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sample j is smaller than in sample j + 1, SO the hypothesis G, : 
hj(t) = hjtl(t) is rejected in favor of  HA^ : hj(t) < h,+,(t) when 
[zj(r) - Z~+~(T)]/[~?~, + t?j+lj+l - 2t?j,+111/2 is smaller than the ath lower 
percentile of a standard normal. Use the information in Example 7.6 
and this statistic to make the multiple comparisons. 

7.11 The data on laryngeal cancer patients was collected over the period 
1970-1978. It is possible that the therapy used to treat laryngeal cancer 
may have changed over this nine year period. TO adjust for this pas- 
sible confounding fact, test the hypothesis of no difference in survival 
between patients with different stages of disease against a global alter- 
native using a test which stratifies on the cancer being diagnosed prior 
to 1975 or not. ~ l s o  perform a separate test of the hypothesis of interest 
in each stratum. 

7.12 (a) Repeat Exercise 3 using the log-rank version of the Renyi statistic. 
(b) Repeat Exercise 4 using the Gehan version of the Renyi statistic. 

7.13 In Table 1.3 of section 1.5, the data on time to death for breast cancer- 
patients who where classed as lymph node negative by standard light 
microscopy (SLM) or by imrnunohistochemical (IH) examination of their 
lymph nodes is reported. Test the hypothesis that there is no difference 
in survival between theses two groups using 
(a) the log-rank test, 
(b) the Renyi statistic based on the log-rank test, 
(c) the Cmer-von Mises statistic, and 
(d) the weighted difference in the Kaplan-Meier statistic Ww. 

7.14 Repeat Exercise 7 using 
(a) the Renyi statistic based on the log-rank test, 
(b) the Cmer-von Mises statistic, and 
(c) the weighted difference in the Kaplan-Meier statistic Ww. 

7.15 Using the data of section 1.3, 
(a) compare the three survival functions for ALL, AML low-risk, and 

AML high-risk at one year; 
(b) perform pairwise multiple comparisons for the three groups em- 

ploying the Bonferroni correction for multiple tests. 

Semi parametric 
Proportional Hazards 
~ekession with Fixed 

u 

Covariates 

3.1 Introduction 

Often one is interested in comparing two or more groups of times-te 
event. If the groups are similar, except for the treatment under study, 
then, the nonparametric methods of Chapter 7 may be used directly. 
More often than not, the subjects in the groups have some additional 
characteristics that may affect their outcome. For example, subjects 
may have demographic variables recorded, such as age, gender, socie 
economic status, or education; behavioral variables, such as dietary 
habits, smoking history, physical activity level, or alcohol consumption; 
or physiological variables, such as blood pressure, blood glucose lev- 
els, hemoglobin levels, or heart rate. Such variables may be used as 
covariates (explanatory variables, confounders, risk factors, indepen- 
dent variables) in explaining the response (dependent) variable. After 
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adjustment for these potential explanatory variables, the comparison of 
survival times between groups should be less biased and more precise 
than a simple comparison. 

Another important problem is to predict the distribution of the tirne 
to some event from a set of explanatory variables. Here, the interest is 
in predicting risk factors for the event of interest. Statistical strategies for 
prediction are similar to those utilized in ordinary regression. However, 
the details for regression techniques in survival studies are unique. 

In section 2.6, we introduced models which allow us to quantify 
the relationship between the time to event and a set of explanatory 
variables. In this chapter, we will consider in more detail the widely 
used multiplicative hazards model due to COX (1972), often called the 
proportional hazards model. 

As before, let X denote the time to some event. Our data, based on a 
sample of size n, consists of the triple (TI,  6,, Z,(t)), j = 1, . . . , n where 
I; is the time on study for the jth patient, 6/ is the event indicator for 
the jth patient (S1 = 1 if the event has occurred and 6/ = 0 if the 
lifetime is right-censored) and Zl(t) = (Z,l(t), . . . , Z,p(t))' is the vector 
of covariates or risk factors for the jth individual at time t which may 
affect the survival distribution of X. Here the Z,k(t)'s, k = 1, . . . ,p, may 
be timedependent covariates whose value changes over time, such 
as current disease status, serial blood pressure measurements, etc., or 
they may be constant (or fixed) values known at time 0, such as sex, 
treatment group, race, initial disease state, etc. In this chapter, we shall 
consider the fixed-covariate case where Zl(t) = Z, = (Zfl, . . .,ZIP)', 
and the former situation involving timedependent covariates will be 
treated in Chapter 9. 

Let h(t I Z) be the hazard rate at time t for an individual with risk 
vector Z. The basic model due to Cox (1972) is as follows: 

where ho(t) is an arbitrary baseline hazard rate, P = (PI, . . . , Pp)' is a 
parameter vector, and c(PtZ) is a known function. This is called a semi- 
parametric model because a parametric form is assumed only for the 
covariate effect. The baseline hazard rate is treated nonparametricdy. 
Because h(t I Z) must be positive, a common model for c(PtZ) is 

c(PtZ) = exp(ptZ) = exp x Pkzk 
(k:l ) 

yielding 
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and, thus, the logarithm of h(t I Z)/ho(t) is xi=, PkZk in the spirit of 
the usual linear models formulation for the effects of covariates. The 
coding of factors and their interaction effects follows the usual rules for 
linear models. For example, if a factor has four levels, three indicator 
(or dummy) variables may be constructed to model the effect of the 
factor. An interaction between two or more factors may be examined 
by constructing new variables which are the product of the variables 
associated with the individual factors as is commonly done in other 
(least squares or logistic) regression contexts. One needs to take care 
in interpreting coefficients so constructed. 

The Cox model is often called a proportional hazards model because, 
if we look at two individuals with covariate values Z and F ,  the ratio 
of their hazard rates is 

which is a constant. So, the hazard rates are proportional. The quantity 
(8.1.3) is called the relative risk (hazard ratio) of an individual with risk 
factor Z having the event as compared to an individual with risk factor 
F .  In particular, if Zl indicates the treatment effect (Zl = 1 if treatment 
and Zl = 0 if placebo) and all other covariates have the same value, 
then, h(t 1 Z)/h(t 1 F) = exp(P1), is the risk of having the event if the 
individual received the treatment relative to the risk of having the event 
should the individual have received the placebo. 

In section 8.2 coding of both quantitative and qualitative covariates 
and a discussion of their interpretation is presented. Typically the goal 
of an investigation is to make an inference about j3 in a global sense, 
as discussed in sections 8.3 (for distinct event time data) and 8.4 (when 
ties are present), or, more often than not, to make an inference about a 
subset of j3 (called a local test) as discussed in section 8.5. Sometimes 
an investigator would like to treat a continuous covariate as binary. 
An example of such a covariate might be blood pressure, which is, in 
theory, a continuous variate; but a researcher might want to class~fy a 
patient as being normotensive or hypertensive. The rationale and details 
of the methodology of discretizing a continuous covariate are provided 
in section 8.6. 

In section 8.7 these techniques are used to build the most appropriate 
model for survival. Inference for P in these sections is based on a 
partial or conditional likelihood rather than a full likelihood approach. 
In these analyses, the baseline hazard, &(t), is treated as a nuisance 
parameter function. Sometimes, however, one is interested in estimating 
the survival function for a patient with a certain set of conditions and 
chcteristics. This is accomplished by utilizing the results described 
in section 8.8. 
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8.2 Coding Covariates 

In general regression analyses one may have either quantitative or quai- 
itative independent variables. The dependent variable, in the context 
of this book, is a quantitative variable, the time-to-event, along with an 
indicator variable which indicates whether or not the event of interest 
occurred. As indicated in section 8.1, the independent variables may be 
quantitative-such as blood pressure, blood glucose levels, age, heart 
rate, or waiting time until a transplant---or they may be qualitativ- 
such as gender, smoking behavior, stage of disease, or the presence or 
absence of any particular characteristic which the researcher wishes to 
investigate. Qualitative variables can be used in a regression analysis, 
just as quantitative variables can be used; however, more care needs 
to be taken in the manner they are coded and interpreted. Usually, 
independent variables are known at the start of the study. They are 
called fmed time covariates. Occasionally independent variables may 
change values after the study starts and are known as time-dependent 
covariates. It is extremely important to make this distinction since the 
methods of analyses differ substantially for time-dependent covariates. 
First, we shall discuss fixed time covariates. Time-dependent covariates 
are discussed in Chapter 9.  

There are many ways of coding qualitative variables. For dichoto- 
mous variables, like gender, the obvious way is to code one of the 
genders as 1, the other as 0. Which way we do this coding is ar- 
bitrary and immaterial. The interpretation of the results, of course, 
will depend on the way the coding is actually done. For example, 
if we code the gender variable as Zl = 1 if male, 0 if female, the 
hazard rate for males will be h(t I Z) = ho(t)exp<P1), and for fe- 
males will be h(t I Z )  = ho(t)exp(0) = ho(t). Here the natural log- 
arithm of the ratio of the hazard function for males relative to the 
hazard function for females is PI, and the ratio of the hazard func- 
tions for males relative to females (the relative risk) will be exp(P1). 
The variable Zl is called an indicator (or dummy) variable since it 
indicates to which group the subject under consideration belongs. If 
we had coded another variable as Z2 = 1 if female, 0 if male, then 
the hazard rate for females would have been h(t I Z) = ho(t)exp(b) 
and for males will be h(t I Z )  = ho(t)exp(0) = ho(t). Here the rut- 
ural logarithm of the ratio of the hazard function for females rel- 
ative to the hazard function for males is P2, and the ratio of the 
hazard functions for females relative to males (the relative risk) will 
be exp(P2) = I /exp(P,) = exp(- PI). Either way the coding is per- 
formed, the interpretation will lead to the same conclusion. conside* 
the coding for an example which will be used in a subsequent sec- 
tion. 

EXAMPLE 8.1 In section 1.5 we introduced a study designed to determine if female 
breast cancer patients, originally classified as lymph-node-negative b y  
standard light microscopy (SLM), could be more accurately classified b y  
immunohistochemical (IH) examination of their lymph nodes with a n  
anticytokeratin monoclonal antibody cocktail. The data for 45 female 
breast cancer patients with negative axillary lymph nodes and a rnini- 
mum 10-year follow-up were selected from The Ohio State University 
Hospitals Cancer Registry. Of the 45 patients, 9 were immunoperoxidase 
positive and the remaining 36 still remained negative. 

In this example we wish to perform a proportional hazards regression 
with immunoperoxidase status as the single covariate in the model. We 
adopt the usual regression formulation of a dichotomous independent 
variable and construct a dummy (or indicator) variable as follows. 

Let Z = 1 if the patient is immunoperoxidase positive, 0 otherwise. 
The model is h(t ( Z) = ho(t)exp(PB, where ho(t) is an arbitrary base- 
line hazard rate and P is the regression coefficient for Z. The ratio 
of the hazard functions for patient being immunoperoxidase positive 
relative to the patient being immunoperoxidase negative (the relative 
risk) will be exp(P). In a later example in section 8.3, the estimate 
of p,  denoted by 6, is determined to be 0.9802. Thus the relative 
risk of dying for an immunoperoxidase-positive patient relative to a n  
immunoperoxidase-negative patient is exp(0.9802)=2.67. That is, a pa- 
tient who is immunoperoxidase positive is 2.67 times more likely to die 
than an imrnunoperoxidase-negative patient. 

