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(b) Using a beta prior for H(t) with q = 4 and &(t) = h ( l +  0.15p.4 

find the Bayes estimate of the survival function under 
loss. 

(c) Compare the estimates found in parts a and b to the usual Kaplan- 
Meier estimate of the survival function. 

As we have seen in Chapters 4-6, the Nelson-Aalen estimator of the 
cumulative hazard rate is a basic quantity in describing the survival ex- 
perience of a population. In Chapter 4, we used this estimator along 
with the closely related Product-Limit estimator to make crude compar- 
isons between the disease-free survival curves of bone marrow trans- 
plant patients with different types of leukemia, and in section 6.3, we 
used this statistic as the basis for estimating excess mortality of Iowa 
psychiatric patients. 

In this h p t e r ,  we shall focus on hypothesis tests that are based 
on comparing the Nelson-Aalen estimator, obtained directly from the 
data, to an expected estimator of the cumulative hazard rate, based 
on the assumed model under the null hypothesis. Rather than a direct 
comparison of these two rates, we shall examine tests that look at 
weighted differences between the observed and expected hazard rates. 
The weights will allow us to put more emphasis on certain parts of the 
curves. Different weights will allow us .to present tests that are most 
sensitive to early or late departures from the hypothesized relationship 
between samples as specified by the null hypothesis. 
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In section 7.2, we shall consider the single sample problem. Here, 
we wish to test if the sample comes from a population with a prespec- 
ified hazard rate ho(t). In section 7.3, we will look at tests of the nu" 
hypothesis of no difference in survival between K treatments against 
a global alternative that at least one treatment has a different survival 
rate. Here, for example, we will discuss censored data versions of the 
Wilcoxon or Kruskal-Wallis test and log-rank or Savage test. In section 
7.4, we look at K sample tests that have power to detect ordered alter- 
natives. A censored data version of the Jonckheere-Terpstra test wiu be 
presented. In section 7.5, we will see how these tests can be modified 
to handle stratification on covariates which may confound the analysis. 
We shall see how this approach can be used to handle matched data, 
and we will have a censored-data version of the sign test. In section 
7.6, we will look at tests based on the maximum of the sequential eval- 
uation of these tests at each death time. These tests have the ability to 
detect alternatives where the hazard rates cross and are extensions of 
the usual Kolmogorov-Smirnov test. Finally, in section 7.7, we present 
three other tests which have been proposed to detect crossing haz- 
ard rates, a censored-data version of the Cramer-von Mises test, a test 
based on weighted differences in the Kaplan-Meier estimators, and a 
censored-data version of the median test. 

The methods of this chapter can be applied equally well to right- 
censored data or to samples that are right-censored and left-truncated. 
AS we shall see, the key statistics needed to compute the tests are the 
number of deaths at each time point and the number of individuals 
at risk at these death times. Both quantities are readily observed with 
left-truncated and right-censored data. 

7.2 One-Sample Tests 

Suppose that we have a censored sample of size n from some popula- 
tion. We wish to test the hypothesis that the population hazard rate is 
ho(t) for all t 5 T against the alternative that the hazard rate is not &(t) 
for some t 5 T .  Here ho(t) is a completely specified function over the 
range 0 to T .  Typically, we shall take T to be the largest of the observed 
study times. 

An estimate of the cumulative hazard function H(t) is the Nelson- 
Aalen estimator, (4.2.31, given by &,, &, where d, is the number of 
events at the observed event times, h, . . . , tD and Y(t0 is the number 
of individuals under study just prior to the observed event time ti. The 
quantity & gives a crude estimate of the hazard rate at an event time 
ti. When the null hypothesis is true, the expected hazard rate at ti is 
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ho(ti) We shall compare the sum of weighted differences between the 
observed and expected hazard rates to test the null hypothesis. 

Let W(t)  be a weight function with the property that W(t )  is zero 
whenever Y(t)  is zero. The test statistic is 

When the null hypothesis is true, the sample variance of this statistic is 
given by 

For large samples, the statistic Z(T)~/V[Z(T)I has a central chi-squared 
distribution when the null h 9' othesis is true. 

The statistic ~ ( r ) / V [ Z ( r ) ] l  * is used to test the one sided alternative 
hypothesis that Mt) > ho(t). When the null hypothesis is true and the 
sample size is large, this statistic has a standard normal distribution. The 
null hypothesis is rejected for large values of the statistic. 

The most popular choice of a weight function is the weight W ( t )  = 
Y(t)  which yields the one-sample log-rank test. To allow for possible 
left truncation, let TJ be the time on study and Lj be the delayed entry 
time for the jth patient. When T is equal to the largest time on study, 

0(r) = observed number of events at or prior to time T ,  (7.2.3) 

and 

where &(t) is the cumulative hazard under the null hypothesis. 
Other weight functions proposed in the literature include the Harring- 

ton and Heming (1982) family Wm(t) = Y(t)So(t)P[l - S0(t)lq, P 2 0, 
q 2 0 ,  where So(t) = exp[-&(t)] is the hypothesized survival function. 
By choice of p and q, one can put more weight on early departures 
from the null hypothesis ( p  much larger than q), late d e p ~ e s  from 
the null hypothesis ( p  much smaller than q), or on departures in the 
mid-range ( p  = q > 0). The log-rank weight is a special case of this 
model with p = q = 0.  

EXAMPLE 7.1 In section 6.3, we examined models for excess and relative mortality in 
a sample of 26 Iowa psychiatric patients described in section 1.15. We 
shall now use the one-sample log-rank statistic to test the hypothesis 
that the hazard rate of this group of patients is the same as the hazard 
rate in the general Iowa population, given by the standard 1960 Iowa 



mortality table. To perform this test, we will use the sex specific survival 
rates. Time T, is taken as the jth individual's age at death or the end 
of the study, and the left-truncation time L,, is this individual's age at 
entry into the study. We obtain H(t) as - In[S(t)l from the appropriate 
column of Table 6.2. Table 7.1 shows the cakulations to compute 0(71) . -, 
and E(71). 

The test statistic is ,y2 = (15 - 4 .474012/4 .4740 = 24.7645 which has a 
chi-squared distribution with one degree of freedom. Here the P-value 
of this test is close to zero, and we can conclude that the mortality rates 
of the psychiatric patients differ from those of the general public. 

TABLE 7.1 
Computation of One-Sample, Log-Rank Test 

Sdyect Status Age at Entry Age at Exit 
j sex 4 4 TI M L J )  %(TI) &(TI) - .YOUf) 

I f 1  51 52 0.0752 0.0797 0.0045 
2 f l  58 59 0.1131 0.1204 0.0073 
3 f l  55 57 0.0949 0.1066 0.0117 
4 f l  28 50 0.0325 0.0711 0.0386 
5 m 0  21 51 0.0417 0.1324 0.0907 
6 m l  19 47 0.0383 0.1035 0.0652 
7 f l  25 57 0.0305 0.1066 0.0761 
8 f l  48 59 0.0637 0.1204 0.0567 
9 f l  47 61 0.0606 0.1376 0.0770 

10 f 1 25 61 0.0305 0.1376 0.1071 
11 f 0 31 62 0.0347 0.1478 0.1131 
12 m 0 24 57 0.0473 0.19% 0.1523 
13 m 0 25 58 0.0490 0.2150 0.1660 
14 f 0 30 67 0.0339 0.2172 0.1833 
15 f 0 33 68 0.0365 0.2357 0.1992 
16 m 1 36 61 0.0656 0.2704 0.2048 
17 m 0 30 61 0.0561 0.2704 0.2143 
18 rn 1 41 63 0.0776 0.3162 0.2386 
19 f 1 43 69 0.0503 0.2561 0.2058 
20 f 1 45 69 0.0548 0.2561 0.2013 
21 f 0 35 65 0.0384 0.1854 0.1470 
22 m 0 29 63 0.0548 0.3162 0.2614 
23 m 0 35 65 0.0638 0.3700 0.3062 
24 m 1 32 67 0.0590 0.4329 0.3739 
25 f 1 36 76 0.0395 0.4790 0.4395 
2 6 m 0  32 71 0.0590 0.5913 0.5323 
Total 15 4.4740 
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practical Notes 

1. An alternate estimator of the variance of Z(T) is given by V[Z(T)] = 
CE, w(tJ2+ which uses the empirical estimator of Q(t)  rather 
than the hypothesized value. When the alternative hypothesis h(t )  > 
ho(t) is true, for some t 5 T ,  this variance estimator is expected to 
be larger than (7.2.21, and the test is less powerful using this value. 
On the other hand, if h(t) < ho(t), then, this variance estimator will 
tend to be smaller, and the test will be more powerful. 

2. The statistic @T)/E(T) based on the log-rank weights is called the 
standardized mortality ratio ( S M R ) .  

3. A weight function suggested by Gatsonis et al. (1985) is W ( t )  = 
(1 + {lodl - So(t)l)/So(t))Y(t). 

Theoretics I Notes 

1. In this class of tests, the one-sample, log-rank test is the locally 
most powerful test against a s'hfi alternative of the extreme value 
distribution. The weight function Wm(t) = Y(t)SO(t) is the locally 
most powerful test for the logistic distribution. Because the one- 
sample Wilcoxon test also has this property, this choice of weights 
leads to a censored-data, one-sample, Wilcoxon test. See Andersen 
et al. (1993) for details. 

2. These one-sample tests arise quite naturally from the theory of count- 
ing processes. Under the null hypothesis, using the notation in sec- 
tion 3.6, $,'V(u)/ ~(u)ldZV(u) - $, '~(u)b~(u)  du  is a martingale. The 
statistic Z(T) is a stochastic integral of the weight function W ( t )  with 
respect to this martingale, and Var[Z(~)l is the predictable variation 
process of this stochastic integral. The asymptotic chi-squared distri- 
bution follows by the martingale central limit theorem. 

3. The one-sample, log-rank test was first proposed by Breslow (1975) 
and generalized to left truncation by Hyde (1977) and Woolson 
(1981). 

