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sample j is smaller than in sample j + 1, so the hypothesis H, .
bA(®) = by(D is rejected in favor of Hy; @ b D < b (d) Whjeri
[Zj(T) - Zj+1(7)]/[6'jj + &J-+1j+1 - 26'jj+1]1/2 is smaller than the ath IOWer
percentile of a standard normal. Use the information in Example 76
and this statistic to make the multiple comparisons. '
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- Proportional Hazards
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7.11 The data on laryngeal cancer patients was collected over the period
1970-1978. It is possible that the therapy used to treat laryngeal cancer
may have changed over this nine year period. To adjust for this pOs-
sible confounding fact, test the hypothesis of no difference in survivy]
between patients with different stages of disease against a global ajter-
native using a test which stratifies on the cancer being diagnosed prior
to 1975 or not. Also perform a separate test of the hypothesis of interest
in each stratum.

7.12 (a) Repeat Exercise 3 using the log-rank version of the Renyi statistic,
(b) Repeat Exercise 4 using the Gehan version of the Renyi statistic,

7.13 In Table 1.3 of section 1.5, the data on time to death for breast cancer-
patients who where classed as lymph node negative by standard light
microscopy (SLM) or by immunohistochemical (IH) examination of their
lymph nodes is reported. Test the hypothesis that there is no difference
in survival between theses two groups using
(a) the log-rank test,

(b) the Renyi statistic based on the log-rank test,
(c¢) the Cramer-von Mises statistic, and
(d the weighted difference in the Kaplan-Meier statistic Wgy.

7.14 Repeat Exercise 7 using
(a) the Renyi statistic based on the log-rank test,
(b) the Cramer-von Mises statistic, and
(c) the weighted difference in the Kaplan-Meier statistic Wiy.

7.15 Using the data of section 1.3,
(a) compare the three survival functions for ALL, AML low-risk, and
AML high-risk at one year;
(b) perform pairwise multiple comparisons for the three groups em-
ploying the Bonferroni correction for multiple tests.

Introduction

Often one is interested in comparing two or more groups of times-to-
event. If the groups are similar, except for the treatment under study,
then, the nonparametric methods of Chapter 7 may be used directly.
More often than not, the subjects in the groups have some additional
characteristics that may affect their outcome. For example, subjects
: may have demographic variables recorded, such as age, gender, socio-
' economic status, or education; behavioral variables, such as dietary
habits, smoking history, physical activity level, or alcohol consumption;
or physiological variables, such as blood pressure, blood glucose lev-
= els, hemoglobin levels, or heart rate. Such variables may be used as
3 covariates (explanatory variables, confounders, risk factors, indepen-
3 dent variables) in explaining the response {(dependent) variable. After
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adjustment for these potential explanatory variables, the comparison of
survival times between groups should be less biased and more precise
than a simple comparison.

Another important problem is to predict the distribution of the time
to some event from a set of explanatory variables. Here, the interest i
in predicting risk factors for the event of interest. Statistical strategies for
prediction are similar to those utilized in ordinary regression. However
the details for regression techniques in survival studies are unique,

In section 2.6, we introduced models which allow us to Quantify
the relationship between the time to event and a set of explanatory
variables. In this chapter, we will consider in more detail the widely
used multiplicative hazards model due to Cox (1972), often called the
proportional hazards model.

As before, let X denote the time to some event. Our data, based on 2
sample of size », consists of the tiple (7},8;, Z;(#)), j = 1, ..., n where
T; is the time on study for the jth patient, §, is the event indicator for
the jth patient (§; = 1 if the event has occurred and &; = 0 if the
lifetime is right-censored) and Z () = (Zy(®), ..., Z,(H)) is the vector
of covariates or risk factors for the jth individual at time ¢ which may
affect the survival distribution of X. Here the Zy(#)'s, k = 1, ..., p, may
be time-dependent covariates whose value changes over time, such
as current disease status, serial blood pressure measurements, etc., or
they may be constant (or fixed) values known at time 0, such as sex,
treatment group, race, initial disease state, etc. In this chapter, we shall
consider the fixed-covariate case where Z,(¥) = Z; = (Zp,...,Z,),
and the former situation involving time-dependent covariates will be
treated in Chapter 9.

Let (¢t | Z) be the hazard rate at time ¢ for an individual with risk
vector Z. The basic model due to Cox (1972) is as follows:

2D = h(DAB'D) @®1D

where hy(9) is an arbitrary baseline hazard rate, B = (By,...,Bp) isa
parameter vector, and o(B*Z) is a known function. This is called a semi-
parametric model because a parametric form is assumed only for the
covariate effect. The baseline hazard rate is treated nonparametrically.
Because At | Z) must be positive, a common model for (B'T) is

»
AB'2) = exp(B'Z) = exp (Z BleZk)

k=1

yielding

»
bt Z) = (D exp(B'Z) = hy(P) exp (Z Bka) 812

k=1
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and, thus, the logarithm of & | Z)/h(D is °4_, BxZs in the spirit of
the usual linear models formulation for the effects of covariates. The.
coding of factors and their interaction effects follows the usual rules for
linear models. For example, if a factor has four levels, three indicator
(or dummy) variables may be constructed to model the effect of the
factor. An interaction between two or more factors may be examined
by constructing new variables which are the product of the variables
associated with the individual factors as is commonly done in other
(least squares or logistic) regression contexts. One needs to take care
in interpreting coefficients so constructed.

The Cox model is often called a proportional hazards model because,
if we look at two individuals with covariate values Z and Z*, the ratio
of their hazard rates is

K12 _ b@Dexp [Th BeZe] _
K12 hDexp [T, BeZy] T

b
[Z Bu(Z: — z;)] (8.1.3)
k=1

which is a constant. So, the hazard rates are proportional. The quantity
(8.1.3) is called the relative risk (hazard ratio) of an individual with risk
factor Z having the event as compared to an individual with risk factor
Z'. In particular, if Z; indicates the treatment effect (Z; = 1 if treatment
and Z, = 0 if placebo) and all other covariates have the same value,
then, &t | Z)/Kt | Z*) = exp(By), is the risk of having the event if the
individual received the treatment relative to the risk of having the event
should the individual have received the placebo.

In section 8.2 coding of both quantitative and qualitative covariates
and a discussion of their interpretation is presented. Typically the goal
of an investigation is to make an inference about B in a global sense,
as discussed in sections 8.3 (for distinct event time data) and 8.4 (when
ties are present), or, more often than not, to make an inference about a
subset of B (called a local test) as discussed in section 8.5. Sometimes
an investigator would like to treat a continuous covariate as binary.
An example of such a covariate might be blood pressure, which is, in
theory, a continuous variate; but a researcher might want to classify a
patient as being normotensive or hypertensive. The rationale and details
of the methodology of discretizing a continuous covariate are provided
in section 8.6.