When the qualitative variables (sometimes called factors) have more 
than two categories, there is more choice in the coding schemes. For 
example, when coding a factor, sometimes termed a "risk group," which 
has three categories, we utilize a simple extension of the indicator 
variable coding scheme described abwe. In particular, we code two 
indicator variables as 

Zl = 1 if the subject is in category 1 ,0  otherwise, 

Z2 = 1 it the subject is in category 2, 0 otherwise. (8.2.1) 

One might be tempted to make a third category 5 = 1 if the subject is 
in category 3,O otherwise; but to do this would make the three variables 
Zi(i = 1,2,3) dependent upon each other. This can be seen because if 
you know the value of Zl and the value of Z2, then you would know 
the value of 5. This is contrary to the principle of multiple regression, 
where you wish to introduce independent variables into the model. 
The independent variables may be correlated but they should not be 
completely dependent, since this introduces an undesirable complexity 
in analysis and interpretation. 
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There are many other ways to code the categories so as to obtain mo 
"independent" variables which perform the same test of P1 = p2 = O, 
but we shall not dwell on them, except to say that the interpretation 
must be carefully understood. Instead we will elaborate a bit more on 
the coding scheme discussed above. Consider a three level factor, such 
as race (black, white, Hispanic), using the coding as in (8.2.1) 

Z, = 1 if the subject is black, 0 if otherwise, 
% '. I "i 

Z, = 1 if the subject if white, 0 otherwise, 1 :: 

Here we can see that the risk of the events occurring among blacks 
relative to the risk of the events occumng among Hispanics is exp(p,), 
the risk of the events occurring among whites relative to the risk of the 
events occumng among Hispanics is exp(P2), and the risk of the events 
occurring among blacks relative to the risk of the events occurring 

The hazard rate, in general, is h(t I Z) = hdt)exp{C:=, PhZb} and, m 
particular, the hazard rates for blacks, whites, and Hispanics, respec- 
tively, is as follows: 

among whites is-exp@ - Pz). 
A note of caution is in order here. If the independent variable is 

strictly categorical with more than two groups, then it would be inap 
propriate to code the variable as a single covariate. Suppose we have 
a categorical covariate with k(> 2) categories and we define a single 
covariate Z = i, if the individual belongs to category i, i = 1, . . . , k. 
The proportional hazards model assumes that the relative risk of an 
event for an individual in category i as compared to an individual in 
category i - 1 is ep for any i = 2, . . ., k. 

For example, suppose we code the patient's race as 1 if black, 2 
if white, and 3 if Hispanic. A consequence of this model is that the 
following relationships between the relative risks must hold: 

- I  

RR(White/Black) = ~R(Hispanic/White) = 9 

and 

RR(Hispanic/Bhck) = dP 

relationships which are not likely to be true. I !  
EXAMPLE 8.2 In section 1.8, a study of 90 males diagnosed with cancer of the larynx 

was described. In addition to the outcome variable, time from first 
treatment until either death or the end of the study, the independent 
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variables, patient's age (in years) at the time of diagnosis and the stage 
of the patient's cancer, were recorded. A basic test for trend on stage 
was performed in section 7.4. 

Here we wish to illustrate the coding of the variable stage of disease 
in preparation for performing a proportional hazards regression test 
with only stage in the model. Since stage has four levels, we adopt the 
usual indicator variable coding methodology as in (8.2.1) and construct 
the dummy (or indicator) variables as follows. 

Let Zl = 1 if the patient is in stage 11, 0 otherwise, 

&= 1 if the patient is in Stage 111, 0 otherwise, 

and 

Z3= 1 if the patient is in Stage IV, 0 otherwise. (8.2.3) 

This places the patient with Stage I cancer in the referent group; i.e., 
such a patient will have Zl = Z2 = Zj = 0. Usually the coding is 
accomplished so that the referent group is expected to be at either 
extreme of risk from a subject matter point of view. 

In section 8.4 we shall see that b, = 0.06576, & = 0.61206, b, = 
1.172284. The full model for this situation is 

Thus the estimated relative risks of dying for patients with Stage II, 
rn, and IV disease relative to Stage 1 disease is exp(0.06576) = 1.068, 
exp(0.61206) = 1.844, and exp(1.72284) = 5.600, respectively. One 
may also calculate the relative risk of dying for patients for Stage 111 dis- 
ease relative to patients for Stage 11 disease as exp(0.61206 - 0.06576) = 
1.727. 

A basic test for trend was performed on the data of section 1.8 in 
Example 7.6 of section 7.4. Since the scores test in the proportional 
hazards model is identical to the log rank test, when there are no ties 
(see Practical Note 3 in section 8.31, one could approximate the test 
for trend in Example 7.6 by taking the stage variable as a continuous 
variable (stage = 1,2, 3, 4). The scores test in this proportional hazards 
model has a chi-squared of 13.64 with 1 degree of freedom, a result 
consistent with what we found in Example 7.6. As discussed earlier, the 
estimate of P must be interpreted with caution since it assumes equal 
relative risk between adjacent stages of disease. 

On the other hand, if an independent variable is continuous, such 
as age, then it would be appropriate to code the variable as a single 
covariate. In this case, the exponentiated coefficient, 4 for the variable 

Z = age (in years) 
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would be the relative risk of an event for an individual of age i years 
compared to an individual of age i - 1 years. Sometimes we wish to 
speak of the relative risk of the event for an individual 10 years older 
than another individual. In this case, the ratio of the hazard (or risk) of 
the individual 10 years older compared to the hazard (or risk) of the 
referent individual would be relative risk = exp(1OP). There may be 
other covariates in the model, in which case, the coefficient is termed a 
partial regression coefficient. Such partial regression coefficients relate 
the relationship of that variable, say, age, to the outcome variable, time- 
to-event, controlling for all other variables in the model. Tests based on 
partial regression coefficients utilize local tests as described in section 
8.5. The results from a data set analyzed in section 8.5 are used to 
illustrate the interpretation of such parameters below. 

EXAMPLE 8.2 (continued) Continuing the examination of the data set in section 1.8, 
we will introduce the age covariate, Z4 = age of the patient, in addition 
to the stage indicator variables defined in (8.2.3). The model then is 

Here the natural logarithm of the ratio of the hazard function for a 50- 
year-old individual with Stage IV disease relative to the hazard function 
for a 40-year-old individual with Stage IV disease is lop4; i.e., the relative 
risk for a 50-year-old patient compared to a 40-year-old (both with Stage 
IV disease) is exp(10P4), since the stage of disease parameter will cancel 
out in the proportional hazards model. 

The estimates of the parameters are obtained in section 8.5 as 

b, =0.1386,&=0.6383,&=1.6931, and b4=0.0189. (8.2.5) 

Thus the relative risk for a 50-year-old patient compared to a 40-year- 
old (both with Stage IV disease) is exp(10b4) = 1.2. Another way of 
stating the interpretation of a partial relative risk is that a 50-year-old 
patient has a probability of dying 1.2 times greater than the probability 
of dying for a 40-year-old patient with the same stage of disease. 

Factors such as gender, age, race, or stage of disease taken individ- 
ually are often referred to as main effects, i.e., their relationship with 
the time-toevent outcome is tested for statistical sigdcance as if their 
relationship does not depend on other factors. ~n important concept in 
regression is the consideration of the effect of one factor in the presence 
of another factor. This concept is termed interaction. 

As in other (least squares or logistic) regression contexts, interaction 
effects between variables may exist and these effects may be very im- 
portant. An interaction effect exists if the relative risk for two levels of 

EXAMPLE 8.3 
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one factor differs for distinct levels of a second factor. Consider mod- 
eling a clinical trial of two treatments based on a proportional hazards 
model with covariate coded as Zl = 1 for treatment 1, 0 for treatment 
2. Here exp(P1) is the risk of the first treatment relative to the second. 
Suppose there is the potential for males and females to respond differ- 
ently to the two treatments so the relative risk of treatment 1 compared 
to treatment 2 may depend on sex. As usual we code sex as Zz = 1 
if male and 0 if female. Interactions are formed by multiplying the in- 
dependent variables of the two individual factors, termed main effects, 
together. That is, a third variable Z3 = Zl X Z2 will be created. Here, the 
exponential of the coefficient of 5, the product of the treatment and 
gender covariate, is the excess relative risk of treatment 1 compared to 
treatment 2 for males compared to females. Now the full model will be 

The relative risk of treatment 1 compared to treatment 2 for males is 
exp(P1 + P3}, while for females it is exp(P1}. If P3 = 0, then the relative 
risk of treatment 1 compared to treatment 2 will be identical for the two 
sexes. 

The following example illustrates the construction of the interaction 
of two categorical variables. 

In section 1.7 a data set of 863 kidney transplant patients with data on 
race (white, black) and gender is described. In this study there were 432 
white males, 92 black males, 280 white females, and 59 black females. 
Again, there are various coding options. First, one may treat this study 
as a four-group problem as we have done in Example 8.2. The three 
indicator variables may be defmed in any desirable way but usually one 
wants either the best or the worst survival group as the referent group. 
For example, we may code 

. Zl = 1 if the subject is a black male, 0 otherwise, 

& = 1 if the subject is a white male, 0 otherwise, 

and 

Z3 = 1 if the subject is a black female, 0 otherwise. 

Here the referent group is being a white female. Again the full model 
will be 

h(t I Z) = ho(t)exp(PtZ} = ho<t)expIPIZl + P2& + P3Z31. 

The estimates of the parameters are obtained in section 8.5 as 

b, = 0.1596, b, = 0.2484, & = 0.6567. 

Thus the relative risks for black male, white male, and black female 
relative to white female are 1.17, 1.28, 1.93, respectively. 
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Alternatively, we may code the variables as two main effect terms, 

race and gender, and an interaction term. For example, 

Zl = 1 if the subject is a female, 0 otherwise, 

Z2 = 1 if the subject is black, 0 otherwise, 

and 

z3 = Zl x z2 = 1 if the subject is a black female, 0 otherwise, 

Again the full model will be 

Note that the parameters p, will have a different interpretation. The es- 
timates of the parameters are obtained in section 8.5 as & = -0.2484, 

= -0.0888, 63 = 0.7455. Here the interest will center on the internc- 
tion term p3, which will be tested in section 8.5. Here, the exponential 
of the coefficient of 5, the product of the treatment and gender covari- 
ate, is the excess relative risk of being black for females compared to 
males, exp(0.7455) = 2.11. It is also instructive to see that the relative 
risks for black male, white male, and black female relative to white fe- 
male are exp(-0.0888 - (-0.2484)) = 1.17, exp(0 - (-0.2484)) = 1.28, 
exp(-0.2484 - 0.0888 + 0.7455 - (-0.2484)) = 1.93, respectively, just 
as we obtained for the earlier coding. These are two different coding 
schemes; the first treats the samples as four groups and the second 
treats the samples as a 2 x 2 factorial, where interest may center on 
the interaction between gender and race. The interpretation of the two 
coding schemes are equivalent in that they lead to the same relative 
risks and the same likelihood. 

The following example illustrates the construction of the interaction 
of a continuous variable and a categorical variable. 

EXAMPLE 8.2 (continued) Consider two of the factors, namely age and stage of 
disease, in the data introduced in section 1.8. As usual, Z,, i = 1,2,3 
are defined as before in (8.2.3) and Z4 will be the age of the patient. 
The interaction between age and stage will involve three product terms, 
namely, Z5 = Z1Z4;Z6 = Z2Z4 and & = Z3Z4. Thus, for a 50-year-old 
man with Stage I1 cancer, the three interaction variables will take on the 
following values: Z5 = Z1Z4 = (1)(50) = 50; Z6 = Z2z4 = (0)(50) = 0 
and Z, = Z3Z4 = (0)(50) = 0. Other combinations of age and stage can 
be appropriately formed. Now the full model will be 
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The null hypothesis of no interaction between age and stage may be 
written as : p5 = p6 = = 0 VS. the alternate hypothesis, which 
will be the negation of the null. This example will be considered in 
much more detail in section 8.5. The estimates of the parameters and 
their internretation will be delaved until that discussion. 

1 B8.3 Partia I Likelihoods for Distinct-Event 
Time Data 

As indicated earlier, our data is based on a sample of size n consisting 
of the triple (Zj, 6,,Z,), j = 1,.  . ., n. We assume that censoring is 
noninformative in that, given Z,, the event and censoring time for the 
jth patient are independent. Suppose that there are no ties between 
the event times. Let tl < < - - .  < tD denote the ordered event times 
and Ztok be the klh covariate associated with the individual whose 
failure time is ti. Define the risk set at time ti, R(ti), as the set of all 
individuals who are still under study at a time just prior to ti. The partial 
likelihood (see Theoretical Notes 1 and 2), based on the hazard function 
as specified by (8.1.2), is expressed by 

This is treated as a usual likelihood, and inference is carried out by usual 
means. It is of interest to note that the numerator of the likelihood de- 
pends only on information from the individual who experiences the 
event, whereas the denominator utilizes information about all individu- 
als who have not yet experienced the event (including some individuals 
who will be censored later). 