7.3 Tests for Two or More Samples 

In section 7.2, we looked at one-sample tests that made a weighted 
comparison between the estimated hazard rate and the hypothesized 
hazard rates. We now shall extend these methods to the problem of 
comparing hazard rates of K (K  2 2) populations, that is, we shall test 
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the following set of hypotheses: 

&, : hl(t) = h2(t) = . . . = hK(t), for all t 5 7, versus (7.3.1) 

I HA : at least one of the h,(t)'s is different for some t 5 T .  

Here r is the largest time at which all of the groups have at least one 
subject at risk. 

As in section 7.2,  our inference is to the hazard rates for all time 
points less than 7 ,  which is, typically, the smallest of the largest time 
on study in each of the k groups. The alternative hypothesis is a global 
one in that we wish to reject the null hypothesis if, at least, one of he 
populations differs from the others at some time. In the next seaion, 
we will present tests that are more powerful in the case of ordered 
alternatives. 

The data available to test the hypothesis (7.3.1) consists of indepen- 
dent right-censored and, possibly, left-truncated samples for each of the 
K populations. Let tl < t2 < . , . < tD be the distinct death times in h e  
pooled sample. At time ti we observe dij events in the jth sample out 
of I;1 individuals at risk, j = 1, . . ., K ,  i = 1, . . ., D. Let di = C;=, dij 
and I; = C:, be the number of deaths and the number at risk in 
the combined sample at time ti, i = 1, . . . , D. 

The test of It, is based on weighted comparisons of the estimated haz- 
ard rate of the jth population under the null and alternative hypotheses, 
based on the Nelson-Aalen estimator (4.2.3). If the null hypothesis is 
true, then, an estimator of the expected hazard rate in the jth popula- 
tion under It, is the pooled sample estimator of the hazard rate d i / x .  
Using only data from the jth sample, the estimator of the hazard rate is 
dJ/I;I. To make comparisons, let W,(t) be a positive weight function 
with the property that Wj(ti) is zero whenever Y,, is zero. The test of 
It, is based on the statistics 

If all the Zj(r)'s are close to zero, then, there is little evidence to believe 
that the null hypothesis is false, whereas, if one of the Z,(T)'s is far 
from zero, then, there is evidence that this population has a hazard rate 
differing from that expected under the null hypothesis. 

Although the general theory allows for different weight functions for 
each of the comparisons in (7.3.21, in practice, all of the commonly 
used tests have a weight function Wj(ti) = xj W(ti) .  Here, W(ti) is a 
common weight shared by each group, and xj is the number at risk in 
the jth group at time ti. With this choice of weight functions 
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Note that with this class of weights the test statistic is the sum of the 
weighted difference between the observed number of deaths and the 
expected number of deaths under &, in the jth sample. The expected 
number of deaths in sample j at ti is the proportion of individuals at 
risk q j / Y ,  that are in sample j at time t i ,  multiplied by the number of 
deaths at time ti. 

The variance of Zj(r) in (7.3.3) is given by 

and the covariance of Zj(r), Zg(r) is expressed by 

The term ( x  - di)/(Y, - I), which equals one if no two individuals have 
a common event time, is a correction for ties. The terms %(1 - %)di 
and - % 2 4 arise from the variance and covariance of a multinornial 
random variable with parameters 4, pJ = Y,,/ Y,, j = 1, . . . , K .  

The components vector (Zl(r), . . . , ZK(7)) are linearly dependent be- 
cause C;, Zj(r) is zero. The test statistic is constructed by selecting 
any K - 1 of the Zj's. The estimated variance-covariance matrix of 
these statistics is given by the (K  - 1) x (K  - 1) matrix 2;, formed by 
the appropriate &&'s. The test statistic is given by the quadratic form 

When the null hypothesis is true, this statistic has a chi-squared distri- 
bution, for large samples with ,K - 1 degrees of freedom. An a level 
test of It, rejects when ,yZ is larger than the ath upper percentage point 
of a chi-squared, random variable with K - 1 degrees of freedom. 

When K = 2 the test statistic can be written as 

which has a standard normal distribution for large samples when It, 
is true. Using this statistic, an a level test of the alternative hypothesis 
HA : hl(t) > &(t), for some t 5 r, is rejected when Z 2 Z,, the ath 
upper percentage point of a standard normal distribution. The test of 
HA : hl(t) f &(t), for some t ,  rejects when ( z I  > Z,lz. 

A variety of weight functions have been proposed in the literature. A 
common weight function, leading to a test available in most statistical 
packages, is W ( t )  = 1 for all t .  This choice of weight function leads to 
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the so-called log-rank test and has optimum power to detect alternatives 
where the hazard rates in the K populations are proportional to each 
other. A second choice of weights is W(ti )  = Y .  This weight function 
yields Gehan's (1965) generalization of the two-sample Mann-Whitney, 
Wilcoxon test and Breslow's (1970) generalization of the Kruskal-wa~js 
test. Tarone and Ware (1977) suggest a class of tests where the weight 
function is W(t,)  = f ( q ) ,  and f is a fixed function. They suggest 
a choice of f (y) = y1/2. This class of weights gives more weight to 
differences between the observed and expected number of death in 
sample j at time points where there is the most data. 

An alternate censored-data version of the M~M-Whitney-Wilcoxon 
test was proposed by Peto and Peto (1972) and Kalbfleisch and Prentice 
(1980). Here, we define an estimate of the common survival function 
by 

which is close to the pooled Product-Lit estimator. They suggest using 
W(ti)  = $ti). Andersen et al. (l-982) suggest that this weight should 
be modified slightly as W(ti)  = S(t,)K/(Y, + 1) (see Theoretical Note 
2). Either of the weights depends on the combined survival experience 
in the pooled sample whereas the weight W(ti )  = Yi depends heavily 
on the event times and censoring distributions. Due to this fact, the 
Gehan-Breslow weights can have misleading results when the censoring 
patterns are different in the individual samples (see Prentice and Marek 
(1979) for a case study). 

Fleming and Harrington (1981) propose a very general class of tests 
that includes, as special cases, the log-rank test and a version of the 
Mam-Whitney-Wilcoxon test, very close to that suggested by Peto and 
Peto (1972). Here, we let ?(t) be the Product-Limit estimator (3.2.1) 
based on the combined sample. Their weight function is given by 

Here, the survival function at the previous death time is used as a 
weight to ensure that these weights are known just prior to the time 
at which the comparison is to be made. Note that S(k) = 1 and we 
define 0' = 1 for these weights. When p = q = 0 for this class, we 
have the log-rank test. When p = 1 ,  q = 0 ,  we have a version of the 
Mam-Whitney-Wilcoxon test. When q = 0 and p > 0, these weights 
give the most weight to early departures between the hazard rates in 
the K populations, whereas, when p = 0 and q > 0, these tests give 
most weight to departures which occur late in time. By an appropriate 
choice of p and q, one can construct tests which have the most power 
against alternatives which have the K hazard rates differing over any 
desired region. This is illustrated in the following example. 
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EXAMPLE 7.2 In section 1.4, data on a clinical trial of the effectiveness of two meth-. 
ods for placing catheters in kidney dialysis patients was presented. We 
are interested in testing if there is a difference in the time to cutaneous 
exit-site infection between patients whose catheter was placed surgi- 
cally (group 1) as compared to patients who had their catheters placed 
percutaneously (group 2). 

Figure 7.1 shows the survival curves for the two samples. Table 7.2 
shows the calculations needed to construct the log-rank test. Here, 
Zd, = 3 . 9 6 4 / m  = 1.59 which has a p-value of 2Pr[Z > 1.591 = 
0.1117, so the log-rank test suggests no diierence between the two 
procedures in the distribution of the time to exit-site infection. 

To further investigate these two treatments, we shall apply some 
of the other weight functions discussed earlier. Table 7.3 summarizes 

Figure 7.1 Estimated (Infection-free) sum'valfunctionfor kriiney dialysispa- 
fients with percutaneous (-) and surgical (-)pkrcemmts of catheters. 



I - 
7.3 Tests for Two or More Samples 21 1 21 0 Cha~ter 7 Hvoothesis Testine 

TABLE 7.2 
Constmction of TwoSample, Log-Rank Test 

Log Rank Pleming-Harrington tests 

A Gehan p=l,q=O 

tl K I  41 fi2  d,, u, di &I ($1 d,, - &I ($) 2 ( I  - 2) (-) & - I  d' 

0.5 43 0 76 6 119 6 2.168 -2.168 1.326 
1.5 43 1 60 0 103 1 0.417 0.583 0.243 
2.5 42 0 56 2 98 2 0.857 -0.857 0.485 
3.5 40 1 49 1 89 2 0.899 0.101 0.489 
4.5 36 2 43 0 79 2 0.911 1.089 0.490 
5.5 33 1 40 0 73 1 0.452 0.548 0.248 
6.5 31 0 35 1 66 1 0.470 -0.470 0.249 
8.5 25 2 30 0 55 2 0.909 1.091 0.487 
9.5 22 1 27 0 49 1 0.449 0.551 0.247 

10.5 20 1 25 0 45 1 0.444 0.556 0.247 
11.5 18 1 22 0 40 1 0.450 0.550 0.248 
15.5 11 1 14 1 25 2 0.880 0.120 0.472 
16.5 10 1 13 0 23 1 0.435 0.565 0.246 
18.5 9 1 11 0 20 1 0.450 0.550 0.248 
23.5 4 1 5 0 9 1 0.444 0.556 0.247 
26.5 2 1 3 0 5 1 0.400 0.600 0.240 
SUM 15 11 26 11.036 3.964 6.211 

TABLE 7.3 
Comparison of TmSample Tests 

0. Y 
I I I I I I 
0 5 10 15 20 25 

T i  (in Months) to Exit Site Infection 

Figure 7.2 Relatioe weights for comparison of observed and expected numben 
of deaths for kidney dialysispatients. 