In section 8.7 these techniques are used to build the most appropriate
model for survival. Inference for B in these sections is based on a
partial or conditional likelihood rather than a full likelihood approach.
In these analyses, the baseline hazard, hy(?), is treated as a nuisance
parameter function. Sometimes, however, one is interested in estimating
the survival function for a patient with a certain set of conditions and
characteristics. This is accomplished by utilizing the results described
in section 8.8. )
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8.2 Coding Covariates

In general regression analyses one may have either quantitative or qual.
itative independent variables. The dependent variable, in the contey
of this book, is a quantitative variable, the time-to-event, along with ap
indicator variable which indicates whether or not the event of interes
occurred. As indicated in section 8.1, the independent variables may be
quantitative—such as blood pressure, blood glucose levels, age, heart
rate, or waiting time until a transplant—or they may be qualitative—
such as gender, smoking behavior, stage of disease, or the presence or
absence of any particular characteristic which the researcher wishes tg
investigate. Qualitative variables can be used in a regression analysis,
just as quantitative variables can be used; however, more care needs
to be taken in the manner they are coded and interpreted. Usually,
independent variables are known at the start of the study. They are
called fixed time covariates. Occasionally independent variables may
change values after the study starts and are known as time-dependent
covariates. It is extremely important to make this distinction since the
methods of analyses differ substantially for time-dependent covariates,
First, we shall discuss fixed time covariates. Time-dependent covariates
are discussed in Chapter 9.

There are many ways of coding qualitative variables. For dichoto-
mous variables, like gender, the obvious way is to code one of the
genders as 1, the other as 0. Which way we do this coding is ar-
bitrary and immaterial. The interpretation of the results, of course,
will depend on the way the coding is actually done. For example,
if we code the gender variable as Z; = 1 if male, 0 if female, the
hazard rate for males will be b(¢t | Z) = by(Dexp(By), and for fe-
males will be Kt | 2) = by(Dexp(0) = hy(#). Here the natural log-
arithm of the ratio of the hazard function for males relative to the
hazard function for females is B;, and the ratio of the hazard func-
tions for males relative to females (the relative risk) will be exp(By.
The variable Z; is called an indicator (or dummy) variable since it
indicates to which group the subject under consideration belongs. If
we had coded another variable as Z, = 1 if female, 0 if male, then
the hazard rate for females would have been At | Z) = hy(Dexp(B)
and for males will be Wt | 2) = by(Dexp(0) = hy(®). Here the nat-
ural logarithm of the ratio of the hazard function for females rel-
ative to the hazard function for males is B,, and the ratio of Tl}e
hazard functions for females relative to males (the relative risk) will
be exp(B,) = 1/exp(B;) =exp(—p,). Either way the coding is per
formed, the interpretation will lead to the same conclusion. Consider
the coding for an example which will be used in a subsequent sec-
tion.
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EXAMPLE 8.1

In section 1.5 we introduced a study designed to determine if female
breast cancer patients, originally classified as lymph-node-negative by
standard light microscopy (SLM), could be more accurately classified by
immunohistochemical (IH) examination of their lymph nodes with an
anticytokeratin monoclonal antibody cocktail. The data for 45 female
breast cancer patients with negative axillary lymph nodes and a mini-
mum 10-year follow-up were selected from The Ohio State University
Hospitals Cancer Registry. Of the 45 patients, 9 were immunoperoxidase
positive and the remaining 36 still remained negative.

In this example we wish to perform a proportional hazards regression
with immunoperoxidase status as the single covariate in the model. We
adopt the usual regression formulation of a dichotomous independent
variable and construct a dummy (or indicator) variable as follows.

Let Z = 1 if the patient is immunoperoxidase positive, 0 otherwise.
The model is Wt | Z) = hy(Dexp(BZ), where hy(8) is an arbitrary base-
line hazard rate and B is the regression coefficient for Z. The ratio
of the hazard functions for patient being immunoperoxidase positive
relative to the patient being immunoperoxidase negative (the relative
risk) will be exp(B). In a later example in section 8.3, the estimate
of B, denoted by b, is determined to be 0.9802. Thus the relative
risk of dying for an immunoperoxidase-positive patient relative to an
immunoperoxidase-negative patient is exp(0.9802)=2.67. That is, a pa-
tient who is immunoperoxidase positive is 2.67 times more likely to die
than an immunoperoxidase-negative patient.

When the qualitative variables (sometimes called factors) have more
than two categories, there is more choice in the coding schemes. For
example, when coding a factor, sometimes termed a “risk group,” which
has three categories, we utilize a simple extension of the indicator
variable coding scheme described above. In particular, we code two
indicator variables as

Z, = 1 if the subject is in category 1, 0 otherwise,

Z, = 1 it the subject is in category 2, 0 otherwise.  (8.2.1)

One might be tempted to make a third category Z; = 1 if the subject is
in category 3, 0 otherwise; but to do this would make the three variables
Z(i = 1,2,3) dependent upon each other. This can be seen because if
you know the value of Z; and the value of Z, then you would know
the value of Z;, This is contrary to the principle of multiple regression,
where you wish to introduce independent variables into the model.
The independent variables may be correlated but they should not be
completely dependent, since this introduces an undesirable complexity
in analysis and interpretation.
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EXAMPLE 8.2

There are many other ways to code the categories 50 as to obtain tyq
“independent” variables which perform the same test of g, = g, =
but we shall not dwell on them, except to say that the interpretatiod
must be carefully understood. Instead we will elaborate a bit more o
the coding scheme discussed above. Consider a three level factor, such
as race (black, white, Hispanic), using the coding as in (8.2.1)

Z; =1 if the subject is black, 0 if otherwise,

Z, = if the subject if white, 0 otherwise,

The hazard rate, in general, is Kt | Z) = by(Dexp{3,_, BeZ:} and, in
particular, the hazard rates for blacks, whites, and Hispanics, respec-
tively, is as follows:

Wtz =1,2, =0 = h(Dexp(B),
K|z, =0,2, = 1) = hy(Dexp(B),
Wz, =0,Z,=0) = h(D). 822

Here we can see that the risk of the events occurring among blacks
relative to the risk of the events occurring among Hispanics is exp(8,),
the risk of the events occurring among whites relative to the risk of the
events occurring among Hispanics is exp(8,), and the risk of the events
occurring among blacks relative to the risk of the events occurring
among whites is exp(8; — B2).