Let U(@) = ln[fi@)]. Then, after a bit of algebra, we can write LI;(@) 
as 

The (partial) maximum likelihood estimates are found by m i n g  
(8.3.11, or, equivalently, (8.3.2). The efficient score equations are found 
by taking partial derivatives of (8.3.2) with respect to the p's as follows. 
Let U6@) = 6LI;(@)/6pb, h = 1, . . . , p .  
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Then, 

The information matrix is the negative of the matrix of second deriva- 
tives of the log likelihood and is given by I(P) = [Igb(P)lpxp with the 
(g, h)th element given by 

The (partial) maximum likelihood estimates are found by solving the 
set of p nonlinear equations Ub(P) = 0, h = 1, . . . , p. This can be done 
numerically, as shown in Appendix A, using a Newton-Raphson tech- 
nique (or some other iterative method), with (8.3.3) and (8.3.4). Most 
major software packages will perform this iterative maximization. Note 
that (8.3.2) does not depend upon the baseline hazard rate b,,(x), so 
that inferences may be made on the effects of the explanatory variables 
without knowing ho(x). 

There are three main tests (described in more detail in Appendix 
B) for hypotheses about regression parameters P. Let b = (h, . . . ,bp)' 
denote the (partial) maximum likelihood estimates of P and let be 
the p xp information matrix evaluated at P. The first test is the usual test 
based on the asymptotic normality of the (partial) maximum likelihood 
estimates, referred to as Wald's test. It is based on the result that, for 
large samples, b has a p-variate normal distribution with mean fl and 
variance-covariance estimated by I-'@). A test of the global hypothe~k 
of 6 : /3 = Po is 

X$ = Cb - flO)'ICb)Cb - PO) (8.3.5) 

which has a chi-squared distribution with p degrees of freedom if Hi is 
true for large samples. 

The second test is the likelihood ratio test of the hypothesis off15 : 
/3 = Po and uses 

which has a chi-squared distribution with p degrees of freedom under 
I& for large n. 
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The third test is the scores test. It is based on the efficient scores, 
U(P) = (Q(P), . . . , Up(/3>)' where u~(P) is defined by (8.3.3). For large 
samples, U(fl) is asymptotically p-variate normal with mean 0 and co- 
variance I@) when 6 is true. Thus a test of 6 : p = Po is 

which has a large-sample chi-squared distribution with p degrees of 
freedom under 6. 

U(AMPLE8.1 (continued) In section 1.5, we introduced a study designed to de- 
termine if female breast-cancer patients, origudly classified as lymph 
node negative by standard light microscopy (SLM), could be more ac- 
curately classified by immunohistochernical (IH) examination of their 
lymph nodes with an anticytokeratin, monoclonal antibody cocktail. 

In this example, we wish to perform a proportional hazards regres- 
sion with immunoperoxidase status as the single covariate in the model. 
We adopt the usual regression formulation of a dichotomous indepen- 
dent variable and construct a dummy (or indicator) variable as follows. 

Let Z = 1 if the patient is immunoperoxidase positive, 0 otherwise. 
The model is h(t I Z) = bo(t)exp(/3Z), where &(t) is an arbitrary 
baseline hazard rate and P is the regression coefficient. 

For this model, Cf,l&o = 4, the number of deaths in the im- 
munoperoxide positive sample, and C,,Ng, exp(PZj) = Y,i + G i d ,  
where Yoi (GI) is the number of individuals at risk in the immunoper- 
oxidase negative (positive) sample at time ti. From (8.3.2)-(8.3.41, 

and 

The simplest test of the hypothesis that P = 0 is the score test. In this 
case, 
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Note that, in this case, where there are no ties between the death times, 
the score statistic &?c = u(o)~/I(O) is precisely the two-sample, log- 
rank test presented in section 7.3. In this example, U(0) = 4.19 and 
I(O) = 3.19 so the value of = 5.49 which has a p-value of 0.019, .:.. ..n 

.$ when compared to the chi-squared distribution, with one degree T, 
freedom. 

To obtain the estimate of p,  the likelihood is maximized by a nu- 
merical technique. Routines for this maximization are available in most 
statistical packages. Using the Newton-Raphson algorithm described in 
Appendix A, we start with an initial guess at P of h~ = 0 and compute 
an updated estimate at the mth stage by b, = b,-I + U(b,-l)/~(b,-l). 
The iterative process is declared converged when the relative change in 
log likelihoods between successive steps is less than 0.0001. Here we 
have the results of three iterations: 

The Newton-Raphson algorithm converges after three steps. 
To test the hypothesis 6 : P = 0 using the likelihood ratio test, 

X& = Z(LIXO.9802) - U(0) )  = 2[-81.52 - (-83.74)l = 4.44 which has a 
p-value of 0.035. To perform the Wald test we first estimate the standard 
error of our estimate of p as SE(b) = 1/1(0.9802)'~~ = 1/5.2871'/2 = 
0.4349. The Wald test is (0.9802 - 0)~/(0 .4349)~ = 5.08, which has a 
pvalue of 0.024. 

The exponential of b gives the estimated relative risk, which in this 
example is e0.9802 = 2.67. This number tells us that a patient, who is 
immunoperoxidase positive, is 2.67 times more likely to die than an 
immunoperoxidase negative patient. Using the asymptotic normality of 
b, a 95% confidence interval for the relative risk is exp(0.9802 2 1.96 X 
0.4349) = (1.14,6.25). 

U ( b m - 1 )  LL(bm) - LL(b,-,) 
m bm-1 LL(bm-1) U ( b , - l )  I (bm-1)  W b m )  I ( & - 1 )  b ( b m - ~ ) I  

1 0 -83.7438 4.1873 3.1912 1.3121 -81.8205 0.0230 

1. Algorithms for the estimation of /3 in the Cox regression model are 
available in many statistical packages. The procedure PHREG in SAS 
and coxph in S-Plus provide estimates of P ,  its standard error and 
the Wald, score and likelihood ratio tests of the global hypothesis of 
no covariate effect. A Newton-Raphson algorithm is used to estimate 
p with 0 as an initial value. 

2. If a covariate is perfectly correlated with the event times, that is, 
the covariates are ordered with 5 q Z ) k  5 '. I Z(D)b (or 
Z(l)k r Z(2)k - r . r &)k) the (partial) maximum likelihood es- 
timate of pk will be UJ (or -uJ). When declaring convergence of a 
numerical maximization routine based on differences in likelihoods 
at successive iterations, one should carefully check that successive 
values of the estimates are close to each other as well to avoid this 
problem. 

3. If there are no ties between the event times, the scores test in the 
proportional hazards model is identical to the log-rank test. 

4. Empirical studies have shown that the convergence rate of the like- 
lihood ratio and Wald tests are similar. The score test converges less 
rapidly to the limiting chi-squared disuibution. 

5. The tests performed in this section have assumed that the hazard 
rates are proportional. They, indeed, are but we shall present tools 
for checking this assumption in Chapters 9 and 1 1 .  

Theoretical Notes 
1. The probability that an individual dies at time ti with covariates &, 

given one of the individuals in R(ti) dies at this time, is given by 

Hindividual dies at ti ( one death at ti] 

- - Hindividual dies at t, ( survival to ti] 
Hone death at ti I survival to ti] 

The partial likelihood is formed by multiplying these conditional 
probabilities over all deaths, so we have the likelihood function 
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2. The Cox partial likelihood can be derived as a profile likelihood from 
the full censored-data likelihood, as discussed by Johansen (1983) 
Here, we start with the complete censored-data likelihood, which; 
by the discussion in section 3.5, is given by 

Now, fix p and consider maximizing this likelihood as a function of 
h,(t) only. The function to be maximized is 

This function is maximal when h,(t) = 0 except for times at which 
the events occurs. Let hOi = ho(t,), i = 1, .  . ., D so &(2;) = 

h,,. Thus, after some simplification, (8.3.9) can be written as 

and the profile maximum likelihood estimator of hot is given by 

Combining these estimates yields an estimate of &(t) given by 

This is Breslow's estimator of the baseline cumulative hazard rate in 
the case of, at most, one death at any time and is discussed in more 
detail in section 8.8. Substituting H,(t) in (8.3.8) and simplifying 
yields a profile likelihood proportional to the partial likelihood of 
Eq. (8.3.1). 

18.4 Partial Likelihoods When Ties Are Present 
1, 
c. 

In section 8.3, we presented the partial likelihood for the proportional 
hazards regression problem when there are no ties between the event 
times. Often, due to the way times are recorded, ties between event 
times are found in the data. Alternate partial likelihoods have been 
provided by a variety of authors when there are ties between event 
times. 

Let t, < < - . - < tD denote the D distinct, ordered, event times. Let 
di be the number of deaths at ti and Di the set of all individuals who 
die at time ti. Let si  be the sum of the vectors Z, over all individuals 
who die at f .  That is si = C,,,, 2,. Let Ri be the set of all individuals 
at risk just prior to t,. 

There are several suggestions for constructing the partial likelihood 
when there are ties among the event times. The first, due to Bres- 
low (1974), arises naturally from the profile likelihood construction 
discussed in Theoretical Note 2 of the previous section. The partial 
likelihood is expressed as 

This likelihood considers each of the di events at a given time as distinct, 
constructs their contribution to the likelihood function, and obtains the 
contribution to the likelihood by multiplying over all events at time ti. 
When there are few ties, this approximation works quite well, and this 
likelihood is implemented in most statistical packages. 

Efron (1977) suggests a partial likelihood of 

which is closer to the correct partial likelihood based on a discrete 
hazard model than Breslow's likelihood. When the number of ties is 
small, Efron's and Breslow's likelihoods are quite close. 

The third partial likelihood due to Cox (1972) is based on a discrete- 
time, hazard-rate model. This likelihood is constructed by assuming a 
logistic model for the hazard rate, that is, if we let h(t I Z) denote the 
conditional death probability in the interval (t, t + 1) given survival to 
the start of the interval and if we assume 

then, this likelihood is the proper partial likelihood. To construct the 
likelihood, let Qi denote the set of all subsets of di individuals who 
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could be selected from the risk set R,. Each element of Q ,  is a di. 
tuple of individuals who could have been one of the d, failures at time 
t i .  Let q = (ql, . . ., qdj)  be one of these elements of Q i  and define 
s', = c$, Z,,. Then, the discrete log likelihood is given by 

When there are no ties between the event times, this likelihood and 
Breslow's and Efron's likelihoods reduce to the partial likelihood in the 
previous section. 

EXAMPLE 8.4 A study to assess the time to first exit-site infection (in months) in pa- 
tients with renal insufficiency was introduced in section 1.4. Forty-three 
patients utilized a surgically placed catheter and 76 patients utilized a 
percutaneous placement of their catheter. Catheter failure was the pri- 
mary reason for censoring. To apply a proportional hazards regression, 
let Z = 1 if the patient has a percutaneous placement of the catheter, 
and 0 otherwise. 

To see how the three likelihoods differ, consider the contribution of 
the six deaths at time 0.5. All six deaths have Z = 1, and there are 76 
patients at risk with Z = 1 and 43 patients at risk with Z = 0. The 
contribution to the likelihood is 

Efron: 
exp(6P) 

n6,,,[76& + 43 - y(6eB)l'  

Using the three likelihoods, we have the following results: 

Breslow's Efron's Discrete 
Likelihood (8.4.1) Likelihood (8.4.2) Likelihood (8.4.3) 

Initial Likelihood -104.4533 -104.2319 -94.1869 

Final Likelihood -103.2285 - 103.0278 -92.9401 
h -0.6182 -0.6126 -0.6294 " . -..- 

SE(b) 0.3981 
Relative risk, eb 0.539 
Score test x2 = 2.49 ( p  = 0.115) 
Wald test xZ = 2.41 ( p  = 0.121) 
Likelihood ratio test x2 = 2.45 ( p  = 0.118) 

C 
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Here, we see that, assuming theproportional hazards model is ap- 
propriate, for any of the three likelihoods the regression coefficient is 
not statistically sigmficant and the relative risk is about 0.54. As we 
shall test formally in Chapter 9, the proportional hazards assumption is 
not appropriate for this data. Thus the relative risk is not constant but 
depends upon time, and the reported relative risk of 0.54 is not cor- 
rect. Furthermore, a potentially sigmficant result could be overlooked 
because the proportional hazards assumption is not satisfied. This has 
implications for procedures used in model building, which will be dis- 
cussed in section 8.7. As a graphical check of the proportional hazards 
assumption, we compute the Nelson-Aalen estimator of the cumulative 
hazard rate for each treatment. If the proportional hazards model is cor- 
rect, then, we should have H(t I Z = 1) = d ~ ( t  I Z = O), so that a plot 
of M H ( ~  I Z = 111 - In[&(t ( Z = 0)l-versus t should be roughly equal 
to p. The plot for this data set, shown in Figure 8.1, strongly suggests 

Figure 8.1 Graphical check of the proportional hazards assumption for the 
renal i n s u . c y  study. 
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nonproportional hazards. Other graphical checks of the proportional 
hazards assumption are discussed in section 11.4. 

m p L E  8.2 (continued) In section 1.8, a study of 90 males diagnosed with cancer 
of the larynx was described. In addition to the outcome variable, time 
from first treatment until either death or the end of the study, the 
independent variables, patient's age (in years) at the time of diagnosis 
and the stage of the patient's cancer, were recorded. A basic test for 
trend on stage was performed in section 7.4. 

