expert opinion, is reflected in a prior distri- 
bution for the survival function. The sample information is contained 
in the likelihood function. These two distinct pieces of information are 
combined by Bayes' theorem to obtain an a posteriori distribution of 
the survival function which is the distribution of the survival function, 
given the data. 

In the Bayesian approach, the parameters of the model are treated as 
random variables selected from the prior distribution. This prior distri- 
bution, which is a multivariate distribution on the parameters, is selected 
to reflect the investigator's prior belief in the values of the parameters. 
Typically, the prior means reflect the investigators best guess, before 
seeing any data, of the value of the parameters, and the prior variance 
is a measure of the investigator's uncertainty in his prior means. Often 
one can think of the prior variance as being inversely proportional to 
the amount of sample information to be represented by the prior. 

In our problem, the parameter of interest is the survival function or, 
equivalently, the cumulative hazard function. This is to be treated as a 
random quantity sampled from some stochastic process. Nature picks 
a sample path from this stochastic process, and this is our survival 
function. We, then, have data sampled from a population with this 
survival function which we shall combine with our prior to obtain the 
distribution of the survival function, given the data. 

To obtain an estimate of the survival function, we need to speclfy 
a loss function on which to base the decision rule. Analogous to the 
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simple parametric case, we shall use the squared-error loss function 

where d t )  is a weight function. This loss function is the weighted 
integrated difference between the true value of the survival function 
and our estimated value. For this loss function, the value of 2, which 
minimizes the posterior expected value of L(S, S), is the posterior mean 
and the Bayes risk E[L(S, 2 )  1 DATA] is the posterior variance. 

Two classes of prior distributions have been suggested for this prob- 
lem. Both lead to closed form estimates of the survival function using 
the squared-error loss function. These priors are chosen because they 
are conjugate priors for either the survival function or the cumulative 
hazard function. For a conjugate prior, the prior and posterior distribu- 
tions are in the same family. 

The first prior is for the survival function. For this prior, we assume 
that the survival function is sampled from a Dirichlet process with a 
parameter function a .  A Dirichlet process, defined on the positive real 
line, has the property that, for any set of intervals Al, . . ., Ak, which 
partition the positive real line, the joint distribution of the prior prob- 
abilities Pr[X E All = W l ,  . . ., P r w  E Akl = Wk has a k dimen- 
sional Dirichlet distribution with parameters [a(Al) ,  . . ., a(AkI1. This 
property must hold for any such set of intervals and any k. A k vector 
( W l ,  . . . , W k )  has a k-dimensional Dirichlet distribution with parameters 
( a l ,  . . . , a k )  if W; = Z i / z ; = ,  Zi where the Zi's are independent gamma 
random variables with shape parameter ai.  The joint density function 
of ( W l , .  . ., W k - l )  is given by 

The mean of W; is ai /a  and the variance is ( a  - a i ) a i / ( a 2  + a 3 )  where 
a = z;=, ai. When k = 2 the Dirichlet distribution reduces to the beta 
distribution with parameters ( a l ,  a z ) .  

To assign a prior distribution to the survival function, we assume 
that S(t)  follows a Dirichlet distribution with parameter function a .  
Typically, we take the parameter function to be of the form a([t ,  a ) )  = 
cSo(t) where So(t) is our prior guess at the survival function and c is a 
measure of how much weight to put on our prior guess. With this prior 
distribution for SO), the prior mean is expressed by 
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and the prior variance is given by 

Note that the prior variance is the equivalent to the sample variance 
one would have if we had an uncensored sample of size c + 1 from a 
population with a survival function So(t). To illustrate what the sample 
paths of the prior distribution for S look like, we have simulated 10 
sample paths for a Dirichlet prior with So(t) = exp( -0 . l t )  and c = 5.  
These are plotted as dashed lines in Figure 6.11 along with their mean 
So(t), which is plotted as a solid line. Here we see that each sample path 
is a nonincreasing function with a value of 1 at 0 .  Note that, although 
the curves are continuous functions, they are not too smooth in this 
example. As the value of c increases, the curves will become smoother. 