Test W(ti) Zl ( 7) 4 1  x2 p-value 

Log-Rank 
Gehan 

Taroneware 
PetwPeto 

Modified Peto-Peto 
Fleming-Harrington 

p = o , q = 1  
Fleming-Harrington 

p = 1 , q = o  
Flemin&Harrington 

p = 1 , q = 1  
Fleming-Harrington 

p = 0.5, q = 0.5 
Fleming-Harrington 
D = 0.5. a = 2 

the results of these tests. Figure 7.2 shows the relative weights these 
tests give to the comparisons at each time point. w ( t f ) / C E 1  W(tf)  is 
plotted here. Note that Gehan's weight function gives very heavy weight 
to early comparisons at ti = 0.5 and leads to a negative test statistic. 
The Fleming and Harrington tests, with q > 0, put more weight on 



late comparisons and lead to significant tests because the two Survival 
curves diverge for larger values of t. 

- 
EXAMPLE7.3 In section 1.16, data on 462 individuals who lived at the Charming 

House retirement center was reported. These data are left-truncated 
by the individual's entry time into the retirement center. In ~ x a m ~ l e  
4.3, survival curves were constructed for both males and females. We 
shall now apply the methods of this section to test the hypothesis that 
females tend to live longer than males. We test the hypothesis 6 : 
hF(t) = hM(t), 7 7  months 5 t 5 1152 months against the one sided 
hypothesis HA : hF(t) 5 hM(t) for all t E [777,11521 and hF(t) < hM(t) 
for some t E [777,11521. 

To perform this test, we need to compute I;F and YN as the number 
of females and males, respectively, who were in the center at age t,. 
The values of these quantities are depicted in Figure 4.10. The test 
will be based on the weighted difference between the observed and 
expected number ofimale deaths. Using the log-rank weights, we find 
ZM(1152) = 9.682, V(ZM(1152)) = 28.19, so Zobs = 1.82 and the one- 
sided p-value is 0.0341, which provides evidence that males are dying 
at a faster rate than females. 

EXAMPLE7.4 In Chapter 4, we investigated the relationship between the disease- 
free survival functions of 137 patients given a bone marrow transplant 
(see section 1.3 for details). Three groups were considered: Group 
1 consisting of 38 ALL patients; Group 2 consisting of 54 AML low- 
risk patients and Group 3 consisting of 45 AML high-risk patients. The 
survival curves for these three groups are shown in Figure 4.2 in section 
4.2. 

We shall test the hypothesis that the disease-free survival functions of 
these three populations are the same over the range of observation, t I 
2204 days, versus the alternative that at least one of the populations has 
a different survival rate. Using the log-rank weights, we find Z1(2204) = 
2.148; Z2(2204) = -14.966 and Z3(2204) = 12.818, and the covariance 
matrix is 

15.9552 -10.3451 -5.6101 
( j g , j , g = l , . . . ,  3 -10.3451 20.3398 -9.9947 

-5.6101 -9.9947 15.6048 
Notice that the Zj(2204)'s sum to zero and that the matrix (ejg) is singu- 
lar. The test is constructed by selecting any two of the Z,(2204)'s, and 
constructing a quadratic for&, using the appropriate rows and columns 
of the covariance matrix. The resulting statistic will be the same regard- 
less of which Zj(2204)'s are selectel The test statistic in this cGe is 
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When the null hypothesis is true, this statistic has an approximate chi- 
square distribution with two degrees of freedom which yields a p-value 
of 0.0010. 

We can apply any of the weight functions discussed above to this 
problem. For example, Gehan's weight W(ti) = I; yields x2 = 16.2407 
(p = 0.0003); Tarone-Ware's weight W(ti) = Vl2 yields x2 = 15.6529 
(p = 0.0040), Fleming and Harrington's weight, with p = 1, q = 0, 
yields x2 = 15.6725 (p = 0.0040), withp = 0, q = 1, yields x2 = 6.1097 
(p = 0.0471), and with p = q = 1, yields x2 = 9.9331 (p = 0.0070). Ail 
of these tests agree with the conclusion that the disease-free survival 
curves are not the same in these three disease categories. 

An important consideration in applying the tests discussed in this sec- 
tion is the choice of the weight function to be used. In most applications 
of these methods, our strategy is to compute the statistics using the log- 
rank weights W(ti) = 1 and the Gehan weight with W(ti) = Y,. Tests 
using these weights are available in most statistical packages which 
makes their application routine in most problems. 

In some applications, one of the other weight functions may be more 
appropriate, based on the investigator's desire to emphasize either late 
or early departures between the hazard rates. For example, in com- 
paring relapse-free survival between different regimes in bone marrow 
transplants for leukemia, a weight function giving higher weights to 
late differences between the hazard rates is often used. Such a function 
downweights early differences in the survival rates, which are often due 
to the toxicity of the preparative regimes, and emphasizes differences 
occurring late, which are due to differences in curing the leukemia. This 
is illustrated in the following example. 

- 

EXAMPLE7.5 In section 1.9, data from a study of the efficacy of autologous (auto) 
versus allogeneic (allo) transplants for acute myelogenous leukemia was 
described. Of interest is a comparison of disease-free survival for these 
two types of transplants. Here, the event of interest is death or relapse, 
which ever comes first. In comparing these two types of transplants, it 
is well known that patients given an allogeneic transplant tend to have 
more complications early in their recovery process. The most critical 
of these complications is acute graft-versus-host disease which occurs 
within the first 100 days after the transplant and is often lethal. Because 
patients given an autologous transplant are not at risk of developing 
acute graft-versus-host disease, they tend to have a higher survival rate 
during this period. Of primary interest to most investigators in this area 
is comparing the treatment failure rate (death or relapse) among long- 
term survivors. To test this hypothesis, we shall use a test with the 
Fleming and Harrington weight function W(ti) = 1 - S(t,-,) (Eq. 7.3.9 
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with p = 0, q = 1). This function downweights events (primarily due der the alternative hypothesis. They and Prentice and ~ a r e k  (1979) 

to acute graft-versus-host disease) which occur early. strongly recommend that only two-sided tests be used in making 

For these weights, we find that Z,(t) = -2.093 and 6,,(7) = 1.02 comparisons. 

that the chi-square statistic has a value of 4.20 which gives a ~ - ~ ~ l ~ ~  of 5. For the two-sample tests, the log-rank weights have optimal local 
0.0404 . This suggest that there is a difference in the treatment failure power to detect differences in the hazard rates, when the hazard 

rates for the two types of transplants. rates are proportional. This corresponds to the survival functions 
By comparison, the log-rank test and Gehan's test have ~ - ~ ~ l ~ ~ ~  satisfying a Lehmann alternative Sj(t) = ~ ( t ) ~ ] .  These are also the  

of 0.5368 and 0.7556, respectively. These statistics have large ~ - ~ ~ l ~ ~ ~  optimal weights for the K sample test with proportional hazards 
because the hazard rates of the two types of transplants cross at about 12 when, for large samples, the numbers at risk in each sample at each 
months, so that the late advantage of allogeneic transplants is negated time point are proportional in size. For the two-sample case, Fleming 

by the high, early mortality of this type of transplant. and H h g t o n ' s  class of tests with q = 0 has optimal local power to 
detect the alternatives hz(t) = hl(t)ee[Sl(t)P + [l - ~ ~ ( t l l q e ~ l - ~ .  See 
Fleming and Harrington (1981) or Andersen et al. (1993) for a more 

Pra ctica I Notes 
1. The SAS procedure LIFETEST can be used to perform the l ~ g - ~ ~ n k  

test and Gehan's test for right-censored data. This procedure has two 
ways to perform the test. The first is to use the STRATA statement. 
This statement produces Z,(r), the matrix (6&) and the chi-square 
statistics. The second possibility for producing a test is to use the 
TEST statement. This statistic is equivalent to those obtained using 
the STRATA command when there is only one death at each time 
point. When there is more than one death at some time, it computes 
a statistic obtained as the average of the statistics one can obtain 
by breaking these ties in all possible ways. This leads to different 
statistics than those we present here. We recommend the use of the 
STRATA command for tests using SAS. 

2. The S-Plus function surv.diff produces the Fleming and Hanington 
class of tests with q = 0. By choosing p = 0, the log-rank test can 
be obtained. 

3. All of the tests described in this section are based on large-sample 
approximations to the distribution of the chi-square statistics. They 
also assume that the censoring distributions are independent of the 
failure distributions. Care should be used in interpreting these results 
when the sample sizes are small or when there are few events. (Cf. 
Kellerer and Chmelevsky 1983, Latta, 1981, or Peace and Flora, 1978, 
for the results of Monte Carlo studies of the small-sample power of 

- - 

these tests.) 
4. Based on a Monte Carlo study, Kellerer and Chmelevsky (1983) con- 

clude that, when the sample sizes are small for two-sample tests, 
the one-sided test must be used with caution. When the sample 
sizes are very different in the two groups and when the alternative 
hypothesis is that the hazard rate of the smaller sample is larger 
than the rate in the larger sample, these tests tend to falsely reject 
the null hypothesis too often. The tests are extremely conservative 
when the larger sample is associated with the larger hazard rate un- 

I :, 

detailed discussion. 

Theoretical Notes 
1. The tests discussed in this section arise naturally using counting pro- 

cess theory. In section 3.6, we saw that the Nelson-Aden estimator 
of the cumulative hazard rate in the jth sample was a stochastic 
integral of a predictable process with respect to a basic martingale 
and, as such, is itself a martingale. By a similar argument, when the 
null hypothesis is true, the Nelson-Aalen estimator of the common 
cumulative hazard rate is also a martingale. Furthermore, the differ- 
ence of two martingales can be shown to also be a martingale. I€ 
Wj(t) is a predictable weight function, then, Zj(r) is the integral of 
a predictable process with respect to a martingale and is, again, a 
martingale when the null hypothesis is true. The estimated variance 
of Zj(r) in (7.3.4) comes from the predictable variation process of 
Zj(r) using a version of the predictable variation process for the ba- 
sic martingale which allows for discrete event times. More detailed 
desaiptions of this derivation are found in Aalen (1975) and Gill 
(1980) for the two-sample case and in Andersen et al. (1982) for the 
K sample case. 

2. The modification of Andersen et al. (1982) to the Peto and Peto 
weight, W(t,) = S(t,)x/(x + 1) makes the weight function pre- 
dictable in the sense discussed in section 3.6. 