Here, we shall perform a global proportional hazards regression test 
with only stage in the model. Because stage has four levels, we adopt 
the usual indicator variable coding methodology as in (8.2.3). The max- 
imum likelihood parameter estimates, b,(i = 1, . . . ,4), (and their come- 
sponding standard errors) are 0.0658 (0.4584),0.612 (0.35521, and 1.723 
(0.4197), respectively. It follows that the relative risks, RR(Stage II/Stage 
I) = 1.07, RR(Stage III/Stage I) = 1.84, and RRcStage IV/Stage I) = 5.60. 

The global likelihood ratio, Wald, and score chi-squared (with three 
degrees of freedom) statistics for stage are 16.26 (p-value = 0.001), 
18.95 (p-value = 0.0003), and 22.46 (p-value = 0.0001), respectively, 
using Breslow's method of handling ties. All three tests suggest that 
the survival rates are different for, at least, one stage of cancer. In the 
next section, we shall consider local tests which provide information 
on which stages differ in survival. 

The following example illustrates another example of performing a 
global test for different groups and will be followed up in the next 
section with a local test for interaction. 

EXAMPLE 8.3 (continued) In section 1.7 a data set of 863 kidney transplant patients 
with data on race (white, black) and gender is described. In this study 
there were 432 white males, 92 black males, 280 white females, and 
59 black females. Again, there are various coding options, as described 
in section 8.2. First, one may treat this study as a four-group problem. 
The three indicator variables have been defined in the usual way as 
described in section 8.2 as 

Zl = 1 if the subject is a black male, 0 otherwise 

Z2 = 1 if the subject is a white male, 0 otherwise 

and 

Z3 = 1 if the subject is a black female, 0 otherwise. 
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Here the referent group is being a white female. Again, the full model 
will be 

I The maximum likelihood estimates of the parameters are obtained a s  

Thus the relative risks for black male, white male, and black female rel- 
ative to white female are 1.17, 1.28, 1.93, respectively. The global like- 
lihood ratio, Wald, and score chi-squared (with 3 degrees of freedom) 
statistics for groups are 4.37 (p-value = 0.22), 4.64 (p-value = 0.201, and 
4.74 (p-value = 0.191, respectively, using the Breslow method of han- 
dling ties. AU three tests suggest the survival rates are not different for 
the four groups of subjects. In the next section we shall consider local 
tests which provide information on testing for an interaction between 
race and gender. 

1. SAS PHREG uses Breslow's likelihood as a default and allows the 
user to specify that calculations be carried out using either the dis- 
crete or Efron likelihood. SAS also allows the user to speclfy an 
"exactn likelihood based on a generalized rank statistic derivation of 
the likelihood (see Kalbfleisch and Prentice (1980) for details). This 
likelihood requires a bit more computer time to implement and gives 
results quite close to the discrete likelihood. 

2. The S-Plus function coxph uses Efron's likelihood as a default when 
there are ties between the event times. Breslow's likelihood and the 
exact likelihood are also available. 

Often, one is interested in testing a hypothesis-about a subset of the 
p's. The hypothesis is then &, : p, = PI,, where fl = (pi, Pi)'. Here 
p1 is a q X 1 vector of the p's of interest and pZ is the vector of the 
remaining p - q p's. 

The Wald test of &, : pl = pl0 is based on the maximum partial 
likelihood estimators of p. Let b = (b:, bi)' be the maximum partial 
likelihood estimator of p. Suppose we partition the information matrix 
I as 
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where I,, (Iz2) is the q X q [(P - q) x (P - q)] submatrix of second partial 
derivatives of the minus log likelihood with respect to PI (P2) and I,, 
and IZ1, the matrices of mixed second partial derivatives. The Wald test 
statistic is 

where I"&) is the upper q X q submatrix of I-'(b) (see Appendix B). 
For large samples, this statistic has a chi-squared distribution with 
degrees of freedom under 6. 

Let b2(P10) be the (partial) maximum likelihood estimates of j?, based 
on the log likelihood (8.3.2) with the first q p's fixed at a value p,,, 
The likelihood ratio test of : Dl = plo is expressed by 

which has a large sample chi-squared distribution with q degrees of 
freedom under 6. 

To test 6 : pl  = Dl, using the score statistic, let Ul[Plo, b(P1o>l be 
the q x 1 vector of scores for PI, evaluated at the hypothesized value 
of fllo and at the restricted partial maximum likelihood estimator for P2. 
Then, 

which has a large sample chi-squared distribution with q degrees 
of freedom under a. We shall illustrate these tests in the following 
example. 

EXAMPLE 8.2 (continued) In section 8.4, a global test was performed on stage of 
cancer in a study of 90 males diagnosed with cancer of the larynx. 
Here we shall test the hypothesis that there is no difference in survival 
between patients with different stages of disease, adjusting for the age 
of the patient. Our test is based on the model with covariates Zl, 5, 
and 5, which, as in section 8.2, are the indicators of stage 11, III, and 
IV disease, respectively, and a covariate Z4 which is the patient's age 
at diagnosis. The local hypothesis of interest is I-& : Pl = 0, = 0, 
pj = 0 against the alternative hypothesis that, at least, one of these P's 
is nonzero. 

To apply the score test or the likelihood ratio test, we need to estimate 
the coefficient for age, P4, in the model, with PI = P2 = P3 = 0- 
involves fitting a Cox model with only the single covariate, age. Fitting 
this model, we find b4 = 0.023 with a log partial likelihood of -195.306. 

Using this value of b4, we find that the score is 

8.5 Local Tests 265 

and that 

The inverse of this information matrix is given by 

so the score statistic is given by 

Comparing this quantity to a chi-squared distribution with three degrees 
of freedom, we find that the p-value of the test of no stage effect is 
0.0001. 

To perform the Wald and likelihood ratio tests, we need to fit the full 
model with all four covariates. Here, we find 

with a partial log likelihood of -188.179. The likelihood ratio test of 

The p-value of this test is 0.0015. 
To perform the Wald test, we need the information matrix based on 

b. This matrix is 

The inverse of this matrix is the covariance matrix of b, given by 
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The Wald chi-squared statistic is given by 

which has a p-value of 0.0005. 

Often it is desirable to perform tests involving one (or more) linear 
combination(s) of the parameters. For the Wald test, one can form a 
matrix of q linear combinations of parameters to test such hypotheses. 
Here one forms a q X p matrix of full rank (q 5 P), 

where ci = (ckl, . . . , cg,,) is a vector of coefficients for the kth linear 
combination of the betas, and the hypothesis to be tested is 

From large-sample theory, 

will have an asymptotic chi-squared distribution with q degrees of free- 
dom. 

- 

LXXMPLE8.2 (continued) In the previous example, we fitted a model to data on 
patients with cancer of the larynx. In this example, we wish to test 
the hypothesis ~ : P1 = 0. Note that the upper 1 X 1 submatrix of 
V(b) is precisely the matrix I"&) required in (8.5.1) and the Wald 
chi-squared test is calculated as (0.1386)(0.2137)-'(0.1386) = 0.0898. 
If we choose the linear combination approach, c = (1,0,0,0) and 
(Cb)LICI-l(b)~fl-lCb = 0.0898, the same result as above. Note that this 
statistic, which has a large-sample chi-squared distribution with one 
degree of freedom under &, is testing for a difference in risk of death 
between stage I and stage JI cancer patients, adjusting for age. Here 
the p-value of that test is 0.7644 which suggests no difference between 
stage I and 11 patients. 

Most statistics packages will produce an "Analysis of Variance" 
(ANOVA) table describing all such univariate Wald tests along with 
the estimated standard error and relative risk of the effects. Note that, 
in such tables, the relative risk, exp(b), is the relative risk in a differ- 
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TABLE 8.1 
Analysis of Variance Table for Stage of the Laryngeal Cancer Patients, Utilizing 
the "Breslow" Method of Handling Ties 

Degrees of Parameter Standard Wald Relative 
Variables Freedom Ertimates Errors Chisquare p-value risk 

Z, : Stage I1 1 0.1386 0.4623 0.09 0.7644 1.15 
Z2: Stage 111 1 0.6383 0.3561 3.21 0.0730 1.89 
Z3: Stage IV 1 1.6931 0.4222 16.08 <0.0001 5.44 
Z4: Age 1 0.0189 0.0143 1.76 0.1847 1.02 

ence of one unit in the covariate values. So the relative risk for age 
in Table 8.1 reflects the excess risk of dying for each additional year 
of age at diagnosis. Similarly, the risks of death for a patient in Stages 
JI, III, and N relative to a patient in Stage I are 1.15, 1.89, and 5.44, 
respectively. The corresponding confidence intervals for the Pi are 
[b, - 2,-,/,SE(b,), 6, + z,-,/,SE(b,)] which may be obtained from the 
ANOVA table and tables of the unit normal distribution. Confidence 
intervals for the relative risk may be found by exponentiating the lower 
and upper limits, respectively. For example, a 95% confidence interval 
for the risk of death for patients in Stage N relative to the risk of 
death for patients in Stage I would be {exdl .6931 - 1.96(0.4222)1, 
exp[1.6931 + 1.96(0.4222)1} = (2.38,12.44). This means that, with a p  
proximately 95% confidence, exp(P3) will lie between 2.38 and 12.44, 
so that we will reject the hypothesis that Pg = 0 when a = 0.05, as 
indicated in the table (p-value < 0.0001). 

Often, one is interested in relative risks that may not appear directly 
in the table. For example, the risk of death for patients in Stage III 
relative to the risk of death for patients in Stage 11 is found by taking 
exp(&)/exp(B1) = exp(& - PI). The point estimate of this risk is 
exp(0.6383 - 0.1386) = 1.65 which could also have been obtained 
directly from the table as 1.89/1.15 (aside from round-off error). The 
confidence interval for this relative risk cannot be obtained directly 
from the table. One needs the standard error of b - b, which means 
we need the variance-covariance matrix of the 6,'s as given in (8.5.4). 
Calculating V a d b  - 6,) = Var(b) + Var(6,) - 2 Cod&, b,) = 0.1268 + 
0.2137 - 2(0.0683) = 0.2039 we are led, by taking the square root, 
to the standard error of ( b  - 6,) = 0.4515. Now, we can find a 95% 
confidence interval for & - P1 as [ b  - b, - 1.96 SE(b - b,), 62 - 
6, + 1 .% SE(b - 6,)] = l0.4997 - 1.96(0.4515), 0.4997 + 1.96(0.451511= 
(-0.3852,1.3846). Exponentiating the lower and upper limit leads to the 
approximate 95% confidence interval for exp(a - PI) as (0.68,3.99). 
Thus, this relative risk cannot be judged to differ from one. 
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survival is different for at least one of the three advanced stages. 
To perform the Wald test, we define the C matrix with two con tram^ 

and apply (8.5.7). The resulting statistic has a value of 10.7324 with two 
degrees of freedom for the large-sample chi square. The p-value of the 
test is 0.0047, so the conclusion is the same as for the likelihood ratio 
test. 

Now we turn our attention to a discussion of interaction. The first 
example is an example of an interaction between two categorical vari- 
ables. 

--- 
EXAMPLE 8.3 (continued) An alternative coding scheme for the-data in seaion 1.7 

discussed earlier is to code the variables as two main effect terms, race 
and gender, and an interaction term. For example 

Zl = 1 if the subject is a female, 0 otherwise, 

Z2 = 1 if the subject is black, 0 otherwise, 

and 

5 = 21 X 2 2  if the subject is a black female, 0 otherwise. 

Again the full model will be 
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Note that the parameters pt will have a different interpretation. The 

estimates of the parameters are obtained as 

The complete analysis is in Table 8.2. 