Figure 6.1 1 Sampk of ten sampkpaths (dashed lines) and their mean (solid 
line) for samplesfrom a Dirichletprior with &(t) = exp(-0 .l t) and c = 5 .  
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The data we have available to combine with our prior consists of the 

on study times and the event indicator, 8,. TO simplify ~ a l c u l a t i ~ ~ ~  
let o = to < tl < - .  . < tM < tM+l = 03, denote the M distinct times 
(censored or uncensored). At time ti, let Y,  be the number of individ- 
uals at risk, dl the number of deaths and Ai the number of Censored 
observations. Let A, be 1 if d, > 0 and 0 if dl = 0. 

Combining this data with the prior, we find that the posterior distri- 
bution of S is also Dirichlet. The parameter of the posterior distribution, 
a* ,  is the original a parameter plus a point mass of one at points where 
deaths occur. That is, for any interval (a, b), 

n 

ff8((a,  b)) = a((a, 6)) + ~ I [ s ,  > 0, a < T /  < b], 
/ = 1  

where I [ ]  is the indicator function. 
The Bayes estimator of the survival function is 

S,(t) = (6.4.1) 
ff(0,  uJ) + n ,=, 

for ti 5 t < ti+], i = 0 , .  . . , M  

The Bayes estimator is a continuous function between the distinct death 
times and has jumps at these death times. For large n this reduces to 
the Kaplan-Meier estimator, so that the prior information plays no role 
in the estimate. For small samples, the prior will dominate, and the 
estimator will be close to the prior guess at S. 

A second approach to modeling prior information for survival data 
is to provide a prior distribution for the cumulative hazard function 
H(t) = - In[S(t)l. Here, we shall use a beta process prior. This prior 
depends on two parameters, &(t) and d t ) .  &(t) is a prior guess at 
the value of the cumulative hazard rate H(t), and c(t) is a measure of 
how much weight to put on the prior guess at the function H(t) at 
time t .  For this prior, if we let A, = [a,-,, af ) ,  i = 1,  . . . , k be a series 
of nonoverlapping intervals with 0 = a,., < q < < < - . - < ak, then, 
a priori, WI = H(al)- H(a,.,), . . . Wk = =(ak) - H(ak-,) are independent 
beta random variables with parameters pi = c([a, + a,-1]/2)[&(ai) - 
&(af-lll and q, = c([ai + ai-11/2X1 - [&(af) - &(a,-,)]). The prior 
mean of H(af) - H(a,-,) is &(a,) - &(a,-,) and the prior variance is 

Here, c(t) can be thought of as the weight to be given to our prior guess 
at &(ail - &(a,-l) at the time [a, + ai-1]/2.  The beta pracess prior is 
obtained by letting the number of subintervals increase to infinity, so 
that the interval lengths go to zero. Roughly speaking, H(t) has a beta 
process if dH(s) has a beta distribution with parameters c(s)ho(s) and 
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c(s)[l - ho(s)l, and dH(s) is independent of dH(u) for u f s. (Here, 
dH(s) = [H(s + ds) - H(s)]ds for a very small increment of time, and 
ho(t) = d&(t)/dt.) 

To illustrate what the sample paths of the prior distribution, for S 
based on a beta process prior, look like, we have simulated 10 sample 
paths for a beta process prior with &(t) = O.lt and c(t) = 5. These 
are plotted as dashed lines in Figure 6.12 along with the prior guess at 
the survival function, exp(-0.lt). Here we see that each sample path 
is a nondecreasing function with a value of 1 at 0. As for the Dirichlet 
process prior, the sample paths are continuous and nondecreasing. As 
compared to the Dirichlet, the sample paths for the beta process prior 
are less variable, especially, in the middle section of the curve. 