3. The statistics presented in this section are generalizations to cen- 
sored data of linear rank statistics. For uncensored data, a linear 
rank statistic is constructed as Zj = Cyil j = 1, . . . , K. 

Here Rfj is the rank of the ith observation in the jth sample among 
the pooled observations. The scores a,(i) are obtained from a score 
function q defined on the unit interval by a&) = nq(T(o)l, where 
To is the ith order statistic from a uniform [O,l] sample of size n 
or by a,(i) = q[i/(n + I)]. For a censored sample, these scores are 
generalized as follows: An uncensored observation is given a score of 
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?[I  -S(t)], with S(t) given by (7.3.8); a censored observation is given 
a score of l-ql:-st,), Jia-sca ?(u)du. The score function ?(u) = 
22.4 - 1, for example will yield the Peto and Peto version of 
test. (See Kalbfleisch and Prentice, 1980 for additional development 
of this concept.) 

4. Gill (1980) discusses the Pitman efficiency of these tests. 
5, Gehan's two-sample test can be constructed as a generalization of the 

Mann-Whitney test as follows. Let (TI ,  8j1) denote the time on study 
and the event indicator for the ith observation in the jth sample, 
Define the scoring function +[ (TI ,  8i1), (z2, 8h2)l as follows: 

+ 1, if Ti ]  5 G2, = 1, 8b2 = 0, 
or T I  < Tt2, 811 = 1, 8b2 = I ,  

+ [ (TI ,  8iJ, (Th2, 8h2)1 = -1, if T I  2 Tb2, 8b2 = 1, $1 = 0, 
or T I  > Tb2, 8il = I ,  8b2 = 1, 

0, otherwise 

Then, Z1(7) = CyLl CiS1 +[ (TI ,  $]I, (L, 8h2)1 is the number of ob- 
servations from the first sample that are definitely smaller than an 
observation in the second sample. Gehan (1965) provides a variance 
estimator of this statistic under the null hypothesis, based on assum- 
ing a fixed censoring pattern and that all possible permutations of 
the two samples over this pattern are equally likely. Essentially, this 
estimator assumes that the censoring patterns are the same for both 
samples. When this is not the case, this variance estimator may lead 
to incorrect decisions. 

Tests for Trend 

In the previous section, we examined tests, based on a weighted com- 
parison of the observed and expected number of deaths in each of K 
samples, to test the null hypothesis that the K population hazard rates 
are the same versus the global alternative hypothesis that, at least, one 
of the hazard rates is different. In this section, we shall use the statistics 
developed in section 7.3 to develop a test statistic with power to detect 
ordered alternatives, that is, we shall test 

against 

HA : bl(t)  5 h2(t) 5 5 bK(t) for t 5 7 ,  with at least one 
strict inequality. 

The alternative hypothesis is equivalent to the hypothesis that s1(t) 2 
S2(t) 2 . . . 2 SK(t). 

7.4 Tests for Trend 21 7 

The test will be based on the statistic Z,(T) given by (7.3.3). Any of the 
weight functions discussed in section 7.3 can be used in constructing 
the test. As discussed earlier these various weight functions give more 
or less weight to the time points at which the comparison between the 
observed and expected number of deaths in each sample is made. We 
let i be the full-K X K covariance matrix, 2 = (el,, j, g = 1, . . . , K).  
Here, is given by Eqs. (7.3.4) and (7.3.5). 

To construct the test, a sequence of scores al < q < .. < aK 
is selected. Any increasing set of scores can be used in constructing 
the test, and the test is invariant under linear transformations of the 
scores. In most cases, the scores a, = j are used, but one may take the 
scores to be some numerical characteristic of the jth population. The 
test statistic is 

When the null hypothesis is true and the sample sizes are sufficiently 
large, then, this statistic has a standard normal distribution. If the alter- 
native hypothesis is true, then, the Z,(T) associated with larger values 
of al should tend to be large, and, thus, the null hypothesis is rejected 
in favor of HA at an a Type I error rate when the test statistic is larger 
than the ath upper percentile of a standard normal distribution. 

EXAMPLE 7.6 In section 1.8, a study of 90 patients diagnosed with cancer of the larynx 
in the 70s at a Dutch hospital was reported. The data consists of the 
times between first treatment and either death or the end of the study. 
Patients were classified by the stage of their disease using the American 
Joint Committee for Cancer Staging. We shall test the hypothesis that 
there is no difference in the death rates among the four stages of the 
disease versus the hypothesis that, the higher the stage, the higher the 
death rate. The data is found on our web site. The four survival curves 
are shown in Figure 7 .  3. We shall use the scores a, = j, j = 1, . . . , 4  
in constructing our tests. 

Using the log-rank weights, 

Z(10.7) = (-7.5660, -3.0117,2.9155,7.6623) and 

The value of the test statistic (7.4.2) is 3.72 and the p-value of the test 
is less than 0.0001. 
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Figure 7.3 Estimated sunrival function for larynx cancer patients. Stage I 
(-1 Stage lT (-) Stage ID (---) Stage N (--) 

Using the Tarone and Ware weights, we h d  that the value of the test 
statistic is 4.06. Using Gehan's weights, the value of the test statistic is 
4.22, and using the Peto and Peto weights, the value of the test statistic 
is 4.13. All three tests have a p-value of less than 0.0001, providing 
strong evidence that the hazard rates are in the expected order. 

Practical Notes 

1. The SAS procedure LIFETEST provides the statistics Zj(t) and 2 
based on the log-rank weights and Gehan's weights. 

2. This test should be applied only when there is some a priori infor- 
mation that the alternatives are ordered. 

1. When there is no censoring, the test using Gehan or Peto-Peto 
weights reduces to the JonckheereTerpstra test. 

Often in applying the tests discussed in section 7.3, an investigator is 
faced with the problem of adjusting for some other covariates that af- 
fect the event rates in the K populations. One approach is to imbed the 
problem of comparing the K populations into a regression formulation, 
as described in section 2.6, and perform the test to compare the popula- 
tions, after an adjustment for covariates, by using one of the techniques 
described in Chapters 8-10. An alternative approach is to base the test 
on a stratified version of one of the tests discussed in section 7.3. This 
approach is feasible when the number of levels of the covariate is not 
too large or when a continuous covariate is discretized into a workable 
number of levels. In this section, we shall discuss how such stratified 
tests are constructed, and we shall see how these tests can be used to 
analyze the sunrival of matched pairs. 

We assume that our test is to be stratified on M levels of a set of 
covariates. We shall test the hypothesis 

Based only on the data from the sth strata, let ZjS(7) be the statistic 
(7.3.3) and 3, be the variancecovariance matrix of the ZJS(7))s obtained 
from (7.3.4) and (7.3.5). As in the previous two sections, any choice of 
weight functions can be used for Zjs. These statistics can be used to 
test the hypothesis of difference in the hazard rates within stratum s by 
constructing the test statistic (7.3.6). Aglobal test of (7.5.1) is constructed 
as follows: 

The test statistic, as in (7.3.0, is 

where 8, is the ( K  - 1) X (K  - 1) matrix obtained from the Bb,'s. When 
the total sample size is large and the null hypothesis is true, this statistic 
has a chi-squared distribution with K - 1 degrees of freedom. For the 
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two-sample problem, the stratified test statistic is 

which is asymptotically standard normal when the null hypothesis is 
true. 

- 

EXAMPLE 7.7 In section 1.10, the results of a small study comparing the effectiveness 
of allogeneic (allo) transplants versus autogeneic (auto) transplants for 
Hodgkin's disease (HOD) or non-Hodgkin's lymphoma (NHL) was pre- 
sented. Of interest is a test of the null hypothesis of no difference in 
the leukemia-free-survival rate between patients given an a110 ( j  = 1) 
or auto ( j  = 2) transplant, adjusting for the patient's disease state. 

From only the data on Hodgkin's patients, we find ZlHOD(2144) = 
3.1062 and eIlHOD = 1.5177 using log-rank weights. For the non- 
Hodglun's lymphoma patients, we find Zlw(2144) = -2.3056 and 
ell- = 3.3556. The stratified log-rank test is 

which has a p-value of 0.5699. 
In this example, if we perform the test only on the Hodgkin's disease 

patients, we find that the test statistic has a value of 2.89 (p = 0.004), 
whereas using only non-Hodgkin's patients, we find that the test statistic 
is -1.26 (p = 0.2082). The small value of the combined statistic is due, 
in part, to the reversal of the relationship between transplant procedure 
and disease-free survival in the Hodgkin's group from that in the non- 
Hod&ds group. 

EXAMPLE 7.4 (continued) In Example 7.4, we found that there was evidence of 
a difference in disease-free survival rates between bone marrow pa- 
tients with ALL, low-risk AML and high-risk AML. A proper comparison 
of these three disease groups should account for other factors which 
may influence disease-free survival. One such factor is the use of a 
graft-versus-host prophylactic combining methotretexate (MTX) with 
some other agent. We shall perform a stratified Gehan weighted test 
for differences in the hazard rates of the three disease states. Using 
(7.3.2)-(7.3.5), for the no MTX strata, 

and, for the M'IX strata, 
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and 
5137.1 -2685.6 -2451.6 

-2685.6 4397.5 -1711.9 
-2451.6 -1711.9 4163.5 

I Pooling the results in the two strata, 

Zl. = -83, Zz, = -937, Z3. = 1020, and 

54503.7 -34806.2 -19697.6 
-34806.2 73786.1 -38980.1 
- 19697.6 -38980 .I 58677.7 

I The stratified Gehan test statistic is 

which has a p-value of less than 0.0001 when compared to a chi-square 
with two degrees of freedom. The tests on the individual strata give 
test statistics of ,y2 = 19.1822 (p = 0.0001) for the no MTX group and 
2 = 0.4765 (p = 0.7880) in the M'IX arm. The global test, ignoring 
MTX, found a test statistic of 16.2407 with a p-value of 0.0003. 