TABLE 8.2 
Analysis of Variance Table for Race, Gender, and Interaction for the Kidney 
Transplant Patients Utilizing the 'Bres1ow"Method of Handling Ties 

Degrees of Pa~meter Standard Wald Relative 
Variables Freedom Estimates Emn CbGsqaure pValues Risk 

Zl: Female 1 -0.2484 0.1985 1.57 0.2108 0.78 
Zz: Black 1 -0.0888 0.2918 0.09 0.7609 0.92 
Z3: Interaction 1 0.7455 0.4271 3.05 0.0809 . 2.11 

Here the interest wiU center on the interaction term p3. However, it 
is instructive to see that the relative risks for black male, white male, 
and black female relative to white female are exp(-0.0888 - (-0.24%)) 
= 1.17, exp(0 - (-0.2484)) = 1.28, exp(-0.2484 - 0.0888 + 0.7455 - 
(-0.2484)) = 1.93, respectively, just as we obtained for the earlier cod- 
ing. These are two different coding schemes; the first treats the samples 
as four groups and the second treats the samples as a 2 X 2 factorial 
where interest may center on the interaction between gender and race. 
The interpretation of the two coding schemes are not inconsistent in 
that they lead to the same relative risks. 

Next, we shall consider an example of an interaction between a 
continuous and a categorical variable. 

EXAMPLE 8.2 (continued) The interaction between age and stage will involve three 
product terms, namely, 5 = Z1Z4; Zg = ZzZ4 and 6 = Z3Z4, where 
Z,, i = 1, . . .,4 are defined as before. Thus, for a 50-year-old man 
with Stage 11 cancer, the three interaction variables will take on the 
following values.. 5 = Z1Z4 = <1)(50) = 50; Zg = && = <0)(50) = 0 
and 6 = z3Z4 = (0x50) = 0. Other combinations of age and stage can 
be appropriately formed. 

For this model, the estimates of the b's are b, = -7.9461, & = 
-0.1225, 6, = 0.8470, q = -0.0026, bj = 0.1203, hj = 0.0114, and 
& = 0.0137. The estimated variance-covariance matrix of the estimated 
parameters, obtained as the inverse of the Fisher information matrix, is 
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Table 8.3 gives the analysis of variance table for this model. 

TABLE 8.3 
Analysis of Variance Table for Stage, Age, and the Interaction of Stage by rlge 
forharyngeaI Cancer Patients, Utilizing the "Breslow"Metbod of Handling ~h 

Degrees of Parameter Standard Wald 
Variables Freedom Mmates Errors Chi Square P-Value 

a: Stage I1 1 -7.9% 3.6782 4.67 0.03 
Z2: Stage Ill 1 -0.1225 2.4683 0.003 0.56 
5: Stage IV 1 0.8470 2.4257 0.12 0.73 
a :  Age 1 -0.0026 0.0261 0.01 0.92 
5: 2 1  X Z4 I 0.1203 0.0523 5.29 0.02 
z5:Z2x& 1 0.0114 0.0375 0.09 0.76 
&:z3x& 1 0.0137 0.0360 0.14 0.70 

Table 8.3 suggests that the effect of stage II on survival may be 
diierent for different ages because a local test of pg = 0 may be 
rejected (p-value = 0.02). Furthermore, it is suggested by the local tests 
of P6 = 0 (p-value = 0.76) and & = 0 (p-value = 0.70) that the effects 
of stages III and IV on survival may not be different for different ages. 

To test the hypothesis that P6 = & = 0, we need the full -2 log 
likelihood for all seven parameters which is 370.155 and the reduced 
-2 log likelihood for the first five parameters which is 370.316. The 
local likelihood ratio chi-squared statistic for testing that there is no 
interaction between age and either stage III or IV disease (I& : & = 
& = 0) is the difference between the reduced -2 log likelihood for 
the first five parameters minus the full -2 log likelihood for all seven 
parameters = 370.316 - 370.155 = 0.161 with two degrees of freedom 
(p-value = 0.92). This provides strong confirmation that the latter two 
interaction terms may be dropped from the model and that the risks of 
dying for patients with Stages IIl and IV relative to the risk of dying for 
patients with Stage I does not depend on age. 

In Table 8.4 the analysis of variance table for the reduced model with 
only an interaction between age and stage II disease is presented. 

This table suggests that there is a significant interaction between age 
and stage I1 disease, that is, the relative risk of dying for a stage 11 
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TABLE 8.4 
Analysis of Variance Tabk for Stage, Age, and One Interaction Term (Stage Dby 
Age) forbryngeal Cancerpatients, Utilizing the 'Br~1oww"Metbod ofHandling 
Ties 

Degrees of Parameter Standard Wald 
Variables Freedom Estimates Ewors Chi Square p-Value 

Zl :Stage 11 1 -7.3820 3.4027 4.71 0.03 
a:Stage m 1 0.6218 0.3558 3.05 0.08 
Z3:Stage IV 1 1.7534 0.4240 17.11 <O.OoOl 
&Age 1 0.0060 0.0149 0.16 0.69 
Z5: ZI X Z4 1 0.1117 0.0477 5.49 0.02 

patient of age Z4 as compared to a stage I patient of the same age 
depends on that age. This relative risk is exp(P1 +P5Z4) = exp(-7.382+ 
0.1117 Age). For example, for a 76-year-old patient, this relative risk is 
3.03 whereas for a 60-year-old it is 0.51. This linear combination of the 
estimated coefficients not only leads one to an estimated relative risk 
which depends on a patient's age at diagnosis, but atso allows us to test 
the hypothesis that the the risk of dying for stage I and II patients is the 
same for a given age, that is, we wish to test that the relative risk is one 
or, equivalently, that & + &(age) = 0. To test the hypothesis that this 
linear combition of the parameters is zero, one forms the quadratic 
form based on C = (1, 0, 0, 0, age)'. The resulting chi-squared statistic 
is 

(4 + b, age)* 
= V(h) + age2 V(&) + 2 age Cod4 b,)' 

which has a large-sample chi-squared distribution with one degree 
of freedom. In this example, V(4) = 11.5787, V(b,) = 0.00227 
and Codb,, b,) = -0.1607, so for a 76-~ear-old person, X$ equals 
(1.1072)~/0.2638 = 4.65 (p-value = 0.03). For a 60-year-old we have a 
chi-square of 0.99 with a p-value of 0.32. This suggests that for "young" 
ages there is little difference in survival between stage I and II patients 
whereas, for older patients, those with stage II disease are more likely 
to die. 

1. A Monte Carlo study (Li et al., 1996) of the small-sample proper- 
ties of the likelihood ratio, Wald, and scores tests was performed 
with respect to inference on a dichotomous covariate effect in a Cox 
proportional hazards model, as assessed by size and power consid- 
erations, under a variety of censoring fractions, sample sizes, and 
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hazard distributions. The general conclusion of this study was hat 
the likelihood ratio test and Wald test performed similarly (although 
the likelihood test ratio test slightly outperformed the Wald test for 
smaller sample sizes). The score test was markedly inferior and is not 
recommended because it tends to inflate the size of the test. These 
conclusions held for a variety of censoring fractions. 

2. Proc PHREG provides local tests based on the Wald statistic. Tests 
for contrasts are available. 

3. S-Plus provides building blocks of the likelihood ratio test by running 
a series of models. Wald tests can be constructed using the estimated 
covariance matrix and parameter estimates. 

Discretizing a Continuous Covariate 

As we saw in the previous section the Cox model can be applied when 
the covariates are continuous or categorical. The interpretation of the 
model, however, is simplest when the covariate is a binary. Here the 
relative risk, exptb), is the ratio of the risk of the event for a patient 
with the characteristic versus a patient without the characteristic. Often 
a medical investigator would like to treat a continuous covariate, X, 
as a b i r y  covariate by assigning a score of 1 to subjects with large 
values of X and 0 to those with small values of X. This may be done to 
assign patients to poor- and high-risk groups based on the value of X ,  
to aid in making graphical plots of patients with good or bad prognosis 
based on the binary covariate or simply to make the resulting relative 
risk calculations simpler for others to understand. 

In most cases a major problem is determining the value of the cut 
point between high- and low-risk groups. In some cases this cut point 
can be based on biological reasoning and this is the optimal strategy for 
determination of the cut point. When no aprioriinformation is available 
a "data-oriented" method is sometimes used to choose the cut point. 
These methods look at the distribution of the continuous covariate and 
divide subjects into groups based on some predetermined statistic on 
the covariate. For example, quite often subjects are divided into two 
equal groups based on whether they are larger or smaller than the 
sample median. These methods tend not to perform well. 

In this section we will look at the "outcome-oriented" approach to this 
problem. Here we seek a cut point for the covariate which gives us the 
largest difference between individuals in the two data-defined group. 
That is, for a continuous covariate, X, we seek a binary covariate Z 
defined by Z = 1 if X r C and 0 if X < C ,  which makes the outcomes 
of the groups with Z = 1 as different from the group with Z = 0 
as possible based on some statistic. We would also like to test the 
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hypothesis that this covariate in its discretized version has no effect on 
outcome. This test must be adjusted for the fact that we have biased 
the outcome of the test by considering the cut point which gives the 
maximum separation between the two groups. 

The inference procedure we describe is due to Contal and O'Quigley 
(1m)  and is based on the log rank test statistic discussed in section 
7.3. This statistic is the score statistic from the Cox model. For the 
procedure we look at all possible cut points; and for each cut point, 
Ck, we compute the log rank statistic based on the groups defined by 
X being less than the cut point or greater than the cut point. That is, 
at each event time, tl, we find the total number of deaths, d,, and the 
total number at risk, r,. We also find the total number of deaths with 
X r Cp, d: and the total number at risk with X 2 G, r:. We then 
compute the log rank statistic, 

where D is the total number of distinct death times. 
The estimated cut point C is the value of Ck which yields the rnaxi- 

mum I Sk I. At this cut point the Cox regression model is 

where Z = 1 if X 2 2, 0 otherwise. The usual tests of I& : b = 0 
can not be used here since we picked the cut point C ,  which is most 
favorable to rejecting &. To compute the proper test statistic we need 
first to compute the quantity defined by 

The test statistic is then 

which under the null hypothesis has a limiting distribution of the supre- 
mum of the absolute value of a Brownian Bridge. For Q > 1 the p-value 
of the test is approximately equal to 2ed-2Q2). 

EXAMPLE 8.3 (continued) ln section 1.7 we discussed a trial of 863 kidney transplant 
patients. We would like to examine categorizing the patients into high- 
or low-risk groups based on their age at transplant. We shall look at 
separate analyses by race and sex. 

Consider first the sample of 92 black males. Here the transplants 
occurred at 43 distinct ages, which are potential candidates for a cut 
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C- 

point. There were 14 distinct death times, which gives 9 = 0.8268. The 
maximum value of I Sk I is at age 58 and Q = 0.8029, which gives a 
p-value of at least 0.30 (see Theoretical Note 3). This suggests that age 
is not related to outcome for black males. 

The following table gives the results for other race and sex combina- 
tions. It also gives the estimated relative risk of the high-risk (Age 2 cut- 
point) group compared to the low-risk group. Also presented are the 
results of a model which treats age continuously. Figure 8.2 depicts the 
estimates 1 Sb I for each of the four sex and race combinations that 
are used to find the estimated cut point. Here we find close ageanent 
between the discrete model for age and the continuous model. 

TABLE 8.5 
Age Cut Points for Kidney Transpant Patients 

-- 
Continuous Model 

for Age 
- -- 

RaceISex Cut Point Q pvalue R R ( 9 5 M )  b(SE) P 

Theoretics 1 Notes 

1. Wu (2001) shows that if a test is based on the best cut point without 
some adjustment for multiple testing then this test rejects too often 
when the null hypothesis is true. 

2. The method discussed here, based on the score statistic, is due to 
Contal and O'Quigley (1999). An alternative method, due to jes- 
persen (1986), is also based on the supremum of the absolute value 
of the log rank tests. His variance is slightly different than that pre- 
sented here and in a Monte Carlo study. Wu (2001) shows that 
this statistic's performance is not quite as goQd as the Contra1 and 
O'Quigley statistic. 

3. The limiting distribution of Q under the null hypothesis is the same 
as the supremum of the absolute value of a Brownian bridge. The 
p-value can be found by 
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Blnck male 

White male 

Cut point 

Figure 8.2 

which is approximately equal to 2exp(-2A when q > 1. For q 5 1 
the p-value is at least 0.30. 