When the data is right-censored with D(t) deaths observed at or prior 
to time t and Y(t) individuals at risk at time t and a beta process prior 
is used, then, the posterior distribution of H(t) is a beta process with 

Figure 6.12 Sampk of ten sampkpaths (dashed l t m )  and their mean (solid 
1tr.y) forsamplesfiom a Betaprocessprior with &(t) = O.lt and c(t) = 5 .  
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parameters [c(t)Ao(t) + ~ ( t ) ~ ( t ) l / ( c ( t )  + Y(t))  and c(t) + Y(t). Under 
squared-error loss the Bayes estimator of the survival function is given 
by 

When c(t) is a constant c, this reduces to 

The estimator based on the Dirichlet prior has jumps at the death times 
and is continuous between deaths. Note that, as c(t) --r 0 this estimator 
reduces to the Kaplan-Meier estimator. 

EXAMPLE 6.4 We shall illustrate these Bayesian estimators, using the data on remission 
duration for patients given the drug 6-MP, which was presented in 
section 1.2. For the Dirichlet prior, we shall use a prior guess at So(t) 
of a( t ,  m)/a(0, m) = e-O.lt. This prior estimate was chosen so that the 
a priori mean of the 6-MP group is the same as the control group. Our 
degree of belief in this prior estimate is that it is worth about C = 5 
observations, so that a(0,  w) = 5 and a( t ,  w) = 5e-O-lt. For the beta 
process prior, we shall assume the same prior estimate of the survival 
function and degree of belief in the validity of this guess, so &(t) = O.lt 
and d t )  = 5 .  Figures 6.11 and 6.12 show samples of sample paths from 
these two priors. 

From the data, we have the following information: 
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To illustrate the calculations, first consider a t in the interval [O, 6). 
For the Dirichlet prior, 

whereas, for the beta process prior, 

sB(r) = exp 1- 
For a t in the interval [6,7), 

whereas, for the beta process prior, 

Figure 6.13 shows the two Bayes estimates, the Kaplan-Meier estimator, 
and the prior estimate of the survival function. Here, we note that the 
beta process prior estimate is closer to the prior mean, which is to be 
expected, because the beta process has sample paths which tend to lie 
closer to the hypothesized prior guess at the survival function. 

The third approach to Bayesian estimation of the survival function is 
by Monte Carlo Bayesian methods or the Gibbs sampler. This approach 
is more flexible than the other two approaches. For right-censored 
data, for which we will describe the procedure, closed form estimates 
of the survival function are available. For other censoring or trunca- 
tion schemes, such simple estimates are not available, and the Gibbs 
sample provides a way of simulating the desired posterior distribution 
of the survival function. This approach can also be extended to more 
complicated problems, such as the regression problems discussed in 
Chapter 8. 

To illustrate how this method works, we shall focus on the right- 
censored data problem. We let 0 < tl < . . - < be M time points. 
Let dj be the number of deaths in the interval ($-1, tjl and Aj  the 
number of right-censored observations at t,. Let Pj = S(tj) be the 
survival function at time tj, so the likelihood function is proportional 
to f l%l (~ j - l  - P ~ ) ~ J ~ .  Let O j  = PI-, - Pj, for j = I , .  . . , M  and 
OM+1 = PM. For a prior distribution, we assume that the joint distribution 
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death mformation, one simulates the parameters 8,. These new 0's are 
used to generate new death times for the censored observations, and 
so forth. Gelfand and Smith (1990) have shown that this procedure 
converges to a realization of 8 drawn from the posterior distribution 
8, given the data. This process is repeated a large number of times 
to obtain a sample from the posterior distribution of 8,  given the data 
which is analyzed to provide the Bayes estimator. 

For our censored data problem, a single Gibbs sample is gener- 
ated as follows. If Aj > 0,  let Zj+l,j,  . . ., ZM+1,j denote the num- 
ber of observations out of the A j  that may have been deaths in 
the intervals (tj,  tj+J, . . . , ( tM-],  tM], (tM, m), respectively. Note that 
Aj = C;='f+, Zkjj. Suppose that, at the ith iteration, we have a realization 
of 8' = (O;, 8:, . . ., @A+,) which sums to 1. We sample Zj+l,j, . . ., Z M + ~ , ~  
from a multinornial with sample size Aj and probabilities 

0; 
Pk = M+I 

C b = j + l  0; ' 

Having sampled the Z's, new 6's are generated from the Dirichlet by 
first computing 

M 

R;+' = ab + db + x Zb,j 
0 0- j=1 

and, then, sampling 8''' = (OF1, 8:+', . . . , 82:,) for a Dirichlet distri- 
I (~cclr) bution with parameters @:+I, v l ,  . . ., RZ:,). 