A note of caution is in order here. If the independent variable is
strictly categorical with more than two groups, then it would be inap-
propriate to code the variable as a single covariate. Suppose we have
a categorical covariate with k(> 2) categories and we define a single
covariate Z = 4, if the individual belongs to category 4,7 = 1,..,k.
The proportional hazards model assumes that the relative risk of an
event for an individual in category i as compared to an individual in
category i —1is eP forany i = 2,..., k.

For example, suppose we code the patient’s race as 1 if black, 2
if white, and 3 if Hispanic. A consequence of this model is that the
following relationships between the relative risks must hold:

RR(White/Black) = RR(Hispanic/White) = &
and
RR(Hispanic/Black) = &

relationships which are not likely to be true.

In section 1.8, a study of 90 males diagnosed with cancer of the larynx
was described. In addition to the outcome variable, time from first
treatment until either death or the end of the study, the independent
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variables, patient’s age (in years) at the time of diagnosis and the stage
of the patient’s cancer, were recorded. A basic test for trend on stage
was performed in section 7.4.

Here we wish to illustrate the coding of the variable stage of disease
in preparation for performing a proportional hazards regression test
with only stage in the model. Since stage has four levels, we adopt the
usual indicator variable coding methodology as in (8.2.1) and construct
the dummy (or indicator) variables as follows.

Let Z=1 if the patient is in stage II, 0 otherwise,
Z,=1 if the patient is in Stage I, 0 otherwise,

and

Zz=1 fif the patient is in Stage IV, 0 otherwise. (8.2.3)

This places the patient with Stage I cancer in the referent group; i.e.,
such a patient will have Z; = 'Z, = Z; = 0. Usually the coding is
accomplished so that the referent group is expected to be at either
extreme of risk from a subject matter point of view.

In section 8.4 we shall see that b = 0.06576,b, = 0.61206,b; =
1.172284. The full model for this situation is

Kt | 2) = hPexp{B’Z} = by(Dexp{p12, + B2 + B:Z3}.

Thus the estimated relative risks of dying for patients with Stage II,
I, and IV disease relative to Stage I disease is exp(0.06576) = 1.068,
exp(0.61206) = 1.844, and exp(1.72284) = 5.600, respectively. One
may also calculate the relative risk of dying for patients for Stage ITI dis-
ease relative to patients for Stage I disease as exp(0.61206 —0.06576) =
1.727.

A basic test for trend was performed on the data of section 1.8 in
Example 7.6 of section 7.4. Since the scores test in the proportional
hazards model is identical to the log rank test, when there are no ties
(see Practical Note 3 in section 8.3), one could approximate the test
for trend in Example 7.6 by taking the stage variable as a continuous
variable (stage = 1, 2, 3, 4). The scores test in this proportional hazards
model has a chi-squared of 13.64 with 1 degree of freedom, a result
consistent with what we found in Example 7.6. As discussed eatrlier, the
estimate of B must be interpreted with caution since it assumes equal
relative risk between adjacent stages of disease.

On the other hand, if an independent variable is continuous, such
as age, then it would be appropriate to code the variable as a single
covariate, In this case, the exponentiated coefficient, e for the variable

Z = age (in years)
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would be the relative risk of an event for an individual of age i yeyr
compared to an individual of age i — 1 years. Sometimes we wigh to
speak of the relative risk of the event for an individual 10 years olde,
than another individual. In this case, the ratio of the hazard (or risk) of
the individual 10 years older compared to the hazard (or risk) of the
referent individual would be relative risk = exp(108). There may be
other covariates in the model, in which case, the coefficient is termed 5
partial regression coefficient. Such partial regression coefficients relate
the relationship of that variable, say, age, to the outcome variable, time.
to-event, controlling for all other variables in the model. Tests based op
partial regression coefficients utilize local tests as described in section
8.5. The results from a data set analyzed in section 8.5 are used to
illustrate the interpretation of such parameters below.

(continued) Continuing the examination of the data set in section 1.8,
we will introduce the age covariate, Z; = age of the patient, in addition
to the stage indicator variables defined in (8.2.3). The model then is

WKt Z) = by(Dexp{B‘'Z}
= b(Dexp{B1Z) + B2y + BsZy + BuZi}.  (82.4)

Here the natural logarithm of the ratio of the hazard function for a 50-
year-old individual with Stage IV disease relative to the hazard function
for a 40-year-old individual with Stage IV disease is 108;; i.e., the relative

‘risk for a 50-year-old patient compared to a 40-year-old (both with Stage

IV disease) is exp(108,), since the stage of disease parameter will cancel
out in the proportional hazards model.
The estimates of the parameters are obtained in section 8.5 as

b, = 0.1386, b, = 0.6383, b, = 1.6931, and &; =0.0189. (825)

Thus the relative risk for a 50-year-old patient compared to a 40-year-
old (both with Stage IV disease) is exp(105) = 1.2. Another way of
stating the interpretation of a partial relative risk is that a 50-year-old
patient has a probability of dying 1.2 times greater than the probability
of dying for a 40-year-old patient with the same stage of disease.

Factors such as gender, age, race, or stage of disease taken individ-
ually are often referred to as main effects, i.e., their relationship with
the time-to-event outcome is tested for statistical significance as if their
relationship does not depend on other factors. An important concept in
regression is the consideration of the effect of one factor in the presence
of another factor. This concept is termed interaction.

As in other (least squares or logistic) regression contexts, interaction
effects between variables may exist and these effects may be very im-
portant. An interaction effect exists if the relative risk for two levels o
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EXAMPLE 8.3

one factor differs for distinct levels of a second factor. Consider mod-
eling a clinical trial of two treatments based on a proportional hazards
model with covariate coded as Z; = 1 for treatment 1, 0 for treatment
2, Here exp(By) is the risk of the first treatment relative to the second.
Suppose there is the potential for males and females to respond differ-
ently to the two treatments so the relative risk of treatment 1 compared
to treatment 2 may depend on sex. As usual we code sex as Z, = 1
if male and 0 if female. Interactions are formed by multiplying the in-
dependent variables of the two individual factors, termed main effects,
together. That is, a third variable Z; = Z, X Z, will be created. Here, the
exponential of the coefficient of Z;, the product of the treatment and
gender covariate, is the excess relative risk of treatment 1 compared to
treatment 2 for males compared to females. Now the full model will be

Kt | Z) = by(Dexp{B‘Z} = by(Dexplf1Z, + B2, + B3 Z3}.  (8.2.6)

The relative risk of treatment 1 compared to treatment 2 for males is
exp{B; + Bs}, while for females it is exp{B;}. If B; = 0, then the relative
risk of treatment 1 compared to treatment 2 will be identical for the two
sexes.