Pra ctica 1 Notes 
1. Estimation of the cut point can be performed by finding the cut point 

which maximizes any of the three statistics discussed in section 8.4, 
the W d ,  Score, or Wrelihmd ratio tests. All give approximately the 
correct answer. 

2. B a g  inference on an unadjusted Cox model with a binary covariate 
based on the cut-point model leads to tests whiid, falsely reject the 
null hypothesis of treatment effect too often. Some correction must 



276 Chapter 8 Semiparametric Proportional Hazards Regression with Fixed Covariates - 
be made to these tests to ensure that the overall level of inference is 
correct. 

3. Estimation of the cut point can be performed by using existing soft- 
ware to iden* the model which gives the maximum test sta&tic. 
The test discussed here requires additional calculations. 

4. The Martingale residual plot discussed in section 11.3 can be wed 
to check the appropriateness of discretizing a continuous covariate. 

8.7 Model Building Using the Proportional 
Hazards Model 

In an earlier example, we explored the modeling of age and stage on 
the survival of patients with laryngeal cancer. In many studies, a variety 
of explanatory factors are measured and a major question in analyzing 
such data sets is how to incorporate these factors in the modeling 
procedure. 

The distinction between factors and variables is sometimes a bit vague 
although we shall refer to single-degree-of-freedom independent vari- 
ables (such as age that is treated continuously) as either factors or 
variables, whereas we shall refer to multiple-degree-of-freedom inde- 
pendent variables (such as stage) as factors. 

As mentioned at the beginning of this chapter, two distinctly different, 
yet important, problems in regression are i) to adjust for potential con- 
founding (or explanatory) variables when one has a specific hypothesis 
in mind and the desire is to compare two or more groups with respect 
to survival times or ii) to predict the distribution of the time to some 
event from a list of explanatory variables with no particular prior hy- 
pothesis in mind. Utilizing the proportional hazards model introduced 
in section 2.6 and the testing procedures more fully explained in this 
chapter, we shall detail the approaches used for these two situations 
and illustrate them with two examples. 

F i t ,  if one has a particular hypothesis in mind, then interest centers 
upon that particular hypothesis and any model building will be done 
to adjust that particular comparison (or comparisons) for other noncon- 
trollable factors. Often, the other explanatory factors are simply viewed 
as adjusters or confounders and interest in them matters only insofar as 
they affect the assessment of the basic hypothesis. Examples of such 
possible confounders are demographic variables, such as age, gender, 
race, etc.; patient clinical variables at the onset of the clinical trial that 
may reflect the patient's condition, such as severity of disease, size of 
tumor, physiological variables, etc.; and, in the case of transplantation, 
characteristics of the donor. 

EXAMPLE 8.5 
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The starting point of the model building process for this problem is to 
perform the global test of the primary hypothesis described in sections 
8.3 and 8.4. This gives the investigator an impression of the simple, 
unadjusted relationship between the basic hypothesized factor and sur- 
vival. In searching for possible confounders, it is useful to examine the 
simple relationship between the other explanatory factors and survival, 
adjusted for the factor of interest because, if there is obviously no re- 
lationship between a factor and survival, then, it is not likely to be a 
confounder. Thus, the next step is to consider the relationship between 
each of the other explanatory factors and survival, given that the factor 
stated in the basic hypothesis is already in the model. These local tests 
were described in detail in section 8.5. This process is continued by 
exploring the relationships between each of the remaining explanatory 
variables and survival, given that the factor stated in the basic hypoth- 
esis and the one next most related to survival (assuming that the basic 
variable is in the model) are in the model. If no significant confounders 
are found at any step in this process, then we stop and base our infer- 
ence about the primary hypothesis on the last model. This approach is 
illustrated in the next example. 

Another approach advocated as useful in model building, is one due 
to Akaike (1973) which examines the likelihood and the number of 
parameters included in the model. It attempts to balance the need for 
a model which fits the data very well to that of having a simple model 
with few parameters. More specifically, the Akaike information criterion 
(AIC), examines the statistic 

where p is the number of regression parameters in the model, k is some 
predetermined constant (which we shall take as 2), and L is the usual 
likelihood function. This criterion, will decrease as variables are added 
to the model. At some point, the criterion will increase which is a signal 
that the added variables are unnecessary. The AIC is reminiscent of the 
adjusted R~ in least-squares regression, in that both are attempting to 
adjust the fit of the model by the number of parameters included. This 
criterion will also be recorded in the following example. 

Continuing the discussion of the study of acute leukemia patients being 
given a bone marrow transplant, as introduced in section 1.3 and con- 
tinued in Examples 4.2 and 7.5, we shall adjust the basic comparisons 
of the three risk groups, acute lymphoblastic leukemia (ALL), low-risk 
acute myeloctic leukemia (AML low-risk), and high- risk acute myeloaic 
leukemia (AML high-risk), so as to reduce the possible bias which may 
exist in making those comparisons (because this was not a randomized 
clinical trial). Because this chapter discusses only fixed-time covariates, 
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we will use only the fixed-time covariates as possible cOdounders i, 
making the comparisons among risk groups. 

The first step in the model-building process is the global test of the 
hypothesis of no difference in disease-free survival. As discussed i, 
section 8.2, we define two binary covariates (Z, = 1 if AML low-hk. 
Zz = 1 if AML high-risk) for the factor of interest. The global wald 
chi-squared (with two degrees of freedom) statistic is 13.01 @-value = 
0.001). The M C  for this model is 737.29. 

In this example, there are two sets of factors. The first set of factors is 
measured only on the patient. These are 5: waiting time from diagnosis 
to transplant, 24: indicator of FAB (French-American-British) 
tion M4 or M5 for AML patients, and 5: indicator of whether the pa- 
tient was given a graft-versus-host prophylactic combining methotrmte 
(m with cyclosporine and possibly methylprednisilone. Tests involv- 
ing these factors will have one degree of freedom. 

The second set of factors is based on combinations of patient and 
donor characteristics and cannot be described by a single covariate. 
These factors are sex (Z6 = 1 if male donor, Z7 = 1 if male recipient, 
and & = Zg X Z, = 1 if donor and recipient are male), W stam 
(4 = 1 if donor is CMV positive, = 1 if recipient is CMV positive, 
and 41 = 4 X Zlo = 1 if donor and recipient are CMV positive), and age 
(zl2 = donor age - 28, G3 = recipient age - 28, and ZI4 = zl2 X z13). 
Tests involving these factors will have three degrees of freedom. 

Table 8.6 gives the local Wald tests for the six factors. Here, all models 
include the covariates Zl and & for the factor of primary interest. 
We find that the factor FAB classification (2,) has the smallest Akaike 
inforrnatio criterion and the smallest p-value. This factor is added to 
the modeYTable 8.7 gives the local Wald tests of all other factors not 
in the mdael with Zl, 4 ,  and Z;I in the model. From this table, we see 
that the kactor age (Z12, zl3, and ZI4) should be added to the model. 
Table 8 continues the model building by testing for factors not in the P model, adjusted for risk group, FAB class, and age. In this table, we 

TABLE 8.6 
~ocal Tests for ~&ble  Confoutzdm, Adjusted for Risk Groups 

% ? r -  of Wakd 
Factor Freedom Chi-square p- Value AIC 

waiting time (Z3) 1 1.18 0.m 737.95 
ME dm (a) 1 8.08 0 . a  731.02 
h.flx (&) 1 2.03 0.155 737.35 
Sex (16,Z7,28) 3 1.91 0.591 741.44 
mv s"m.5 (&. ZIO,~II) 3 0.19 0.980 743.10 
Age (ZI~,ZI~,ZI~) 3 11.98 0.007 733.18 

see that all the local tests are nonsigmficant and that the AIC is larger 
than that for the model with disease group, FAB class, and age alone. 
Thus, the model building process stops and the final model is given in 
Table 8.9. In this model, the local Wald test of the primary hypothesis 
of no difference between risk groups has a p-value of 0.003, which 
suggests that there is a difference in survival rates between at least two 
of the risk groups after adjustment for the patient's FAB class and for 
the donor and patient's age. Although we have used Wald tests in this 

TABLE 8.7 
Local Tests for Possible Confounders, Adjusted for Risk Groups and FAB Class 

Desrm of Wald 
Factor ~ m &  Chi-Square p-value AIC 

Waiting time (Z3) 1 1.18 0.277 731.68 
MIX (5) 1 2.05 

0.152 731.06 

Sex (16,z7.&) 3 0.92 
0.820 736.11 

CMV status (zp, Z10, Z11) 3 0.02 0.999 737.00 

Age (ZIZ, Z13,Zld 3 13.05 0.004 
725.98 

TABLE 8.8 
Local Tests for Pacsible Confounders, Adjusted for Risk Groups, FFAB Chrs, and 
Age 

"w- of wald 
Fncror Freedom CbiSquare p - v a I ~  AIC 

waiting time (23) 1 0.46 0.495 
727.48 

MTJC (5) 1 1.44 0.229 726.58 

Sar (26,&,&) 3 1.37 
0.713 730.61 

CMV status (Zs, ZIO,~II) 3 0.58 0.902 731.42 

TABLE 8.9 
Analysis of Variance Table for tbe Final M&l for Bone Mawow Tra"plants 

OeSr- of Wald 

Freedom b SE(b) Cbi-Square p-value 

ZI 1 -1.091 0.354 9.43 
0.002 

& 1 -0.404 0.363 
1.24 0.265 

a 1 0.837 0.279 
9.03 0.003 

z12 1 0.004 0.018 0.05 0.831 

z13 1 0.007 0.020 0.12 0.728 

214 1 0.003 0.001 
11.01 0.001 
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example, similar conclusions are obtained if the likelihood ratio statistic 
is used throughout. 

The second situation, where regression techniques are usehl, is in 
modeling the distribution of the time-to-some-event from a list of 
planatory variables with no particular prior hypothesis in mind. H ~ ~ ~ ,  
interest centers upon identlfying a set of variables which w a  aid 
investigator in modeling survival or identlfying a set of variables which 
may be used in testing a hypothesis in some future study (hypothesis 
generatin&. 

The starting point of model building for this problem is to perform 
separate global tests for each explanatory factor, as described in set- 
tions 8.3 and 8.4, so as to examine the simple relationship between 
the explanatory variables and survival. The purpose in this step is to 
ascertain which factor is most related to survival. The next step is to 
consider the relationship between each of the other explanatory fat- 
tors (not the one identified as the most sigruiicant one) and survival, 
given that the factor idenaed as the most sigmficant is already in the 
model. These local tests are also described in detail in section 8.5. This 
process is continued by exploring the relationship between each of the 
remaining explanatory factors and survival, assuming that the variable 
identified as the most sigtuficant one and the one next most dated 
to survival (given the first variable is in the model) are already in the 
model. The p-value approach requires a sigdicance level for entering 
variables into the model. This approach is illustrated in the next ex- 
ample. Furthermore, the Akaike information criterion may be used to 1 
assess the extent to which the investigator wishes to ind;de variables 
into the model. This approach is especially useful for deciding how 
many variables to include. 

EXAMPLE8.6 In section 1.14 (see Example 5.41, a data set including times to weaning 
of breast-fed infants was described. In this examde. we wish to h d  

s , - ---- -- ---- 
a model predictive of the distribution of time to weaning. Fixed-time 
factors measured by questionaire include race of mother (black, white, 
or other), poverty status indicator, smoking status of mother at birth of 
child, alcohol drinking status of mother at birth of child, age of mother 
at child's b i ,  education of mother at birth.of child (less than high 
school, high school graduate, some college), and lack of prenatal care 
indicator (mother sought prenatal care after third month or never sought 
prenatal care). 