Another use for the stratified test is for matched pairs, censored, 
survival data. Here we have paired event times (TI, z t )  and their cor- 
responding event indicators hi), for i .= 1,. . . , M .  We wish to 
test the hypothesis & : hi(#) = hi(#), i = 1, . . . , M .  Computing the 
statistics (7.3.3) and (7.3.4), 

W(T,;)(l - 1/21 = W(T,;)/2 if T,; < G;, 61; = 1 
or T,; = El, = 1, hi = 0 

- 1/21 = - W(z;)/2 if z; < Ti, 62; = 1 
or z1 = T,;, hi = 1, 61i = 0 
otherwise I 

(7.5.5) 

and 

W(T,;)2(1/2>(1 - 1/21 = W(T,;)2/4 if T,; < zt,  = 1 
or T,; = El, = 1, hi = 0 

- 1/21 = W(Z,l2/4 if z; < T,;, hi = 1 
or zr = T,;, 82; = 1, = 0 
otherwise 

I For any of the weight functions we have discussed, 



222 Chapter 7 Hypothesis Testing 7.6 Renyi Type Tests 223 - 
and 

4 + 4  ell. = WZ- 
4 ' 

where 4 is the number of matched pairs in which the individual from 
sample 1 experiences the event first and 4 is the number in which 
the individual from sample 2 experiences the event first. Here w is the 
value of the weight function at the time when the smaller of the pair 
fails. Because these weights do not depend on which group this failure 
came from, the test statistic is 

which has a standard normal distribution when the number of pairs is 
large and the null hypothesis is true. Note that matched pairs, where 
the smaller of the two times corresponds to a censored observation, 
make no contribution to Zl, or ell.. 

EXAMPLE 7.8 In section 1.2, the results of a clinical trial of the drug 6-mercaptopurine 
(6-MP) versus a placebo in 42 children with acute leukemia was de- 
scribed. The trial was conducted by matching pairs of patients at a 
given hospital by remission status (complete or partial) and randorniz- 
ing within the pair to either a 6-MP or placebo maintenance therapy. 
Patients were followed until their leukemia returned (relapse) or until 
the end of the study. 

Survival curves for the two groups were computed in Example 4.1. 
We shall now test the hypothesis that there is no difference in the rate 
of recurrence of leukemia in the two groups. From Table 1.1, we find 

= 18 and DGMP = 3, SO that the test statistic is (18 - 3)/(18 + 
3)'12 = 3.27. The p-value of the test is 2PrlZ 2 3.271 = 0.001, so that 
there is sufficient evidence that the relapse rates are different in the two 
groups. 

Practical Notes 
1. The test for matched pairs uses only information from those pairs 

where the smaller of the two times corresponds to an event time. 
The effective sample size of the test is the number of such pairs. 

2. The test for matched pairs is the censored-data version of the sign 
test. 

3. The stratified tests will have good power against alternatives that are 
in the same direction in each stratum. When this is not the case, 
these statistics may have very low power, and separate tests for each 
stratum are indicated. (See Example 7.5.) 

1 Theoretical Notes 
1. The test for matched pairs relies only on intrapair comparisons. Other 

tests for matched pairs have been suggested which assume a bivari- 
ate model for the paired times, but make interpair comparisons. 

2. The asymptotic chi-squared distribution of the stratified tests dis- 
cussed in this section is valid when either the number of strata is 
fixed and the number within each stratum is large or when the num- 
ber in each stratum is fixed and the number of strata is large. See 
Andersen et al. (1993) for details on the asyrnptotics of these tests. 

7.6 Renyi Type Tests 

In section 7.3, a series of tests to compare the survival experience of 
two or more samples were presented. All of these tests were based on  
the weighted integral of estimated differences between the cumulative 
hazard rates in the samples. When these tests are applied to samples 
from populations where the hazard rates cross, these tests have little 
power because early differences in favor of one group are canceled out 
by late differences in favor of the other treatment. In this section, we 
present a class of tests with greater power to detect crossing hazards. 
We will focus on the two sample versions of the test. 

The test statistics to be used are called Renyi statistics and are 
censored-data analogs of the KolmogorovSmirnov statistic for com- 
paring two uncensored samples. To construct the tests, we will find 
the value of the test statistic (7.3.3) for some weight function at each 
death time. When the hazard rates cross, the absolute value of these 
sequential evaluations of the test statistic will have a maximum value 
at some time point prior to the largest death time. When this value is 
too large, then, the null hypothesis of interest 6 : &(t) = h2(t), t < 7, 

is rejected in favor of HA : hl(t) $: h2(t), for some t. To adjust for the 
fact that we are constructing multiple test statistics on the same set of 
data, a correction is made to the critical value of the test. 

To construct the test, suppose that we have two independent samples 
of size nl and n2, respectively. Let n = nl + n2. Let tl < h < - < t, 
be the distinct death times in the pooled sample. In sample j let dtj be 
the number of deaths and Kj the number at risk at time ti, i = 1, . . . , D, 
j = 1,2. Let K = K1 + x2 be the total number at risk in both samples 
and dt = dtl + di2 be the total number of deaths in the combined 
sample at time tt. Let W(t) be a weight function. For example, for the 
"log-rank" version of this test W(t) = 1 and, for the "Gehan-Wilcoxon" 
version, W(tt) = 5, + K2. For each value of ti we compute, Z(tt), 
which is the value of the numerator of the statistic (7.3.7) using only 
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the death times observed up to time t i ,  that is, 

Let U(T) be the standard error of Z(T) which, from (7.3.71, is given 
by 

where T is the largest tk with GI, GZ > 0 .  
The test statistic for a two-sided alternative is given by 

When the null hypothesis is true, then, the distribution of Q can be 
approximated by the distribution of the sup(D(x) 1, 0 5 x 5 1) where 
B is a standard Brownian motion process. Critical values of Q are found 
in Table C.5 in Appendix C. 

The usual weighted log rank test statistic is Z(T)/(T(T). For this test, 
when the two hazard rates cross, early positive differences between 
the two hazard rates are canceled out by later differences in the rates, 
with opposite signs. The supremum version of the statistic should have 
greater power to detect such differences between the hazard rates. 

EXAMPLE 7.9 A clinical trial of chemotherapy against chemotherapy combined with 
radiotherapy in the treatment of locally unresectable gastric cancer was 
conducted by the Gastrointestinal Tumor Study Group (1982). In this 
trial, forty-five patients were randomized to each of the two arms and 
followed for about eight years. The data, found in Stablein and Koutrou- 
velis (1985), is as follows: 

Chemotherapy Only 

1 63 105 129 182 216 250 262 301 301 342 354 
356 358 380 383 383 388 394 408 460 489 499 523 
524 535 562 569 675 676 748 778 786 797 955 %8 

1000 1245 1271 1420 1551 1694 2363 2754' 2950' 

Chemotherapy Plus Radiotherapy 

17 42 44 48 60 72 74 95 103 108 122 144 
167 170 183 185 193 195 197 208 234 235 254 307 
315 401 445 464 484 528 542 547 577 580 795 855 

1366 1577 2060 2412. 2486' 2796' 2802' 2934. 2988' 

'Denotes censored observation. 

Figure 7.4 Values of lZ(t,)l for thegastroinlestiml tumor study 

We wish to test the hypothesis that the survival rate of the two groups 
is the same by using the log rank version (W(tl) = 1) of the Renyi 
statistics. Figure 7.4 shows the value of B(tl)l. Here, the maximum 
occurs at tl = 315 with a value of 9.80. The value of ~ ( 2 3 6 3 )  = 4.46, so 
Q = 2.20. From Table C.5 in Appendin C we h d  that the p-value of 
this test is 0.053 so the null hypothesis of no difference in survival rates 
between the two treatment groups is not rejected at the 5% level. If we 
had used the nonsequential log-rank test, we have Z(2363) = -2.15, 
yielding a p-value of 0.6295 which is not sigruficant. From Figure 7.5,  
which plots the Kaplan-Meier curves for the two samples, we see that 
the usual log rank statistic has a small value because early differences 
in favor of the chemotherapy only group are negated by a late survival 
advantage for the chemotherapy plus radiotherapy group. 

\ 
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Figure 7.5 Estimated survivalfunctions for the gastrointestinul tumor study. 
Chemotherapy only (-) Chemothempyplus radiatfon (-) 

Practical Notes 
1. A one-sided test of the hypothesis & : Sl(t) = S2(t) against HA : 

Sl(t) < Sz(t) can be based on Q* = sup[Z(t), t 5 T]/U(T). When 
is true, Q* converges in distribution to the supremum of a Brownian 
motion process B(t) (see Theoretical Note 3 above). The p-value 
of a one-sided test is given by Pr[supB(t) > Q*] = 211 - WQ*)l, 
where is the standard normal cumulative distribution function. 

Theoretical Notes 
1. The supremum versions of the weighted, log-rank tests were pro- 

posed by Gill (1980). He calls the statistic (7.6.3) a "Renyi-type" 
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statistic. Further development of the statistical properties of the test 
can be found in Fleming and Harrington (1991) and Fleming et al. 
(1980). Schumacher (1984) presents a comparison of this class of 
statistics to tests based on the complete test statistic and other ver- 
sions of the KolmogorovSmirnov statistic. 

2. For a standard Brownian motion process B(t), Billingsly (1968) 
shows that 

3. .Using the counting process methods introduced in section 3.6, one 
can show, under &, that, if u2(t) converges in probability to a limit- 
ing variance u,2(t) on [O, a) then, Z(t) converges weakly to the pro- 
cess B[ui(t)l on the interval 10, m]. This implies that sup[~(t)/u(m) : 
0 < t < m] converges in distribution to [supB(t) : t E Al where 
A = {u,2(t)/u,2(~); 0 5 t 5 a}. When the underlying common sur- 
vival function is continuous, then, A is the full unit interval, so the 
asymptotic p-values are exact. When the underlying common sur- 
vival function is discrete, then, A is a subset of the interval (0, I), and 
the test is a bit conservative. See Fleming et al. (1987) for details of 
the asyrnptotics. 

4. Other extensions of the KolmogorovSmirnov test have been sug- 
gested in the literature. Schumacher (1984) pr9vides details of tests 
based 09 the maximum value of either lodH~(t)l - lodAz(t)~ or 
Hl(t)- Hz(t). In a Monte Carlo study, he shows that the performance 
of these statistics is quite poor, and they are not recommended for 
routine use. 