The following example illustrates the construction of the interaction
of two categorical variables.

In section 1.7 a data set of 863 kidney transplant patients with data on
race (white, black) and gender is described. In this study there were 432
white males, 92 black males, 280 white females, and 59 black females.
Again, there are various coding options. First, one may treat this study
as a four-group problem as we have done in Example 8.2. The three
indicator variables may be defined in any desirable way but usually one
wants either the best or the worst survival group as the referent group.
For example, we may code

Z; =1 if the subject is a black male, 0 otherwise,
Z, =1 if the subject is a white male, 0 otherwise,

and

Z3; =1 if the subject is a black female, 0 otherwise.
Here the referent group is being a white female. Again the full model
will be :
Kt|2) = by(Dexp{B’Z} = by(Dexp{B1Z; + B.Z, + B:Zs}.
The estimates of the parameters are obtained in section 8.5 as
b = 0.1596, b, = 0.2484, by = 0.6567.

Thus the relative risks for black male, white male, and black female
relative to white female are 1.17, 1.28, 1.93, respectively.
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Alternatively, we may code the variables as two main effect terms,
race and gender, and an interaction term. For example,

Z; =1 if the subject is a female, 0 otherwise,

Z, =1 if the subject is black, 0 otherwise,

and

Zy =2, X Z,=1 if the subject is a black female, 0 otherwise,
Again the full model will be
b(t lZ) = bo(t)eXP{B[Z} = bo(t)exp{BlZl + BzZz + 3523}.

Note that the parameters 3; will have a different interpretation. The es-
timates of the parameters are obtained in section 8.5 as b = —0, 2484,
b, = —0.0888, b; = 0.7455. Here the interest will center on the interac-
tion term B3, which will be tested in section 8.5. Here, the exponential
of the coefficient of Z;, the product of the treatment and gender covari-
ate, is the excess relative risk of being black for females compared to
males, exp(0.7455) = 2.11. It is also instructive to see that the relative
risks for black male, white male, and black female relative to white fe-
male are exp(—0.0888 —(—0.2484)) = 1.17, exp(0 — (—0.2484)) = 1.28,
exp(—0.2484 — 0.0888 + 0.7455 — (—0.2484)) = 1.93, respectively, just
as we obtained for the earlier coding. These are two different coding
schemes; the first treats the samples as four groups and the second
treats the samples as a 2 X 2 factorial, where interest may center on
the interaction between gender and race. The interpretation of the two
coding schemes are equivalent in that they lead to the same relative
risks and the same likelihood.

The following example illustrates the construction of the interaction
of a continuous variable and a categorical variable.

(continued) Consider two of the factors, namely age and stage of
disease, in the data introduced in section 1.8. As usual, Z;, 1 = 1,2,3
are defined as before in (8.2.3) and Z; will be the age of the patient.
The interaction between age and stage will involve three product terms,
namely, Zs = Z,Z;; Zs = Z,Z4 and Z; = Z3Z,. Thus, for a 50-year-old
man with Stage II cancer, the three interaction variables will take on the
following values: Z; = Z,Z; = (1)(50) = 50; Z = Z,Z5 = (0)(50) = 0
and Z, = Z3Z; = (0)(50) = 0. Other combinations of age and stage can
be appropriately formed. Now the full model will be

btV Z) = h(Dexp{p’Z}
= h(Dexp{BZ, + B2Z: + BsZs + PuZs + PBsZs + PsZs + PrZs}-
@827
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The null hypothesis of no interaction between age and stage may be
written as Hy : Bs = Bs = f; = 0 vs. the alternate hypothesis, which
will be the negation of the null. This example will be considered in
much more detail in section 8.5. The estimates of the parameters and
their interpretation will be delayed until that discussion.

£8.3 Partial Likelihoods for Distinct-Event

Time Data

As indicated earlier, our data is based on a sample of size # consisting
-of the triple (T}, 8;,,Z), j = 1,...,n. We assume that censoring is
noninformative in that, given Z,, the event and censoring time for the
Jth patient are independent. Suppose that there are no ties between
the event times. Let 4, < < -+ < I denote the ordered event times
and Zy, be the kth covariate associated with the individual whose
failure time is #. Define the risk set at time ¢, R(%), as the set of all
individuals who are still under study at a time just prior to #. The partial
likelihood (see Theoretical Notes 1 and 2), based on the hazard function
as specified by (8.1.2), is expressed by

D
@) = H exp [45-, BeZoe] 8.3.1)

=1 EjER(t«) €xp [E€=1 Bkzﬂe] .

This is treated as a usual likelihood, and inference is carried out by usual
means. It is of interest to note that the numerator of the likelihood de-
pends only on information from the individual who experiences the
event, whereas the denominator utilizes information about all individu-
als who have not yet experienced the event (including some individuals
who will be censored later).

Let LI(B) = In[Z(B)]. Then, after a bit of algebra, we can write LI(8)
as

= iiﬂk&m - XD:IH LZ exp (XPZ Bkzjk)] . (832 |

=1 k= =1 ER(D k=1

-
-

The (partial) maximum likelihood estimates are found by maximizing
(8.3.1), or, equivalently, (8.3.2). The efficient score equations are found
by taking partial derivatives of (8.3.2) with respect to the B’s as follows.
Let Up(B) = SLIPB)/8By, h=1,...,P.
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Then,

. ZD: ZjER(I,) Zjpexp [Z€=1 Bkzﬂz] @
=1 ZjER(h) exp [Ei=1 Bkak] 33
The information matrix is the negative of the matrix of second deriy,.

tives of the log likelihood and is given by K@) = (Zes(B))pxp With the
(g, bth element given by

L(B) = XD: > jeruy ZigZm €XP (k=1 BeZs]
¢ ~ X Jjeru) CXP [22=1 Bkzjk]
_ o [ Zeru Zeexp (Zh=1 BeZp)
| X jeru) €XP (Zi=1 BeZy)
[Z eruy Zip €XP (Zhom1 BeZjs) ]
> seru) €XP (Ei=1 Bkzjk)

D
UB) = Zis
=1

8.3.4)

The (partial) maximum likelihood estimates are found by solving the
set of p nonlinear equations Uy() = 0, h =1, ..., p. This can be done
numerically, as shown in Appendix A, using a Newton-Raphson tech-
nique (or some other iterative method), with (8.3.3) and (8.3.4). Most
major software packages will perform this iterative maximization. Note
that (8.3.2) does not depend upon the baseline hazard rate hy(x), so
that inferences may be made on the effects of the explanatory variables
without knowing Ay(x).