In building a model, we are mainly interested in finding factors which 
contribute to the distribution of the time to weaning. Because there are 
are many ties in this data set, we shall use the "discreten likelihood 
for handling ties. Table 8.10 contains the results of the single-factor 
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TABLE 8.10 
Global Tests for Each Factor Potentially Related to Weaning Time 

Degrees of WaM 
Freedom Cbi-Square p-Value AIC 

Factor 

Race of mother 2 8.03 0.018 5481.67 

Poverty at birth 1 0.71 0.399 5486.69 
1 10.05 0.002 5477.61 Smoking 

Alcohol 1 2.01 0.157 5485.48 
1 0.15 0.698 5487.26 

Age 
Education 2 6.95 0.03 1 5482.36 

NO prenatal care 1 0.16 0.687 5487.25 

TABLE 8.1 1 
Local Tests for Each Factor Potentially Related to Weaning Time, Adjusted for 
Mother's Smoking Status 

Desrm of Wald 
Factor Freedom Chi-square p-valw AlC 

Race of  mother 2 12.38 0.002 5469.71 

poverty at birth 1 1.42 0.234 5478.17 

Alcohol 1 1.04 0.307 5478.59 

1 0.01 0.954 5479.61 
Age 

2 3.87 0.145 5477.71 
Education 
NO prenatal care 1 0.02 0.888 5479.59 

Wald tests. Race of mother, mother's smoking status, and education 
of mother are all sigdicantly related to the time to weaning in the 
simple regressions. The most sigdicant factor, mother's smoking status, 
is added to the model, and local tests for the remaining factors are given 
in Table 8.11. From this table, we add the race factor to the model and 
perform the local tests for the remaining factors (Table 8.12). In Table 
8.12, we see that all the remaining risk factors are not si@cant at a 5 
percent sigdicance level. If model selection criterion is based on the 
p-value (< OM) of the local tests, we would stop at this point and take, 
as our final model, one with two factors, smoking status and race. The 
ANOVA Table for this model is given in Table 8.13A. Model building 
based on the AIC, however, suggests adding the poverty factor to the 
model because the AIC with this factor is smaller than that without the 
factor. Proceeding based on the AIC, we find that the AIC is increased 
when any other factor is added to a model with race, smoking, and 
poverty included a s  factors (table not shown). The ANOVA table for the 
final model, based on the AIC, is in Table 8.13B. 
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TABLE 8.12 
Local Tests for Each Factor PotentiaIly Related to Weaning Time, A d j w d f o r  
Mother's Smoking Status and Race 

Degrees of Waki 
Factor Freedom Chi-square p-Value Alc 
Poverty at birth 1 2.99 0.084 ____. 
Alcohol 1 1.16 0.281 5468.65 

1 
5470.58 

Age 0.19 0.660 
Education 2 2.08 

5471.51 
0.353 5471.60 

No prenatal care 1 0.03 0.854 
5471.67 

TABLE 8.13A 
ANOW Tabk for the Time to Weaning Based on thep-Value Approach 

Degrees of  Waki 
Freedom b SE( b) Chi-square p-value 

Smoking 1 0.308 0.081 14.34 
<0.001 

Race-Black 1 0.156 0.111 1.98 
Race-Other 1 0.350 0.102 11.75 

0.159 
<0.001 

TABLE 8.138 
ANOVA Tabk for the Time to Weaning, Based on the AlCApproach 

of  Waki 
Freedom b SE(b) ChiSquare p-lraw 

Smoking 1 0.328 0.082 15.% <0.001 
Race-Black 1 0.184 0.112 2.70 0.100 
Race-Other 1 0.374 0.103 13.18 <0.001 
Poverty 1 -0.163 0.094 2.99 0.084 

Pra ctica 1 Notes 

1. In the example, the stepwise model buildirig was based on the Wald 
statistic. The choice of this statistic is arbitrary and either the score 
or likelihood ratio statistic could be used. For data sets with a large 
number of covariates, the score statistic may be more efficient in 
early steps of this process because high-dimensional models need 
not be fit at each step. Automated procedures which can be used, 
when all factors are a s~ngle covariate, are available in SAS using 
either the score or Wald statistic. 
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2. The model selection procedure discussed here is a forward selection 
procedure. An alternative model building procedure is a backward 
selection procedure which starts with the model with all factors, and, 
at each step, removes the least significant factor from the model. A 
stepwise model selection procedure combines the forward and back- 
ward procedures. All three procedures for single covariate factors are 
available in SAS. 

3. The choice of k in the AIC reflects how conservative one wishes to 
be in model building (larger values of k will include fewer variables). 

8.8 Estimation of the Survival Function 1;  
Once we have obtained estimates of the risk coefficients /3 from a 
proportional hazards regression model, it may be of interest to estimate 
the survival probability for a new patient with a given set of covariates 
Z,,. The estimator of the survival function is based on Breslow's estimator 
of the baseline cumulative hazard rate derived in the Theoretical Notes 
of section 8.3. 

To construct this estimator we, first, fit a proportional hazards model 
to the data and obtain the p a d -  maximum likelihood estimators b and 
the estimated covariance matrix V(b) from the inverse of the information . --. .- - 

matrix. Let tl < < - . . < to denote the distinct death times and di be 
the number of deaths at time 4. Let 

~ ( t , ;  b) = C exp 
jER(9)  

The estimator of the cumulative baseline hazard rate %(t) = jof ho(~> du 
is given by 

which is a step function with jumps at the observed death times. This 
estimator reduces to the Nelson-Aalen estimator of section 4.2, when 
there are no covariates present, and can be derived natufally using a 
profile likelihood construction (see Theoretical Note 2 of section 8.3). 
The estimator of the baseline survival function, So(t) = expi-%(tll is 
given by 

SOW = e~~[ -&~( t ) l .  (8.8.3) 

This is an estimator of .the survival function of an individual with a 
baseline set of covariate values, Z = 0. To estimate the survival function 
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for an individual with a covariate vector Z = Z,, we use the estimator 

Under rather mild regularity conditions this estimator, for fixed t, 
has an asymptotic normal distribution with mean S(t ( Z = &) and a 
variance which can be estimated by 

Here, 

is an estimator of the variance of &(t) if b were the true value of 8. 
Here 

with the p-vector whose kth element is defined by 

where 

Q 2  reflects the uncerrainty in the estimation process added by estimating 
@. Here, .Q3(t, &) is large when & is far from the average covariate in 
the risk set. Using this variance estimate, pointwise confidence intervals 
for the survival function can be constructed for S(t I Z = &) using 
the techniques discussed in section 4.3. Again, the log-transformed or 
arcsine-square-root-transformed intervals perform better than the naive, 
hear, confidence interval. 

EXAMPLE 8.2 (continued) We shall estimate the suwival functions for survival after 
detection of laryngeal cancer based on the Cox regression model sum- 
marized in Table 8.1. Here, we wish to produce a curve for each of 
the four stages of disease. Because an adjushent for age is included in 
our model, we shall provide an estimate for a sixty-year-old male. The 
baseline survival function &,, is estimated directly from Eqs. (8.8.2) and 
(8.8.3). The estimate of survival for a stage I cancer patent (of a e 60 at 8 .  diagnosis) is ~ ~ ( t ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ) ;  for a stage 11 patient So(t)+O.alagx +01386); 

for a stage 111 patient ~ ~ ( t ) + ~ " ~ ~ ~ ~ + ~ ~ ~ ~ ~ ) ;  and for a stage IV patient 
~ ~ ( t ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) .  Figure 8.3 shows the estimates of the four survival 
curves. 

Figure 8.3 Estimated survioalfunctions for a 60 year old l a w  cancerpa- 
Cient. Stage I Cancer (-1 Stage II Cancer (-1 Stage II Cancer (---I 
Stage N (-----) 

At five years, the estimated survival probabilities for a 60-year- 
old are 0.7031 for a Stage I patient, 0.6672 for a Stage I1 patient, 
0.5132 for a Stage 111 patient, and 0.1473 for a Stage N patient. Using 
Eqs. (8.8.5)-(8.8.8), we find that the standard errors of these estimators 
are 0.0737, 0.1059, 0.0949, and 0.0996, respectively. At 5 years, 95% 
confidence intervals for the survival function, based on the log transfor- 
mation (4.3.2), are (0.5319,0.8215), (0.4176,0.8290), (0.3171,0.6788), 
and (0.0218,0.3834), for stages I ,  II, m, and N, respectively. 

Practical Notes 
1. An alternative estimator of the basehe hazard rate has been pro- 

posed by Kalbfleisch and Prentice (1973). When there is at most a 
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- 
single death at each time, this estimator is given by 

When there are ties between the death times, then, the estimator is 
found numerically by solving a system of equations. This statistic is 
used in SAS. 

2. Alternative estimators of the baseline survival function are the prod- 
uct integral of the Breslow estimator of the cumulative hazard rate, 
which, in the case of no tied deaths, is given by 

or the product integral of the Kalbfleisch and Prentice estimator (see 
Note 1 above) 

Each of these can be used in Eq. (8.8.4) to obtain an estimator of the 
survival for an individual with a covariate vectorA&. An alternative 
estimator to S(t I &) is given by first adjusting Ho(t) by the factor 
exp(bl&) and, then, constructing a product-limit estimator based on 
fi(t 1 &I = fi(t) expOO1&) given by 

Under rather mild regularity conditions, each of the four estimators 
of S(t 1 &) is asymptotically normal with the correct mean and a 
variance estimated by (8.8.5). 

The estimators S2 and S4 can take negative values. This is only a 
problem when the risks sets are small in the right-hand tail of the 
estimates. Typically, this happens when one is attempting to predict 
survival for a covariate value which is extreme as compared to the 
covariate values of those remaining at risk when the prediction is 
being made. The negative value is a signal to the investigator that 
predictions for this covariate value should not be made in this region. 

3. The SAS procedure P'HREG uses the Kalbfleisch and Prentice estima- 
tor described in Note 1. A recent Monte Carlo study by Andersen and 
Klein (1996) shows that this estimator has a larger bias and mean- 
squared error than the other three estimators of survival. Breslow's 
estimator is also available in SAS. 

4. S-Plus has both the Breslow and Kalbfleisch and Prentice estimator 
available in the function surv.fit. 
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5. As was the case for confidence intervals for the survival function 
discussed in Chapter 4, Andersen and Klein (1996) show that the log- 
transformed confidence interval for S(t I &) seems to work best, and 
the arcsine-square-root confidence interval is a close second. The 
routine use of the linear confidence interval is not recommended. 

6. Based on an extensive Monte Carlo study by hdersen and KLein 
(1996), it can be shown that the estimators S2 and S4 have the small- 
est bias and are recommended. The estimator S3, available in SAS, 
seems to perform quite poorly for continuous and mixed, continuous 
covariate models. 

8.9 Exercises 

8.1 In section 1.10, times to death or relapse (in days) are given for 23 non- 
Hodglun's lymphoma (Ma) patients, 11 receiving an allogenic (All01 
transplant from an HLA-matched sibling donor and 12 patients receiving 
an autologous (Auto) transplant. Also, data on 20 Hodgkh's lymphoma 
(HOD) patients, 5 receiving an auogenic (No) transplant from an HLA- 
matched sibling donor and 15 patients receiving an autologous (Auto) 
transplant is given. 
(a) Treating NHL AUo as the baseline hazard function, state the appro- 

priate coding which would allow the investigator to test for any 
difference in survival functions for the four groups, treating them 
as four independent groups. 

(b) Treating NHL AUo as the baseline hazard function, state the ap- 
propriate coding which would allow the investigator to test for an 
interaction between type of transplant and disease type using main 
effects and interaction terms. 

(c) Suppose that we have the following model for the hazard rates in 
the four groups: 

h(t I HOD All01 = ho(tkxP(2) 

What are the risk coefficients, pi, i = 1,2,3, for the interaction 
model in part b? 

8.2 h section 1.6 a study is described which evaluates a protocol change in 
disinfectant practices in a large midwestern university medical center. 
Of primary interest in the study is a comparison of two methods of 
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body cleansing. The first method, used exclusively from January 1983 
to June 1984, consisted of a routine bathing care method (initial sUr- 
face decontamination with 10% povidone-iodine followed with regular 
bathing with Dial soap). From June 1984 to the end of the study pe- 
riod in December 1985, body cleansing was initially performed using 4% 
chlorhexidine gluconate. Eighty-four patients were in the group who re- 
ceived the new bathing solution, chlorhexidine, and 70 patients Served 
as the control group who received routine bathing care, povidone- 
iodine. Included in the data set is a covariate that measures the total 
surface area burned. The data is reported on our web site. 

State the appropriate coding which would allow the investigator to 
test for: 

(a) any difference in survival functions for the two groups. 

(b) any difference in survival functions for the two groups adjusting for 
total area burned. 

8.3 In section 1.11, a study was conducted on the effects of ploidy on the 
prognosis of patients with cancer of the tongue. Tissue samples were 
examined to determine if the tumor had a aneuploid or diploid DNA 
profile. Times to death for these two groups of patients are recorded 
in Table 1.6. To analyze this data create a single indicator variable, Z, 
which reflects the type of tumor. 

(a) Find the p-value of a test of the hypothesis of no effect of ploidy on 
survival using the score test and the Breslow method of handling 
ties. 