5. Both Schumacher (1984) and Fleming et al. (1987) have conducted 
simulation studies comparing the Renyi statistic of this section to 
the complete test statistic of section 7.3. For the log-rank test, they 
conclude there is relatively little loss of power for the Renyi statistics 
when the hazard rates are proportional and there is little censoring. 
For nonproportional or crossing hazards the Renyi test seems to 
perform much better than the usual log-rank test for light censoring. 
The apparent advantage of the Renyi statistic for light censoring 
diminishes as the censoring fraction increases. 

7.7 Other Two-Sa.mple Tests 

In this section, we present three other two-sample tests which have 
been suggested in the literature. These tests are constructed to have 
greater power than the tests in section 7.3 to detect crossing hazard 
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rates. All three tests are analogs of common nonparametric tests for 
uncensored data. 

The first test is a censored-data version of the Cramer-von Mises 
test. For uncensored data, the Cramer-Von Mises test is based on fie 
integrated, squared difference between the two empirical Survival func- 
tions. For right-censored data, it is more appropriate to base a test on 
the integrated, squared difference between the two estimated hazard 
rates. This is done to obtain a limiting distribution which does not de- 
pend on the relationship between the death and censoring times and 
because such tests arise naturally from counting process theory. We 
shall present two versions of the test. 

To construct the test, recall, from Chapter 4, that the Nelson-Aalen 
estimator of the cumulative hazard function in the jth sample is given 
by 

An estimator of the variance of ~ ~ ( t )  is given by 

Our test is based on the difference between Al(t) and &(t), so that 
we need to compute uz(t) = ut(t) + u:(t), which is the estimated 
variance of ~ , ( t )  - A2(t). Also let Act) = nu2(t)/[l + nu2(t)l. 

The first version of the Cramer-von Mises statistic is given by 

which can be computed as 

where to = 0, and the sum is over the distinct death times less than 7. 
When the null hypothesis is true, one can show that the large sample 
distribution of Q, is the same as that of Rl = l [~(x)l~d?c,  where B(x) 
is a standard Brownian motion process. The survival function of RI is 
found in Table C.6 of Appendix C. 

An alternate version of the Cramer-von Mises statistic is given by 

which is computed as 

When the null hypothesis is true, the large sample distribution of Qz 
is the same as that of R2 = J~"'[@(X)I~~X, where 8'0 is a Brownian 
bridge process. Table C.7 of Appendix C provides critical values for the 
test based on Q2. 

EXAMPLE7.2 (continued) We shall apply the two Cramer-von Mises tests to the 
comparison of the rate of cutaneous exit-site infections for kidney dial- 
ysis patients whose catheters were placed surgically (group 1) as com- 
pared to patients who had percutaneous placement of their catheters 
(group 2). Routine calculations yield Ql = 1.8061 which, from Table 
C.6 of Appendix C, has a p-value of 0.039. For the second version of 
the Cramer-von Mises test, Q2 = 0.2667 and A(T) = 0.99. From Table 
C.7 of Appendix C, we find that this test has a p-value of 0.195. 

A common test for uncensored data is the two-sample t-test, based 
on the difference in sample means between the two populations. The 
second test we present is a censoreddata version of this test based 
on the Kaplan-Meier estimators in the two samples, &(t) and i2(t). 
In section 4.5, we saw that the population mean can be estimated by 
the area under the Kaplan-Meier curve i(t). This suggests that a test 
based on the area under the curve $0) - .$(t), over the range where 
both of the two samples stiU have individuals at risk, will provide a 
censored data analog of the two-sample t-test. For censored data, we 
have seen that the estimate of the survival function may be unstable 
in later time intervals when there is heavy censoring, so that relatively 
small differences in the Kaplan-Meier estimates in the tail may have 
too much weight when comparing the two survival curves. To handle 
this problem, the area under a weighted difference in the two survival 
functions is used. The weight function, which downweights differences 
late-in time when there is heavy censoring, is based on the distribution 
of the censoring times. 

To construct the test, we pool the observed times in the two samples. 
Let fi < < -. . < t,, denote the ordered times. Notice that, here, a s  
opposed to the other procedures where only event times are consid- 
ered, the ti's consist of both event and censoring times. Let dij, cij, Y;I 
be, respectively, the number of events, the number of censored obser- 
vations, and the number at risk at time ti in the jth sample, j = 1,2. Let 
ij(t) be the Kaplan-Meier estimator of the event distribution using data 
in the jth sample and let &,(t) be the Kaplan-Meier estimator of the 
time to censoring in the jth sample, that is, 6j(t) = n,,,,[l - cij/xjl. 
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Finally, let ip( t )  be the Kaplan-Meier est~mator based on the combined The final test we shall present is a censored-data version of the two- 
sample. sample median test proposed by Brookmeyer and Crowley (1982b). 

To construct the test statistic, we define a weight functlon by This test is useful when one is interested in comparing the median 
survival times of the two samples rather than in comparing the differ- 
ence in the hazard rates or the survival functions over time. The test 
has reasonable power to detect differences between samples when the  

where nl and n2 are the two sample sizes and n = nl + n2. Notice that hazard rates of the two populations cross. It is sensitive to differences 
d t )  is constant between successive censored observations and, when in median survival for any shaped survival function. 
there is heavy censoring in either sample, d t )  is close to zero. When To construct the test, we have two, independent, censored samples 
there is no censoring, d t )  is equal to 1. The test statistic is given by of sizes nl and n2, respectively. Let n = nl + n2 be the total sample 

size. For each sample, we construct the Kaplan-Meier estimator (4.2.11, 

Wm = elC d t ) [ i l ( t )  - $(t)ldt SJ(t), j = 1,2. When the null hypothesis of no difference in survival 
between the two groups is true, an estimator of the common survival 

which can be computed by function is the weighted Kaplan-Meier estimator, 

w, = E F [ t , + ,  - t;ilwtti)ti,(tf) - $(ti)]. 
1=1 

To find the variance of Wm, hst, compute This weighted Kaplan-Meier estimator represents the survival function 
D- 1 of an average individual on study and is a function only of the survival 

A; = d u ) i P ( d d u  = C(tk+l  - tk)dtk)ip(tk). experiences in the two samples. It does not depend on the censoring 
L=;  patterns in the two samples, as would the Kaplan-Meier estimate based 

The estimated variance of Wm = 6; is given by on the combined sample. 
Using the weighted -Kaplan-Meier estimator, an estimate of the 

pooled sample median M is found as follows. Let h < tz < < t~ be 
the event times in the pooled sample. If 3 ~ 4 )  = 0.5 for some death 
time, set M = ti. I f  no event time gives a value of iw equal to 0.5, set 

Note that the sum in (7.7.8) has only nonzero contributions when ti is & as the largest went time with i w ( W  > 0.5 and & as the smallest 
a death time, because, at censored observations, ip(t i- l)  - Sp(t,) = 0. event time with iw(&) < 0.5. The pooled median must lie in the 
When there is no censoring, ej reduces to the usual sample variance interval ( M ,  &) and is found by linear interpolation, that is, 
on the data from the combined sample. 

To test the null hypothesis that Sl(t) = S2(t), the test statistic used IS 
Z = W,/6, which has an approximate standard normal distribution M = M +  (0.5 - SW(W)(& - MJ 

(7.7.10) 
when the null hypothesis is true. If the alternauve hypothesis is that iW(&) - i w ( W  . 
Sl(t) > S2(t), then, the null hypothesis is rejected when Z is larger than 
the ath upper percentage point of a standard normal, whereas, for a To compute this median, we are using a version of the weighted 
two-sided alternative, the null hypothesis is rejected when the absolute Kaplan-Meier estimator, which connects the values of the estimator 
value of Z is larger than a / 2  upper percentage point of a standard at death times by a straight line, rather than the usual estimator which 
normal. is a step function. 

Once the pooled sample median is found, the estimated probability 
that a randomly selected individual in the fi sample exceeds this 

EXAMPLE 7.5 (continued) We shall calculate the weighted difference of Kaplan- value is computed from each sample's Kaplan-Meier estimator. Again, 
Meier estimators statistic for the comparison of auto versus all0 trans- a smoothed version of the Kaplan-Meier estimator, which connects the 
plants. The calculations yield a value of 5.1789 for Wm and 141.5430 values of the estimator at each death time, is used in eac) sample,We 
for 6;, so Z = 0.4353. The p-value of the two-sided test of equality of find the two death times in the Jth sample that bracket M, TL/ I. M < 
the two survival curves is 2PdZ 2 0.45531 = 0.6634. Tw. The estimated probability of survival beyond M in the jth sample, 



232 Chapter 7 Hypothesis Testing - 
found by linear interpolation, is given by 

The test is based on comparing this value to 0.5, the expected survival if 
the null hypothesis of no difference in median survival betwee? the two 
groups is true, that is, the test is based on the statistic n 1 / 2 [ ~ l ( ~ )  - 0.51. 
For sufficiently large samples, this statistic has an approximate normal 
distribution with a variance found as follows. As usual, let tij denote 
the distinct death times in the jth sample, dij the number of deaths at 
time tij and xj the number at risk at time tij. For j = 1,2, define 

Then, the variance of n 1 / 2 [ ~ l ( ~ )  - 0.51 is estimated consistently by 

and the (two-sided) test statistic is 

which has a chi-squared distribution with one degree of freedom when 
the null hypothesis is true. 

EXAMPLE 7.5 (continued) We shall illustrate the median test on the data comparing 
all0 and *auto transplants. Here the estimated.median from the pooled 
sample M = 17.9225. Using the data from the fust sample, we find 

= 0.5409 and i2(M) = 0.4395. Routine calculations find that 
Vi = 0.0122 and = 0.0140, so u2 = 0.6754. Thus, xZ = lOl(0.5409- 
0.5)~/0.6754 = 0.2496. The p-value of the test is the probability that a 
chi-squared, random variable with one degree of freedom will exceed 
this value, which is 0.6173. 