There are three main tests (described in more detail in Appendix
B) for hypotheses about regression parameters B. Let b = (&, ..., b,)
denote the (partial) maximum likelihood estimates of g and let I(8) be
the p X p information matrix evaluated at B. The first test is the usual test
based on the asymptotic normality of the (partial) maximum likelihood
estimates, referred to as Wald’s test. It is based on the result that, for
large samples, b has a p-variate normal distribution with mean g and
variance-covariance estimated by 771(b). A test of the global hypothesis

of Hy: B = B, is
X2 = (b — 81D — B,) 835

which has a chi-squared distribution with p degrees of freedom if H; is
true for large samples.

The second test is the likelihood ratio test of the hypothesis of /4 :
B = B, and uses

X% = 2[LI(b) — LI(B] (8.3.6)

which has a chi-squared distribution with p degrees of freedom under
H, for large n.
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The third test is the scores test. It is based on the efficient scores,
ug) = (G(B), ..., U(B)) where Uy(B) is defined by (8.3.3). For large
samples, U(B) is asymptotically p-variate normal with mean 0 and co-
variance I(8) when H, is true. Thus a test of Hy : B = B, is

X& = UB)'T H(BYUBy) ®3.7

which has a large-sample chi-squared distribution with p degrees of
freedom under H;.

(continued) In section 1.5, we introduced a study designed to de-
termine if female breast-cancer patients, originally classified as lymph
node negative by standard light microscopy (SLM), could be more ac-
curately classified by immunohistochemical (IH) examination of their
lymph nodes with an anticytokeratin, monoclonal antibody cocktail. .

In this example, we wish to perform a proportional hazards regres-
sion with immunoperoxidase status as the single covariate in the model.
We adopt the usual regression formulation of a dichotomous indepen-
dent variable and construct 2 dummy (or indicator) variable as follows.

Let Z = 1 if the patient is immunoperoxidase positive, 0 otherwise.
The model is Wt | 2) = hy(t) exp(BZ), where by(t) is an arbitrary
baseline hazard rate and B is the regression coefficient.

For this model, 32, Z,, = d,, the number of deaths in the im-
munoperoxide positive sample, and 3 e, €xp(BZp) = Yo + Y68,
where Y, (¥1,) is the number of individuals at risk in the immunoper-
oxidase negative (positive) sample at time #. From (8.3.2)-(8.3.4),

D
LUB) = Bay — Zlﬂ[}f)f + Y€,
=1 :

D
N
VB =4 =) 73 e
and
2 Yyef Yie#

B =3\ % "ty o + Yudb® |

=1

The simplest test of the hypothesis that 8 = 0 is the score test. In this
case,

v = dy 30
=1 }’O{+ }’1{,
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and

SN TR (i =i Yii Yo
IO =) G+ ¥ Gt T 2 (o + ¥iF

Note that, in this case, where there are no ties between the death times,
the score statistic X2 = U(0)*/I(0) is precisely the two-sample, log-
rank test presented in section 7.3. In this example, U(0) = 4.19 ang
I(0) = 3.19 so the value of X2 = 5.49 which has a p-value of 0.019,
when compared to the chi-squared distribution, with one degree of
freedom. .

To obuain the estimate of B, the likelihood is maximized by a ny-
merical technique. Routines for this maximization are available in most
statistical packages. Using the Newton—Raphson algorithm described in
Appendix A, we start with an initial guess at of & = 0 and compute
an updated estimate at the mth stage by b, = by1 + U(b{,,_l)/l(b .
The iterative process is declared converged when the relative change in
log likelihoods between successive steps is less than 0.0001. Here we
have the results of three iterations:

bm—l

LLby-1)

by = byt
Ut L) ~ Lbpor)
T 1Llbm) L]

U(bp-1) I(bp—1)

w N

1.3121
0.9924

~—83.7438
—81.8205
—81.5210

—81.8205 0.0230
—81.5210 0.0037
—81.5206 <0.0001

4.1873 3.1912 13121
—1.8382 5.7494 0.9924
—0.0646 5.3084 0.9802

The Newton-Raphson algorithm converges after three steps.

To test the hypothesis 5, : B = 0 using the likelihood ratio test,
X2 = 2{L1(0.9802) ~ LI(0)} = 2(—81.52 — (—83.74)] = 4.44 which hasa
p-value of 0.035. To perform the Wald test we first estimate the star}(/izard
error of our estimate of B as SE(b) = 1/1(0.9802)'/2 = 1/5.2871"* =
0.4349. The Wald test is (0.9802 — 0)2/(0.4349)* = 5.08, which has a
p-value of 0.024, o N

The exponential of b gives the estimated relative risk, vs_/hlch in this
example is ¢*®% = 2.67. This number tells us that a patient, who is
immunoperoxidase positive, is 2.67 times more likely to die than ax}
immunoperoxidase negative patient. Using the asymptotic normality 0
b, a 95% confidence interval for the relative risk is exp(0.9802 % 196X
0.4349) = (1.14,6.25).
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1. Algorithms for the estimation of B in the Cox regression model are
available in many statistical packages. The procedure PHREG in SAS
and coxph in S-Plus provide estimates of B, its standard error and
the Wald, score and likelihood ratio tests of the global hypothesis of
no covariate effect. A Newton-Raphson algorithm is used to estimate
B with 0 as an initial value.

2. If a covariate is perfectly correlated with the event times, that is,
the covariates are ordered with Z;), =< Zow =+ = Zpy (or
Zoye = Zgy-Z *++ = Zipy) the (partial) maximum likelihood es-
timate of B, will be o (or ~). When declaring convergence of a
numerical maximization routine based on differences in likelihoods
at successive iterations, one should carefully check that successive
values of the estimates are close to each other as well to avoid this
problem.

3. If there are no ties between the event times, the scores test in the
proportional hazards model is identical to the log-rank test.

4. Empirical studies have shown that the convergence rate of the like-
Lihood ratio and Wald tests ate similar. The score test converges less
rapidly to the limiting chi-squared distribution.

5. The tests performed in this section have assumed that the hazard
rates are proportional. They, indeed, are but we shall present tools
for checking this assumption in Chapters 9 and 11.