The procedure above yields a single realization of 8 and R after i 
Figure 6.1 3 Bays estrmates of the survivalfunction for the 6-MPgmup. Beta steps. Typically i is relatively small, of the order 10 or 20. This process 
process prior (-) Dinchlet process prior ( )  Prior (-----) khplan- is repeated S times where S is typically of the order 1000-10,000. The 
Meier atzmate (---) posterior estimate of Ob is, then, given by 

of the 8's is the Dirichlet diibution with density function 
S 

RLS fib = s-1 x ___ 
M + I  I ' (6.4.4) 

M + l  s=l C k = l  Rk 

EXAMPLE 6.4 (continued) We shall apply the Gibbs sampling approach to the data 
where a j  = C[&(tj-l) - &(tj)l for j = 1, . . . , M  + 1 with & ( b + ] )  = 0 in Example 6.4. As in that example, we assume, a priori, that So(t) = 
and the constant in (6.4.3) is e-Olt and that our prior belief in the accuracy of ow prior guess is 

C = 5 observations. Intervals are formed by taking tj to be the death 
and censoring times. For a death time T, we include an "interval" 
(T - ,  TI with a Ob representing the point mass at time T. (That is, Ob is 
the jump in the estimated survival function at an observed death.) The 

The Gibbs sampling approach to Bayesian estimation approximates following Table 6.5 shows the 24 intervals needed for this problem and 
the posterior distribution via a Monte Carlo simulation. Here, we treat the values of aj from our prior. 
the censored observations as unknown parameters, and we simulate To generate the first Gibbs observation, we generated Og, 
death times for each censored observation. Using these values with the h = 1 , .  . .,24 from the prior distribution (6.4.3) which is Dirichlet 
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TABLE 6.5 
Estimates Based on Gibbs Sampling 

- 
Revised 
Death Posterlot 
Count J'robabili~ 

I ( t l - l , t l l  dl A a ]  O0 Iteratfon 1 (SE) 

(0,6-I 
(6-, 61 
(6,7-I 
(7-, 71 
(7,91 

@,lo-]  
( lo- ,  101 
(10,111 

(11,13-1 
(13-, 131 
(13,16-I 
(16-, 16l 
(16,171 
(17,191 
(19,201 

(20,22-I 
(22-, 221 
(22,237 
(23-, 231 
(23,251 
(25,321 
02,341 
04,351 
(35, -1 

(al, . . . , a 2 4 )  To generate observations from the Dirichlet distribution, 
one generates Wl, . . . , K4 as independent gamma random variables 
with parameters a b  and p = 1 (i.e., f (wb) = w?-' e~P(-w~)/r(ab)r 
and, then, Ob = wb/Z W,. The first realization of the 8's is included 
in the table. Using these values, we, then, generate the Z's. For exam- 
ple, we generate .& z4,2, . . . , ZIZrZ from &e appropriate multinornial 
distribution. In our example, this corresponds to picking an interval 
(tb-l, tbl with h > j in which each censored observation at t, is to be 
placed and counted as a death. The table includes entries which give 
the revised death count at tb of db + C';'=, Zb,,, for the first iteration. 
These revised dea$ counts are used to update the values of ab by 
Yb = a b  + db + C,=l Zb,,, also given in Table 6.5. The procedure con- 
tinues through a total of 10 cycles to produce the Gibbs iterate y;:. 
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This is repeated 1000 times. The final column of the table provides the 
posterior means of the 8's from (6.4.4) and, for reference, the sample 
standard errors of the standardized RLs which provide some information 
on the rate of convergence of the algorithm. Notice that the posterior 
mean estimates in this table are precisely what we would obtain from 
the Dirichlet process prior, discussed earlier. 