1. Schumacher (1984) has studied the small-sample properties of the 
two Cramer-von Mises type tests. He concludes that there is some 
loss of power using these tests, compared to the log-rank test of sec- 
tion 7.3, when the hazard rates in the two samples are proportional. 
However the test based on Q1 seems to perform quite well in this 
case. Tests based on Q2 perform extremely well compared to other 
tests, when there is a large early difference in the hazard rates or 

I when the hazard rates cross. 
2. An alternative Cramer-von Mises test was proposed by Koziol(1978). 

This test is based on the statistic 

where &(t), i2(t) ,  and i p ( t )  are the Kaplan-Meier estimates of the 
survival function from the first, second, and pooled samples, re- 
spectively. This statistic reduces to the usual Cramer-von Mises test 
when there is no censoring. The asymptotic distribution of the statis- 
tic, however, can only be derived under the additional assumption 
that the two censoring distributions are equal and that the hazard 
rate of the censoring distribution is proportional to the hazard rate of 
the death distribution. In his Monte Carlo study, Schumacher (1984) 
shows that the performance of this test is similar to that of Q2.  

3. Any weight function with the property that (w(t)( 5 y&y/2)+8, for 
y, 6 > 0 can be used in the calculation of Wm. Another choice of 
d t ) ,  suggested by Pepe and Fleming (19891, is the square root of 
equation (7.7.5). If one wishes to compare the two survival curves 
over some range, say t 2- to, the weight function w(t)l[t r to1 may be 
appropriate. Other choices of weights could be motivated by some 
measure of quality of life or the cost of treatment. 

4. When there is no censoring, the estimated variance based on (7.7.8) 
is equal to the sample variance based on the pooled sample. This is a 
different estimator of the common variance in the two samples than 
the usual pooled sample variance constructed as a weighted average 
of the individual sample variances found in most elementary text 
books. 

5. An alternate estimator of the variance of Wm can be constructed by 
using an unpooled variance estimator. Here, let 

The unpooled estimator of the variance is 
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which, in the uncensored-data case, reduces to (nz/n>~: +(nl/n)S; 
with sf the usual sample variance. Monte Carlo studies by Pepe and 
Fleming (1989) show that this variance estimator performs It would make the p-values invalid if the curves were compared for 
than the pooled estimator (7.7.8) and that its performance is poor a variety of points. For example, one may wish to compare the sur- 
when the censoring patterns are different in the two samples. viva1 curves at 1 year or the cumulative incidence curves at 3 years. We 

6. For ni moderately large (> 501, one can approximate in (7.7.12) have available to us Kaplan-Meier estimators of the swival function 
by the simple expression or estimated cumulative incidence functions as  well as estimates of the 

variances of these statistics (See Chapter 4 for the calculation of these 
dij quantities). 

j@12 C .( r,  - d. .) . , I I '1 
The tests statistics we use are special cases of tests for contrasts be- 

tween a set of parameters. If we let @' = (el, . . . , ep) be a p-parameter 
7. Brookmeyer and Crowley (1982b) present an extension of this A1 vector, then a contrast is a linear combination of the covariates. A 

sample median test to the K-sample problem. contrast is a set of coefficients c = (q . . . cp) which define a new pa- 
rameter BC = c@ = c1& + . . . + cPOp. For example, if p = 3, then the 
vector c = (1, -1,O) yields OC = 8, - 0, and a test of the hypothesis 
that OC = 0 is a test that 8, = 8,. 

Suppose that we have q contrasts ck = (ckl, . . ., ckP), k = 1, . . ., 4, 
and we wish to test the hypothesis that ckO = 0 for all k, then the 

1. The weighted Kaplan-Meier test was proposed by Pepe and ~ l emin~  test statistic will be a quadratic fonn constructed using the estimates of 
(1989) who developed its properties. This statistic can not be derived 81, . . . , ep. To construct the quadratic form we define a q X p contrast 
using counting process techniques. Pepe and Fleming (1991) give matrix 
details of the asymptotic properties of the test. 

2. A small-sample Monte Carlo study reported in Pepe and Fleming 
(1989) shows that, when the hazard rates in the two populations are 
proportional, the power of WKM is slightly less than that of the log- (7.8.1) 

rank test. The test performs substantially better when the two h . . r d  
rates cross. This observation is confirmed in Pepe and Fleming (1991) 
who base these observations on the asymptotic relative efficiency of We compute an estimate of el, 81 and the variance matrix, V, with 
the two tests. elements, &I. To test the hypothesis 4 : C@' = 0, the test 

3 Brookmeyer and Crowley (1982b) discuss the a~ymptotic relative ef- statistic is 
ficiency of the median test as compared to the log-rank and V7iicoxon 
tests. mey  show that the asymptotic relative efficiency is about half ,$ = [ C ~ I ~ ~ C V C ~ - ~ C ~ .  (7.8.2) 
of that of the log-rank test for proportional hazards alternatives, but 
about twice that of the log-rank test for a translation alternative. The When the estimators are approximately normally distributed, this 

performance of these tests is also presented for small-sample sizes form has an asymptotically chi-squared with q degrees of freedom. 
In a survival analysis context we wish to test 

based on a Monte Carlo study. 
& :  &(to) = &(to) = -.. = S~(to) versus (7.8.3) 

HA : at least one of theSl(to)'s is different, for predetermined to, 

7.8 Test Based on Differences in Outcome at a Or 

Fixed Point in Time 4 : CI,(&J) =  to) = . . . = CIK(b) versus (7.8.4) 
HA : at least one of theCIl(toYs is different, for predetermined to. 

u p  to this point we have considered tests that compare hazard lates Or Notation similar to that used in sections 4.2, 4.7, and 7.3 wi! be used 
funaions over a range of time points. occasion all^ we are inter- and the groups wiU be assumed to be independent. Let el be the 

ested in comparing K survival curves or K cumulative incidence Kaplan-Meier estimate of the jth survival curve or the estimate of the 
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jth cumulative incidence curve at the predetermined time point to 
will be taken to be the p - 1 X p matrix 

Here V is a diagonal matrix with elements Vb = ir(i)b(t0)),k = 
1, . . . , p .  

The quadratic form (7.8.2) is 

U(AMPLE7.2 (continued) In example 7.2, data from a clinical trial of the effective- 
ness of two methods for placing catheters in kidney dialysis patients 
was used to illustrate various two-sample tests over the entire range of 
time, The estimated survival functions for the two groups are given in 
Figure 7.1. Suppose an investigator is interested in comparing the sur- 
vival functions at 3 months (short duration of time to infection). Thus, 
using the Kaplan-Meier estimates of the survival functions from (4.2.1) 
and the estimated variances of these survival functions from (4.2.2) for 
the jth goup, we obtain the Z test statistic as the square root of the 
chi-squared quadratic form with one degree of freedom from (7.8.5) to 
be 

which, when 14, is true, has a standard normal ditribution for large 
samples. Using this statistic, an a level test of the alternative hypothesis 
HA : Sl(i$ > S2(k) is rejected when Z r Z,, the ath upper percentage 
point of a standard normal distribution. The test of HA : S,(CJ) Sz(6) 
rejects when IZl > Zd,. 

The estimates of the survival functions are 

i1(3) = 0.9767 and $3) = 0.882, 
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and estimates of the variances are 

?[51(3)1.= 0.00053 and ili2(3)1 = 0.00141. 

This leads to a test statistic of 

which leads to a two-sidedp-value of 0.044. This difference is due to the 
first group's (surgical placement of catheters) having a smaller proba- 
bility of infection at three months than the second group (percutaneous 
placement of catheters). 

It should be noted that another investigator comparing the survival 
function of the different placement of the catheters at a large time period 
would get the opposite conclusion. This again emphasizes the need to 
preselect 16 before examining the data. 

This example is also an illustration of what can occur when the 
hazards are not proportional (an assumption formally tested in Chapter 
9, Example 9.2). 

- 

EXAMPLE7.4 (continued) In the example of section 4.7 the relapse cumulative in- 
cidence curve for 39 ALL patients was calculated as shown in Table 4.8. 
At one year the estimated cumulative incidence was 0.2380 (variance 
= 0.0048). In this data set there are two additional groups, AML low- 
risk and AML high-risk, whose relapse cumulative incidences are 0.0556 
(variance = 0.0010) and 0.3556 (variance = 0.0054), respectively. A test 
of the hypothesis of no difference in three-year cumulative incidence 
between the three disease groups at one year has a 2 = 17.32, which 
has a p-value of 0.0002 when compared to a chi-square distribution 
with 2 degrees of freedom. 

If one is interested in comparing K groups in a pairwise simultaneous 
manner then an adjustment for multiple tests must be made. One such 
method that can be used is the Bonferroni method of multiple compar- 
isons. Here if K(K - 1)/2 pairwise comparisons are made and one stiIl 
wants to maintain an overall a-level test, then each individual test is 
carried out at an a' = a/K(K - 1)/2 (or a/2K(K - 1)/2 = ~ /K(K-  1) 
for two-sided tests) level of significance and if all null hypotheses are 
actually true, then the probability is at least 1 - a that none of the null 
hypotheses will be wrongly rejected. This method is somewhat conser- 
vative and becomes more conserative as the number of comparisons 
increases. 

EXAMPLE 7.4 (continued) For ow previous example of the three groups (ALL, AML 
low-risk, AML high-risk) when the Bonferroni method of multiple corn- 



parisons (in our case, K = 3) is used to make pairwise comparisons 
of the cumulative incidence curves, each test needs to be carried 
at the 0.05/3 = 0.017 level of significance. The contrasts (1, -1,0) 
(I,(), -I), and (0,1, -1) may be used to test each of the individui 
pairwise comparisons. Using the appropriate variances in (7.8.5), we 
get 

for f i  : CIl(h> = Clz(to) at h = 1 

we have 

Z = 2.41, p-value = 0.016, 

for Ho : CIl(h) = C13(h) at lo = 1 

we have 

Z = -1.17, p-value = 0.242, 

and 

for Ii, : CI2(h) = C13(h) at lo = 1 

we have 

Z = -3.76, p-value = 0.0002. 

Thus we conclude that the AML high-risk group is statistically different 
from the other two groups and that the ALL and AML low-risk groups 
are not statistically different from each other. 