-Theoretical Notes
1. The probability that an individual dies at time # with covariates Z,,
given one of the individuals in R(#) dies at this time, is given by
Plindividual dies at # | one death at £]

_ Plindividual dies at ¢ | survival to £]
Plone death at # | survival to £]

- Ht, I z(l)] = bo(8) eXP[ﬂ ‘Z(o]
EJER(I,) b[ti I zj] EjER(t,) ho(t{) exp[B 'Z/]
- _ explB'Zy)
2 jerer SXPIB'Z)

The partial likelihood is formed by multiplying these conditional
probabilities over all deaths, so we have the likelihood fuaction

explB'Z)

D
P =] =—
A 11;11 3 jeray €XpiBZ}

as in (8.3.1).
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2. The Cox partial likelihood can be derived as a profile likelihood from
the full censored-data likelihood, as discussed by Johansen (1983),
Here, we start with the complete censored-data likelihood, which
by the discussion in section 3.5, is given by ’ In section 8.3, we presented the partial likelihood for the proportional

hazards regression problem when there are no ties between the event

times. Often, due to the way times are recorded, ties between event
times are found in the data. Alternate partial likelihoods have been
provided by a variety of authors when there are ties between event

L times.

1B, by(O = [] KT 1 2% S(T; 1 2)

j=1

= I bo(Tp*lexp(B'ZDI> exp(— H(TD exp(B'Z)). - Let ) < 5, < - -+ < t, denote the D distinct, ordered, event times. Let
= ; d; be the number of deaths at # and D, the set of all individuals who

die at time #. Let s, be the sum of the vectors Z; over all individuals
who die at 4. Thatis s, = 3 sep, Z;- Let R; be the set of all individuals
at risk just prior to ¢.

There are several suggestions for constructing the partial likelihood
when there are ties among the event times. The first, due to Bres-

838

Now, fix B and consider maximizing this likelihood as a function of
hy(t) only. The function to be maximized is

I > o low (1974), arises naturally from the profile likelihood construction
? discussed in Theoretical Note 2 of the previous section. The partial

L(h(D) = hi[l ho(t) exp(B'Ln)} exp [‘ ; H(T) exp(B’Zj)} : . likelihood is expressed as i

D ¢
(839) o LI(B) = H exp(B s‘) 7 (841)

. . . =1 [ ¥ jen, exp(B'2))]
This function is maximal when hy(#) = 0 except for times at which

the events occurs. Let by = hy(2), i = 1,...,D so H(T) = This likelihood considers each of the d; events at a given time as distinct,
S, <7, boi. Thus, after some simplification, (8.3.9) can be written as constructs their contribution to the likelihood function, and obtains the
Y contribution to the likelihood by multiplying over all events at time .

b When there are few ties, this approximation works quite well, and this
; — by exp(B'Z) likelihood is implemented in most statistical packages.
Lo, -, bup) ,I:Il bos exp [ 0 jg,:m PEZ, ] Efron (1977) suggests a partial likelihood of
D ¢
. o : exp(B’s,)
and the profile maximum likelihood estimator of by, is given by L(B) = H - , (84.2)
P 21 T [Saer, XPBZ0) — L Tico, expB2,)]
A 1
byi = =——— - v which is closer to the correct partial likelihood based on a discrete
(B'Z) p
2. jera) €XP(B'Z; hazard model than Breslow’s likelihood. When the number of ties is
] . small, Efron’s and Breslow’s likelihoods are quite close.
Combining these estimates yields an estimate of Hy(#) given by - The third partial likelihood due to Cox (1972) is based on a discrete-
. time, hazard-rate model. This likelihood is constructed by assuming a
A, = Z 1 ' h logistic model for the hazard rate, that is, if we let b(¢ | Z) denote the
¢ £ 3 jeruy EXP(B'Z) : : conditional death probability in the interval (4, ¢ + 1) given survival to
~ : the start of the interval and if we assume
This is Breslow’s estimator of the baseline cumulative hazarq rate in KtlzZ) _ h® (6'Z)
the case of, at most, one death at any time and is discussed in more =KD - 1= hld exp(8'D),

detail in section 8.8. Substituting Hy(#) in (8.3.8) and simplif)’iﬂgf
yields a profile likelihood proportional to the partial likelihood ©
Eq. (83.1).

then, this likelihood is the proper partial likelihood. To construct the
likelihood, let Q; denote the set of all subsets of 4, individuals who
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could be selected from the risk set R;. Each element of Q:is a d.
tuple of individuals who could have been one of the & failures at timg
t. Let g = (qy, ..., 4qa) be one of these elements of Q; and define

s, = Zji 1 Z,;. Then, the discrete log likelihood is given by

D

exp(B's)

=Wl (84.
B8 111 Ygeq, €xP(B'sy) 3

When there are no ties between the event times, this likglihood and
Breslow’s and Efron’s likelihoods reduce to the partial likelihood in the
previous section.

A study to assess the time to first exit-site infection (in months) in pa-
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EXAMPLE 8.4 _ : _
tients with renal insufficiency was introduced in section 14 Forty_-tl'uee
patients utilized a surgically placed catheter and 76 patients utilized a
percutaneous placement of their catheter. Catheter failure was the pri-
mary reason for censoring. To apply a proportional hazards regression,
let Z = 1 if the patient has a percutaneous placement of the catheter,
and 0 otherwise. ‘ o
To see how the three likelihoods differ, consider the contribution of
the six deaths at time 0.5. All six deaths have Z = 1, apd there are 76
patients at risk with Z = 1 and 43 patients at risk with Z = 0. The
contribution to the likelihood is
Bresiow: 0B __
’ 43 + 76 exp(B)1’
Efron: exp(6p)
' I16.,[76€8 + 43 — L1 (6eP)]
Discrete expOB) 6 3 (76 76\ 68
rete:
’ B+ Qe+ OO+ ODe+ (e + (e + ()
Using the three likelihoods, we have the following results:
Breslow’s Efron’s piscrete
Likelihood (8.4.1) Likelihood (8.4.2) Likelihood (8.4.3)
Initial likelihood —104.4533 -104.2319 :3;;3251?
Final likelihood —103.2285 —103.0278 ? .62 "
b —0.6182 ~0.6126 0.4051?