1. The Bayesian estimator of the survival function obtained from a right- 
censored sample from the Dirichlet process prior model can be ex- 
tended to other censoring schemes. Johnson and Christensen (1986) 
developed the estimation procedure for grouped data as found in a 
life table. Cornfield and Detre (1977) also consider a Bayes estima- 
tor of the survival function for life table data which is based on a 
Dirichlet-like prior. 

2. Using the Gibbs sampling approach, additional censoring schemes 
can be handled quite easily. For example, Kuo and Smith (1992) 
show how to handle combined right- and left-censored data. This 
flexibility of the Monte Carlo Bayesian approach is one of the major 
strengths of the technique. 

3. The Gibbs sampling approach presented here generates a Gibbs 
sample based on a large number of short runs of the algorithm. An 
alternative is to run a single realization of the algorithm until the suc- 
cessive iterations have the desired posterior distribution and, then, 
take, as the Gibbs sample, successive 8's generated by the algorithm. 
The approach suggested here, although requiring a bit more compu- 
tation time, has the advantage of producing independent replications 
of the posterior distribution. (See Gelfand and Smith (1990) for a dis- 
cussion of the merits of the two approaches.) 

4. The posterior estimator of the survival function from the Gibbs sam- 
ple, (6.4.41, is based on the fact that the posterior distribution of Ob is 
a mixture of a beta random variable with parameters & and C,+b Y,. 
An alternative technique to estimate the posterior distribution of Ob 
is to use the empirical distribution function of the simulated values 
of 8, 8k, s = 1, . . ., S. This would give a posterior estimator of Bb of 
the sample mean of S replicates, @is. To achieve the same precision 
as found by (6.4.4) for this approach, a larger value of S is required. 
By this approach, however, one can routinely provide an estimate of 
any functional of the posterior distribution of 8, by the appropriate 
functional of the empirical distribution of the simulated 8's. 

5. Hjort (1992) discusses how the beta process prior can be used in 
more complicated censoring schemes and in making adjustments to 
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the survival function to account for covariates. He provides a Bayes 
approach to the proportional hazard regression problem discussed 
in Chapter 8. 

Theore tica 1 Notes 
1. The Dirichlet process prior estimator of the survival function was first 

proposed by Ferguson (1973) for uncensored data. Susarla and Van 
Ryzin (1976) and Ferguson and Phadia (1979) extend the estimation 
process to right censored data. 

2. The beta process prior was introduced in this context by Hjort (1990). 
3. Both the Dirichlet and beta process prior estimates converge to the 

Product-Limit estimator for large samples for any nontrivial prior 
distribution. By an appropriate choice of the prior distribution, the 
Product-Limit estimator is a Bayes estimator for any n for both of 
these priors. 

4. If one chooses d t )  = kSo(t), where So(t) = exp[-&(t)l for the 
weight parameter of the beta process, then, the beta process prior 
on H is the same as a Dirichlet process prior with parameters So(t) 
and k. Thus, the beta process prior is a more general class of priors 
than the class of Dirichlet priors. 

5. Kuo and Smith (1992) have introduced the use of Monte Carlo 
Bayesian methods to survival analysis. 

6.5 Exercises 

6.1 (a) Using the data on the time to relapse of 6-MP patients found in 
section 1.2, estimate the hazard rate at 12 months using the uniform 
kernel with a bandwidth of 6 months. Provide the standard error 
of your estimate. 

(b) Compare the estimates obtained in part a to the estimate of H12) 
obtained using the Epanechnikov kernel. 

(c) Repeat part b using the biweight kernel. 
(d) Estimate the hazard rate at 5 months using all three kernels. 

6.2 Using the data on the leukernia-free survival times of allogeneic bone 
marrow transplants in Table 1.4 of Chapter 1 (See Exercise 7 of Chapter 
41, estimate the hazard rate at 1, 3, 5, 7, 9, 11, and 13 months using a 
uniform kernel with a bandwidth of 5 months. Plot your estimates and 
interpret the shape of the estimated hazard rate. 