Practica 1 Notes 
1. One may test a hypothesis for any linear combination of several 
groups. For example, if one wants to test whether the cumulative inci- 
dence curves for the ALL. patients are different than those for the AML 
(both high-risk and low-risk) patients, then one may select the linear 
contrast (2, -1, -1) and use the quadratic form (7.8.5). 

I 7.9 Exercises 

7.1 In a study of the effectiveness of a combined drug regimen for the 
treatment of rheumatoid arthritis, 40 white patients were followed for 
a period ranging from 1 to 18 years. During the course of the study, 9 
patients died. The ages at entry into the study and at death for these 9 
patients were as follows: 
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Female deaths: (66, 741, (60, 761, (70, 771, 0 1 ,  81) 
Male deaths: (50, 591, (60,661, (51, 691, (69, 711, (58, 711 

For the 31 patients still alive at the end of the study their ages at entry 
and last follow-up were as follows: 

Using the all-cause U.S. mortality table for 1989 (Table 2.1) test the 
hypothesis that the death rate of these rheumatoid arthritis patients is 
not different from that in the general population using the log-rank test. 

In Exercise 5 of Chapter 6, the survival experience of patients given 
an autologous transplant was compared to a postulated exponential 
survival rate with a hazard rate of 0.045. Using the data in Table 1.4 
of Chapter 1, test the hypothesis that the hazard rate of these auto 
transplant patients is equal to 0.045 against the alternative that it is 
larger than 0.045 using the one-sample, log-rank test. Repeat this test 
using a weight function which gives heavier weight to departures early 
in time from this hazard rate. 

Consider the data reported in section 1.6 on the times until staphylo- 
coccus infection of bum patients (see our web page). 
(a) Using the log-rank test, test the hypothesis of no difference in 

the rate of staphyiococcus infection between patients whose burns 
were cared for with a mutine bathing care method versus those 
whose body deansing was initially performed using 4% chlorhexi- 
dine gluconate. Use a twcsided test and a 0.05 sigtllficance level. 

(b) Repeat the test using Gehan's test. 
(c) Repeat the test using the Tarone and Ware weights. 

In section 1.11, data from a study of the effect of ploidy on survival for 
patients with tumors of the tongue was reported. 
(a) Test the hypothesis that the survival rates of patients with cancer 

of the tongue are the same for patients with aneuploid and diploid 
tumors using the log-rank test. 

(b) If primary interest is in detecting differences in survival rates be- 
tween the two types of cancers which occur soon after the diagnosis 
of the cancer, repeat part a using a more appropriate test statistic. 

Using the data on laryngeal cancers in Example 7.6, test, by the log-rank 
statistic, the null hypothesis of no difference in death rates among the 
four stages of cancer against the global alternative that at least one of 
the death rates differs from the others. Compare your results to those 
found in Example 7.6. 
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7.6 One of the goals of recent research is to explore the efficacy of 

triple-drug combinations of antiretroviral therapy for treatment of m- 
infected patients. Because of limitations on potency and the continuing 
emergence of drug resistance seen with the use of currently available 
antiretroviral agents in monotherapy and two-drug regimens, triple- 
combination regimens should represent a more promising approach 
to maximize antiviral activity, maintain long-term efficacy, and reduce 
the incidence of drug resistance. Towards this end, investigators per- 
formed a randomized study comparing AZT + zalcitabine (ddC) versus 
AZT + zalcitabine (ddC) + saquinavir. The data, time from admnistra- 
tion of treatment (in days) until the CD4 count reached a prespecified 
level, is given below for the two groups. 

AZT + zalcitabine (ddC): 85, 32, 38+, 45, 4+,  84, 49, 180+, 87, 75, 102, 39, 12, 11, 80, 
35, 6 
AZT + zalcitabine (ddC) + saquinavir: 22, 2, 48, 85, 160, 238,56+, 94+, 51+, 12, 171, 
80, 180, 4 9 0 ,  180+, 3 

Use the log rank statistic to test if there is a difference in the distribution 
of the times at which patient's CD4 reaches the prespecified level for 
the two treatments. 

7.7 A study was performed to determine the efficacy of boron neutron 
capture therapy (BNCT) in treating the therapeutically refractory F98 
&om, using boronophenylalanine (BPA) as the capture agent. F98 
glioma cells were implanted into the brains of rats. Three groups of rats 
were studied. One group went untreated, another was treated only with 
radiation, and the third group received radiation plus an appropriate 
concentration of BPA. The data for the three groups lists the death times 
(in days) and is given below: 

Untreated Radiated Radiated + BPA 

20 26 31 
21 28 32 
23 29 34 
24 29 35 
24 30 36 
26 30 38 
26 31 38 
n 31 39 
28 32 42' 
30 35+ 42+ 

 e en so red observation 

(a) Compare the survival curves for the three groups. 

(b) Perform pairwise tests to determine if there is any difference in 
survival between pairs of groups. 

(c) There is a priori evidence that, if there is a difference in survival, 
there should be a natural ordering, namely, untreated animals will 
have the worst survival, radiated rats will have slightly improved 
survival, and the radiated rats + BPA should have the best survival. 
Perform the test for trend which would test this ordered hypothesis. 

7.8 In Example 7.4, we compared the disease-free survival rates of ALL 
patients with those of high-risk and low risk AML patients. Because 
acute graft-versus-host (aGVHD) disease is considered to have an an- 
tileukemic effect, one would expect lower relapse rates for patients who 
have developed aGVHD than for those that do not develop aGVHD. 
Using the data on out web page, examine the validity of this finding by 
(a) testing if the hazard rate for the occurrence of aGVHD is the same 

for the three groups, 

(b) testing if the hazard rate for relapse is the same in all three groups, 
and 

(c) testing if the hazard rate for relapse in the three disease groups is 
the same for patients who have developed aGVHD. (Hint: For this 
test, the data is left-truncated at the time of aGVHD). 

7.9 On our web page, data is reported on the death times of 863 kidney 
transplant patients (see section 1.7). Here, patients can be classified by 
race and sex into one of four groups. 
(a) Test the hypothesis that there is no difference in sunival between 

the four groups. 
(b) Provide individual tests, for each sex, of the hypothesis of no racial 

differences in survival rates. Also, adjusting by stratification for the 
sex of the patient, test the hypothesis that blacks have a higher 
mortality rate than whites. 

7.10 In Example 7.6 we found that the four populations of cancer patients 
had ordered hazard rates. Of interest is knowing which pairs of the 
hazard rates are different. Using the log-rank test, perform the three 
pairwise tests of the hypothesis 6, : h,(t) = h,+](t) versus He, : h,(t) < 
h,+](t), for j = 1,2,3. For each test, use only those individuals with 
stage j or j + 1 of the disease. Make an adjustment to your critical value 
for multiple testing to give an approximate 0.05 level test. 

One method to making the pairwise comparisons is to base the pair- 
wise tests on the full Z(T) vector. To perform this test, recall that this 
vector has an asymptotic K variate normal distribution with mean 0 
and covariance matrix 5 under the null hypothesis. Thus, the statistic 
Z,(7) - Z,+l(~) has a normal distribution with mean 0 and variance 
6 + &,+I,+~ - 26jj+l when the null hypothesis is true. Large neg- 
!I auve values of this test statistic will suggest that the hazard rate in 
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sample j is smaller than in sample j + 1, SO the hypothesis G, : 
hj(t) = hjtl(t) is rejected in favor of  HA^ : hj(t) < h,+,(t) when 
[zj(r) - Z~+~(T)]/[~?~, + t?j+lj+l - 2t?j,+111/2 is smaller than the ath lower 
percentile of a standard normal. Use the information in Example 7.6 
and this statistic to make the multiple comparisons. 

7.11 The data on laryngeal cancer patients was collected over the period 
1970-1978. It is possible that the therapy used to treat laryngeal cancer 
may have changed over this nine year period. TO adjust for this pas- 
sible confounding fact, test the hypothesis of no difference in survival 
between patients with different stages of disease against a global alter- 
native using a test which stratifies on the cancer being diagnosed prior 
to 1975 or not. ~ l s o  perform a separate test of the hypothesis of interest 
in each stratum. 

7.12 (a) Repeat Exercise 3 using the log-rank version of the Renyi statistic. 
(b) Repeat Exercise 4 using the Gehan version of the Renyi statistic. 

7.13 In Table 1.3 of section 1.5, the data on time to death for breast cancer- 
patients who where classed as lymph node negative by standard light 
microscopy (SLM) or by imrnunohistochemical (IH) examination of their 
lymph nodes is reported. Test the hypothesis that there is no difference 
in survival between theses two groups using 
(a) the log-rank test, 
(b) the Renyi statistic based on the log-rank test, 
(c) the Cmer-von Mises statistic, and 
(d) the weighted difference in the Kaplan-Meier statistic Ww. 

7.14 Repeat Exercise 7 using 
(a) the Renyi statistic based on the log-rank test, 
(b) the Cmer-von Mises statistic, and 
(c) the weighted difference in the Kaplan-Meier statistic Ww. 

7.15 Using the data of section 1.3, 
(a) compare the three survival functions for ALL, AML low-risk, and 

AML high-risk at one year; 
(b) perform pairwise multiple comparisons for the three groups em- 

ploying the Bonferroni correction for multiple tests. 

Semi parametric 
Proportional Hazards 
~ekession with Fixed 

u 

Covariates 

3.1 Introduction 

Often one is interested in comparing two or more groups of times-te 
event. If the groups are similar, except for the treatment under study, 
then, the nonparametric methods of Chapter 7 may be used directly. 
More often than not, the subjects in the groups have some additional 
characteristics that may affect their outcome. For example, subjects 
may have demographic variables recorded, such as age, gender, socie 
economic status, or education; behavioral variables, such as dietary 
habits, smoking history, physical activity level, or alcohol consumption; 
or physiological variables, such as blood pressure, blood glucose lev- 
els, hemoglobin levels, or heart rate. Such variables may be used as 
covariates (explanatory variables, confounders, risk factors, indepen- 
dent variables) in explaining the response (dependent) variable. After 