SE(b) 0.3981 0.3979 0.4019
Relative risk, €® 0.539 0.542 , 0.553 -
I ' X? =249 (p=0115) X2 =244 (p=011D X?=253(@p=0.
Wl test 2=237(p=0129 X2 =245 (=017

Wald test X2 =241(p =012D X2=237(p=0. :

Likelihood ratio test

X2 =245(p=0118

X2 =241(p = 012D

X% =249 (p =019

Here, we see that, assuming the proportional bazards model is ap-
Dropriate, for any of the three likelihoods the regression coefficient is
not statistically significant and the relative risk is about 0.54. As we
shall test formally in Chapter 9, the proportional hazards assumption is
not appropriate for this data. Thus the relative risk is not constant but
depends upon time, and the reported relative risk of 0.54 is not cor-
rect. Furthermore, a potentially significant result could be overlooked
because the proportional hazards assumption is not satisfied. This has
implications for procedures used in model building, which will be dis-
cussed in section 8.7. As a graphical check of the proportional hazards
assumption, we compute the Nelson-Aalen estimator of the cumulative
hazard rate for each treatment. If the proportional hazards model is cor-
rect, then, we should have H(¢| Z = 1) = eH(t| Z = 0), so that a plot
of InfA(t | Z = D] — In[A(t | Z = 0)]- versus ¢ should be roughly equal
to B. The plot for this data set, shown in Figure 8.1, strongly suggests

o
I
Z
3 o
2
E
3 L__IL\‘
-+
T T T T T
0 5 10 15 20 25
Time

Figure 8.1 Graphical check of the proportional bazards assumption for the
renal insufficiency study.
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EXAMPLE 8.3

nonproportional hazards. Other graphical checks of the proportion,
hazards assumption are discussed in section 11.4.

e—

(continued) In section 1.8, a study of 90 males diagnosed with cancer
of the larynx was described. In addition to the outcome variable, time
from first treatment until either death or the end of the study, the
independent variables, patient’s age (in years) at the time of diagnosis
and the stage of the patient’s cancer, were recorded. A basic test for
trend on stage was performed in section 7.4.

Here, we shall perform a global proportional hazards regression test
with only stage in the model. Because stage has four levels, we adopt
the usual indicator variable coding methodology as in (8.2.3). The max-
imum likelihood parameter estimates, (s = 1,...,4), (and their corre-
sponding standard errors) are 0.0658 (0.4584), 0.612 (0.3552), and 1.723
(0.4197), respectively. It follows that the relative risks, RR(Stage II/Stage
) = 1.07, RR(Stage I1I/Stage I) = 1.84, and RR(Stage IV/Stage I) = 5 0.

The global likelihood ratio, Wald, and score chi-squared (with three
degrees of freedom) statistics for stage are 16.26 (p-value = 0.001),
18.95 (p-value = 0.0003), and 22.46 (p-value = 0.0001), respectively,
using Breslow’s method of handling ties. All three tests suggest that
the survival rates are different for, at least, one stage of cancer. In the
next section, we shall consider local tests which provide information
on which stages differ in survival.

The following example illustrates another example of performing a
global test for different groups and will be followed up in the next
section with a local test for interaction.

(continued) In section 1.7 a data set of 863 kidney transplant patients
with data on race (white, black) and gender is described. In this study
there were 432 white males, 92 black males, 280 white females, and
59 black females. Again, there are various coding options, as described
in section 8.2. First, one may treat this study as a four-group problem.
The three indicator variables have been defined in the usual way as
described in section 8.2 as

Z, =1 if the subject is a black male, 0 otherwise
Z, = 1 if the subject is a white male, 0 otherwise
and

Z; =1 if the subject is a black female, 0 otherwise.
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Here the referent group is being a white female. Again, the full model
will be

b(t l Z) = bo(t)exp{B'Z} = bo(t)exp{ﬁlzl + BZZZ + B3Z3}.
The maximum likelihood estimates of the parameters are obtained as
b = 0.160, b, = 0.248, b; = 0.657.

Thus the relative risks for black male, white male, and black female rel-
ative to white female are 1.17, 1.28, 1.93, respectively. The global like-
lihood ratio, Wald, and score chi-squared (with 3 degrees of freedom)
statistics for groups are 4.37 (p-value = 0.22), 4.64 (p-value = 0.20), and
4.74 (p-value = 0.19), respectively, using the Breslow method of han-
dling ties. All three tests suggest the survival rates are not different for
the four groups of subjects. In the next section we shall consider local
tests which provide information on testing for an interaction between
race and gender.

1. SAS PHREG uses Breslow’s likelihood as a default and allows the
user to specify that calculations be carried out using either the dis-
crete or Efron likelihood. SAS also allows the user to specify an
“exact” likelihood based on a generalized rank statistic derivation of
the likelihood (see Kalbfleisch and Prentice (1980) for details). This
likelihood requires a bit more computer time to implement and gives
results quite close to the discrete likelihood.

2. The S-Plus function coxph uses Efron’s likelihood as a default when
there are ties between the event times. Breslow’s likelihood and the
exact likelihood are also available.

Often, one is interested in testing a hypothesis about a subset of the
B’s. The hypothesis is then H, : B, = B,y, where g = (B}, 82)". Here
B, is a g X 1 vector of the B's of interest and B, is the vector of the
remaining p — g B’s.

The Wald test of Hy : B, = By, is based on the maximum partial
likelihood estimators of B. Let b = (b}, b%)’ be the maximum partial
likelihood estimator of B. Suppose we partition the information matrix

Ias
= (In 112)
Iy Ip/’
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where I; (I,) is the g X g [(p — g) X (p — )] submatrix of second partig]

. derivatives of the minus log likelihood with respect to g, (8,) and I,

and I;, the matrices of mixed second partial derivatives. The Wald teg
statistic is

X2 =(b, - Blo)'[lll(b)]_l(bl - B (85.1)

where I*'(b) is the upper g X ¢ submatrix of I"'(b) (see Appendix B).
For large samples, this statistic has a chi-squared distribution with 4
degrees of freedom under H,.

Let b,(B,,) be the (partial) maximum likelihood estimates of B, based
on the log likelihood (8.3.2) with the first g B’s fixed at a value By
The likelihood ratio test of H, : B; = B, is expressed by

Xz = 2{LI(b) — LIBp, b2(B,} 852

which has a large sample chi-squared distribution with g degrees of
freedom under H,.

To test Hy : B; = B, using the score statistic, let Ui[B,,, ba(B,)] be
the g X 1 vector of scores for B,, evaluated at the hypothesized value
of B, and at the restricted partial maximum likelihood estimator for g,
Then,

X = UilByo, b2(B 11T (B15, b2 (8100101815, b2(B10)] 85.3)

which has a large sample chi-squared distribution with g degrees
of freedom under H,. We shall illustrate these tests in the following
example.

(continued) In section 8.4, a global test was performed on stage of
cancer in a study of 90 males diagnosed with cancer of the larynx.
Here we shall test the hypothesis that there is no difference in survival
between patients with different stages of disease, adjusting for the age
of the patient. Qur test is based on the model with covariates Z;, Z,,
and Z;, which, as in section 8.2, are the indicators of stage II, III, and
IV disease, respectively, and a covariate Z; which is the patient’s age
at diagnosis. The local hypothesis of interest is H, : B; = 0, fz = 0,
B5 = 0 against the alternative hypothesis that, at least, one of these f’s
is nonzero. .