6.3 (a) Using the data on the infection times of kidney dialysis patients in 
section 1.4, estimate the hazard rate using a biweight kernel with a 
bandwidth of 5 months at 3 months for each of the two groups. 

(b) Using the same bandwidth and kernel estimate the hazard rate at 
10 months in both groups. 

6.4 In section 1.7 a study of the death times (in years) and the age (in years) 
at transplant of 59 black female kidney transplant patients is reported. 
From this data, compute the patients' age in years at death or at the end 
of the study. The survival experience of this sample of patients is to be 
compared to the standard mortality rates of black females found in the 
1990 U.S. census using the all-cause mortality for the U.S. population 
in 1990 found in Table 2.1 of Chapter 2. 
(a) Estimate the cumulative relative mortality, B(t), for this group of 

patients. 
(b) Find the standard error of your estimate in part a. 
(c) Estimate the excess mortality, A(t), for this group of patients. 
(d) Find the standard error of your estimate in part C. 

(e) Plot the Kaplan-Meier estimate of the survival function, the ex- 
pected survival curve, and the corrected survival curve for this 
group of patients. 

6.5 An alternative to autologous bone marrow transplantation for leukemia 
is chemotherapy. Suppose that it is known that for chemotherapy pa- 
tients the time from diagnosis to relapse or death has an exponential 
distribution with survival function hazard rate A = 0.045. Assume that 
this rate is the same for all patients. To compare the survival experience 
of this reference population to autologous bone marrow transplant pa- 
tients use the data on autologous transplants in Table 1.4 of Chapter l 
(see Problem 7 of Chapter 4). 
(a) Estimate the cumulative relative mortality, B(t), for this group of 

patients. 
(b) Find the standard error of your estimate in part a. 
(c) Estimate the excess mortality, A(t), for this group of patients. 
(d) Find the standard error of your estimate in part c. 

6.6 Table 1.3 of section 1.5 provides data on the time to death (in months) 
of nine imrnunoperoxidase-positive breast-cancer patients. 
(a) Using a Dirichlet prior for S(t) with a(t, a) = 6e~p(-O.lP.~), find 

the Bayes estimate of the survival function under squared-error loss. 
(b) Using a beta prior for H(t) with q = 6 and &(t) = 0.1P5 lind the 

Bayes estimate of the survival function under squarederror loss. 
(c) Compare the estimates found in parts a and b to the usual Kaplan- 

Meier estimate of the survival function. 

6.7 Table 1.6 of section 1.11 gives data on the times in weeks from diagnosis 
to death of 28 patients with diploid cancers of the tongue. 
(a) Using a Dirichlet prior for S(t) with a(t, a) = 4/(1 + 0.15P.5), find 

the Bayes estimate of the survival function under squarederror loss. 
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(b) Using a beta prior for H(t) with q = 4 and &(t) = h ( l +  0.15p.4 

find the Bayes estimate of the survival function under 
loss. 

(c) Compare the estimates found in parts a and b to the usual Kaplan- 
Meier estimate of the survival function. 

As we have seen in Chapters 4-6, the Nelson-Aalen estimator of the 
cumulative hazard rate is a basic quantity in describing the survival ex- 
perience of a population. In Chapter 4, we used this estimator along 
with the closely related Product-Limit estimator to make crude compar- 
isons between the disease-free survival curves of bone marrow trans- 
plant patients with different types of leukemia, and in section 6.3, we 
used this statistic as the basis for estimating excess mortality of Iowa 
psychiatric patients. 

In this h p t e r ,  we shall focus on hypothesis tests that are based 
on comparing the Nelson-Aalen estimator, obtained directly from the 
data, to an expected estimator of the cumulative hazard rate, based 
on the assumed model under the null hypothesis. Rather than a direct 
comparison of these two rates, we shall examine tests that look at 
weighted differences between the observed and expected hazard rates. 
The weights will allow us to put more emphasis on certain parts of the 
curves. Different weights will allow us .to present tests that are most 
sensitive to early or late departures from the hypothesized relationship 
between samples as specified by the null hypothesis. 