(b) Estimate p and its standard error using the Breslow method of 
handling ties. Find a 95% confidence interval for the relative risk of 
death of an individual with an aneuploid tumor as compared to an 
individual with a diploid tumor. 

(c) Repeat (a) using the likelihood test. Compare your answer to that 
of part a. 

(dl Repeat (a) using the Wald test. Compare your answer to those in 
parts a and c. 

8.4 In Exercise 7 of Chapter 7, three different treatments were administered 
to rats who had F98 gliorna cells implanted into their brains. The data 
for the three groups of rats lists the death times.(in days) in that exercise. 
Create two dummy variables, Zl = 1 if animal is in the "radiation only" 
group, 0 otherwise; Z2 = 1 if animal is in the "radiation plus BPA" 
group, 0 otherwise. Use the Breslow method of handling ties in the 
problems below. 

(a) Estimate PI and pz and their respective standard errors. Find a 
95% confidence interval for the relative risk of death of an animal 
radiated only compared to an untreated animal. 
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(b) Test the global hypothesis of no effect of either radiation or radia- 
tion plus BPA on survival. Perform the test using all the three tests 
(Wald, likelihood ratio, and score test). 

(c) Test the hypothesis that the effect a radiated only animal has o n  
survival is the same as the effect of radiation plus BPA (i.e., Test 
Ho : p1 = p2). 

(d) Find an estimate and a 95% confidence interval for the relative risk 
of death for a radiation plus BPA animal as compared to a radiated 
only animal. 

(e) Test the hypothesis that any radiation given as a treatment (either 
radiation alone or with BPA) has a different effect on survival than 
no radiation. Use the likelihood ratio test. 

(0 Repeat part (el using a Wald test. 

8.5 Using ties, the data set in Exercise 1, using the Breslow method of handling 

(a) Analyze the data by performing a global test of no effect of group 
as defined in Exercise B.l(a) on survival. Construct an ANOVA table 
to summarize estimates of the risk coefficients and the results of the 
one degree of freedom tests for each covariate in the model. 

(b) Repeat part (a) using the coding as described in Exercise 8.l&). 
Furthermore, test the hypothesis of disease type by transplant in- 
teraction using a likelihood ratio rest based on this coding. Repeat 
using the Wald test. 

(c) Find point estimates and 95% confidence intervals for the relative 
risk of death for an NHL Auto transplant patient as compared to an 
NHL All0 transplant patient. 

(d) Find the pvalue of a test of the hypothesis that the hazard rates 
are the same for HOD d o  transplants and NHI, Allo patients, using 
the Wald test. Repeat a similar test for Auto patients. 

(e) Test the hypothesis, using the Wald test, that the hazard rates for 
Auto transplant and Allo transplant patients are the same for each 
disease group against the alternative that the hazard rates for Auto 
tramplant and Allo transplant patients for at least one group are dif- 
ferent using a two-degree of freedom test of : h(t 1 NHL d o )  = 
h(t ( NI-IL Auto) and a : h(t I HOD Allo) = h(t ( HOD Auto). 

8.6 h section 1.13, data on the time to hospitalization of pneumonia in 
young children was discussed. The data is presented on our web site. 
In the sample there were 3,470 a n n d  personal interviews. An investi- 
gator is interested in assessing race, poverty status, and their interaction 
on time to hospitalization of pneumonia. Use the discrete method for 
handling ties to answer the following questions. 
(a) Estimate the parameters of your model and their standard errors. 

Construct and interpret an "ANOVA" table for this model. 



(b) Provide point estimates and 95% confidence intervals for the relative 
risk of hospitalization for pneumonia for a person raised h poveq 

I relative to a person not raised in poverty for each race. 
(c) Test that blacks raised in poverty have a different hospitalization 

for pneumonia rate than whites not raised in poverty. 

8.7 In section 1.6 a study is described which evaluates the relatiomhjp 
of various covariates to staphylococcus infection in a large midwest- 
em university medical center (see Exercise 8.2). One of the covariaks 
recorded in the data set is the total surface area burned. Use Breslowss 
method for handing ties to answer the following questions. 

I (a) Find the optimal cutpoint to categorize patients into high- or low- 
I risk groups for staphylococcu~ infection based on their total surface 

area burned for each disinfectant practice. 
(b) Test the hypothesis that there is a difference in times to infeaion for 

high- and low-risk groups using the cutpoints obtained in (a). Using 
the cut points obtained in (a) find the relative risk of the high-risk 
group compared to the low-risk group for each disinfectant practice. 

(c) Analyze the data using total surface area burned as a continuous 
variable. Give the parameter estimate, standard error, and relative 
risk for total surface area burned. Compare with the answer in (b). 

8.8 In section 1.3, data gathered from a multicenter trial of patients in 
three groups (ALL, AML low-risk, and AML high-risk) was followed 
after transplantation until relapse, death, or end of study. One of the 
covariates recorded in the data set is the waiting time to transplant (in 
days). Use Breslow's method for handling ties in the following. 
(a) You are asked to categorize patients into high- or low-risk groups 

for disease-free survival based on the waiting time to transplant 
variable for the ALL group. 

(b) Analyze the data using waiting time to transplant as a categorized 
variable using the cut point obtained in (a). Give the parameter 
estimate, standard error, and relative risk of the high-risk group 
compared to the low-risk group for the W group. 

(c) Analyze the data using waiting time to transplant as a continuous 
variable. Give the parameter estimate, standard error, and relative 
risk for waiting time to transplant for the W group. Compare with 
answer in (b). 

8.9 Use the Breslow method for handling ties and the Wald test in the 
following. 
(a) Using the data set in section 1.6, test the hypothesis that the dis- 

tributions of the times to staphylococcus infection are the same in 
the two disinfectant groups. 

(b) Test the hypothesis that the distributions of the times to staphylo- 
coccus infection are the same in the two disinfectant groups adjust- 
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ing for the total area burned, Zq. Compare your results to those in 
part a. 

(c) Also available in the data set is information on other factors that may 
be associated with the timing of staphylococcus infection. Some of 
these factors are gender, race, total surface area burned, and type 
of burn (chemical, scald, electrical, flame). For each factor create 
a set of fixed-time covariates. Test the hypothesis that the times 
to staphylococcus infection are the same for the two disinfectant 
groups using a model which adjusts for each of these factors. 

(d) Since one is primarily interested in comparing the two bathing so- 
lutions, interest will center upon building a model with the view 
of testing that particular comparison adjusting for the other non- 
controllable factors in part (c). Using a forward selection approach, 
build such a model using the p-value approach. Based on the final 
model, test the hypothesis of primary interest. 

8.10 In section 1.3, several event times are described for patients receiving 
a bone marrow transplant for leukemia. Consider the time to devel- 
opment of acute graft-versus-host disease (AGVHD). As a prophylactic 
treatment, patients at two of the hospitals were given a treatment com- 
bining methotrexate (TX) with cyclosporine and possibly methylpred- 
nisilone. Patients at the other hospitals were not given methotrexate but 
rather a combination of cyclospo&e and methylprednisilone. Of pri- 
mary interest in studying AGVHD is a test of the effectiveness of the 
MTX regime to prevent AGVHD. Use Breslow's method for handling 
ties to answer the following exercises. 

(a) Using an appropriate Cox model test the hypothesis of no difference 
in the rate of development of AGVHD between MTX and no MTX 
patients. Find a point estimate and a 95% confidence interval for 
the relative risk of AGVHD for patients on the MTX protocol as 
compared to those not given MTX. 

(b) Patients were also grouped into risk categories based on their sta- 
tus at the time of transplantation. These categories were as follows: 
acute lyrnphoblastic leukemia (ALL) with 38 patients and acute mye- 
loctic leukemia (ME). The latter category was further subdivided 
into low-risk- remission (54 patients) and high-risk--second 
remission or untreated first relapse or second or greater relapse or 
never in remission (45 patients). Test the hypothesis of interest (no 
effect of MTX on development of AGVHD) adjusting for the three 
disease categories. 

(c) Test for the possibiity of an interaction effect on AGVHD between 
the disease categories and the use MTX. 

(dl Using the factors of age, sex, CMV status, FAB dass, waiting time 
to transplant, and disease category as defined in Example 8.5, find 
the best model to test the primary hypothesis of no MTX effect on 
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the occurrence of AGVHD. Test the primary hypothesis and find an 
estimate of the relative risk of occurrence of AGVHD for an MB 
patient as compared to a non-MTX patient. 

8.11 In section 1.13, data gathered from annual personal interviews con- 
ducted for the National Longitudinal Survey of Youth (NLSY) from 1979 
through 1986 was presented. This data was used to study whether or 
not the mother's feeding choice protected the infant against hospitalked 
pneumonia in the first year of life. Ages of young children at the t h e  
they were hospitalized with pneumonia were recorded as well as the 
observed ages of those infants that were not hospitalized with pneu- 
monia during the study period. The data is available from our web site, 
which can be reached via the authors' pages at http://w.springer- 
ny.com. Use the discrete method for handling ties in the following. 

(a) Consider the dummy variable Z = 1 if infants were breast fed at 
birth, 0 if infants were never breast fed, and test the hypothesis 
& : P = 0, i.e., the survival functions for the two types of breast 
feeding are equal, using the score, likelihood ratio, and Wald tests. 
Find the estimate of P,  b, the standard error of b, and the relative 
risk using the Wald test. 

(b) Also available in the data set is information on other factors that may 
be associated with the timing of hospitalized pneumonia. These 
factors are age of the mother at the infant's birth, rural-urban en- 
vironment of the mother, use of alcohol by the mother (no drinks, 
less than one drink, 1-2 drinks, 3-4 drinks, or more than 4 drinks 
per month), mother's cigarette use (none, less than 1 pack/day, 1 or 
more packlday), region of country (northeast, north central, south, 
or west), birthweight of infant (less the 5.5 Ibs or 5.5 lbs or more), 
poverty status of mother (yes/no), race of mother (white, black, 
or other), or number of siblings of infant. For each factor create a 
set of fixed-time covariates. Test the hypothesis that the times to 
hospitalized pneumonia are the same for the two feeding groups 
adjusting for each of these factors in a separate model using the 
Wald test. 

(c) Since one is primarily interested in comparing the two types of 
breast feeding, interest will center upon building a model with the 
view of testing the particular comparison of interest adjusting for 
the other noncontrollable fixed covariates in part b. Build such a 
model using the AIC approach and the Wald test. 

(dl Summarize your findings from this data set. 

8.12 A major problem in certain sub-populations is the occurrence of sexu- 
ally transmitted diseases (STD). Even if one ignores the lethal effects of 
the acquired immune deficiency syndrome, other Sm's  still have a sig- 
nificant impact on the morbidity of the community. Two of these STD's 
are the focus of this investigation-gonorrhea and chlamydia. Both of 
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these diseases can be prevented and effectively treated. The purpose 
of the study described in section 1.12 is to iden* those factors which 
are related to time until reinfection by either gonorrhea or chlamydia 
given a patient with an initial infection of gonorrhea or chlamydia. The 
data for this study is available from our web site. 

Possible factors related to reinfection are the individual's race 
(black/white), marital status (divorced/separated, mamed, single), age 
at time of initial infection, years of schooling, initial infection type (gon- 
orrhea, chlamydia, both), number of p m e r s  within the last 30 days, 
oral sex within the last year, rectal sex within the past year, presence of 
symptoms (abdominal pain, discharge, dysuria, itch, lesion, rash, lymph 
node involvement), and condom use. If the factors that are related to a 
greater risk of reinfection can be identified, then interventions could be 
targeted to those individuals who are at greatest risk for reinfection. Use 
regression techniques to find those factors which are most predictive 
of the distribution of the time until reinfection from this list of fixed 
explanatory factors with no particular prior hypothesis in mind. Build 
such a model using the p-value approach. Use the Breslow method for 
handling ties and the Wald test in the model building. 

8.13 Find 95% confidence intervals for the survival functions for the two 
bathing solutions at 20 days for a patient with 25% of total surface area 
of body burned, using data in Section 1.6. 

8.14 (a) Estimate the survival functions of the time to AGVHD for the MTX 
and no MTX treatment groups discussed in Exercise 8.10, adjusted 
for disease category. Provide a separate estimate for each disease 
group. 

(b) Find 95% confidence intervals for the survival functions for the two 
patient treatment groups at 80 days for AML high-risk patients. 