To apply the score test or the likelihood ratio test, we need to estimate
the coefficient for age, B4, in the model, with B; = B, = B; = 0. This
involves fitting a Cox model with only the single covariate, age. Fitting
this model, we find & = 0.023 with a log partial likelihood of —195.906.

Using this value of &, we find that the score is

U(0,0,0,0.023) = (—2.448,3.0583, 7.4400, 0.000)"
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and that

7.637 —2.608 —0699 —24.730
—2608 9994 —0979 —8.429
-0.699 —-0979 3.174 11.306

~24730 —8420 11306 4775716

1(0,0,0,0.023) =

The inverse of this information matrix is given by

01529 00449 00448  0.0008

. _ |o0449 01164 00446  0.0003
17°00,0,0,0023) = | 0448 00446 03404 —0.0005 |

00008 00003 —00005 0.0002

so the score statistic is given by

- 0.1529 0.0449 0.0448\ [—2.448
X2 = (—2448, 3.0583, 7.4400)|00449 0.1164 0.0446{| 3.0583
0.0448 0.0446 0.3404/ \ 7.4400

= 20.577.

Comparing this quantity to a chi-squared distribution with three degrees
of freedom, we find that the p-value of the test of no stage effect is
0.0001.

To perform the Wald and likelihood ratio tests, we need to fit the full
model with all four covariates. Here, we find

b’ = (0.1386, 0.6383, 1.6931, 0.0189) )
with a partial log likelihood of —188.179. The likelihood ratio test of

Hyis

X5 = 2(—188.179 — (—195.900)] = 15.454.

The p-value of this test is 0.0015.
To perform the Wald test, we need the information matrix based on
b. This matrix is
59987 —23913 —14565 —22.8634
Ib) = —23913 109917 —33123 —14.0650
—14565 —3.3123 74979  25.6149
—22.8634 —14.0650 256149 50885378

The inverse of this matrix is the covariance matrix of b, given by

0.2137 00683 0.0690  0.0008
i) = 0.0683 0.1268 0.0682  0.0003
0.0690 00682 0.1783 —0.0004
0.0008 0.0003 —0.0004 0.0002

8.5.4)
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‘The Wald chi-squared statistic is given by

] 0.2137 0.0683 00690\ " /0.1386
X2 =(0.1386, 0.6383, 1.6931)|0.0683 0.1268 0.0682 (0,6383)

0.0690 0.0682 0.1783 1.6931
= 17.63

which has a p-value of 0.0005.

m—

Often it is desirable to perform tests involving one (or more) linear
combination(s) of the parameters. For the Wald test, one can form 3
matrix of g linear combinations of parameters to test such hypotheses
Here one forms a ¢ X p matrix of full rank (g < p), '

<
<
Cc= E 85.5)
Cq
where.: € = (Cy1, €y, - . ., Cpp) is a vector of coefficients for the kth linear
combination of the betas, and the hypothesis to be tested is
H,:CB = C8,. 8.5.6)

From large-sample theory,
(Cb — CB,)ICI ' )C'T(Cb — CBy) 857

Zlvill have an asymptotic chi-squared distribution with ¢ degrees of free-
om.

(continued) In the previous example, we fittied a model to data on
patients with cancer of the larynx. In this example, we wish to test
the hypothesis /4 : B; = 0. Note that the upper 1 X 1 submatrix of
V(b) is precisely the matrix I''(b) required in (8.5.1) and the Wald
chi-squared test is calculated as (0.1386)(0.2137)1(0.1386) = 0.0898.
If we choose the linear combination approach, ¢ = (1,0,0,0) and
(Ch)Y'ICI ' (B)C'~1Cb = 0.0898, the same result as above. Nate that this
statistic, which has a large-sample chi-squared distribution with one
degree of freedom under H, is testing for a difference in risk of death
between stage 1 and stage Il cancer patients, adjusting for age. Here
the p-value of that test is 0.7644 which suggests no difference between
stage I and II patients,

Most statistics packages will produce an “Amnalysis of Variance”
(ANOVA) table describing all such univariate Wald tests along with
the estimated standard error and relative risk of the effects. Note that,
in such tables, the relative risk, exp(b), is the relative risk in a differ-
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TABLE 8.1
Analysis of Variance Table for Stage of the Laryngeal Cancer Patients, Utilizing
the “Breslow” Method of Handling Ties

Degrees of Parameter Standard Wald Relative
Variables Freedom  Estimates Errors  ChiSquare p-Value risk
2Z;: Stage I 1 0.1386 0.4623 0.09 0.7644 1.15
Z,: Stage 1 1 0.6383 0.3561 321 0.0730 1.89
Zy: Stage IV 1 1.6931 04222 1608  <0.0001 5.44
Zs: Age 1 0.0189 0.0143 1.76 0.1847 1.02

ence of one unit in the covariate values. So the relative risk for age
in Table 8.1 reflects the excess risk of dying for each additional year
of age at diagnosis. Similarly, the risks of death for a patient in Stages
1, 1, and IV relative to a patient in Stage T are 1.15, 1.89, and 5.44,
respectively. The corresponding confidence intervals for the B, are
[B, ~ 21-a/2SE(B)), by + Zi-a/2SE(B)] which may be obtained from the
ANOVA table and tables of the unit normal distribution. Confidence
intervals for the relative risk may be found by exponentiating the lower
and upper limits, respectively. For example, 2 95% confidence interval
for the risk of death for patients in Stage IV relative to the risk of
death for patients in Stage 1 would be {expl16931 — 1.96(0.4222)],
expl1.6931 + 1.96(0.4222)} = (2.38,12.44). This means that, with ap-
proximately 95% confidence, exp(8;) will lie between 2.38 and 12.44,
so that we will reject the hypothesis that B; = 0 when a = 005, as
indicated in the table (p-value < 0.0001).

Often, one is interested in relative risks that may not appear directly
in the table. For example, the risk of death for patients in Stage III
relative to the risk of death for patients in Stage II'is found by taking
exp(B)/ exp(By) = exp(B; — B,). The point estimate of this risk is
exp(0.6383 — 0.1386) = 1.65 which could also have been obtained
directly from the table as 1.89/1.15 (aside from round-off error). The
confidence interval for this relative tisk cannot be obtained directly
from the table. One needs the standard error of b, — b, which means
we need the variance-covariance matrix of the b’s as given in (8.5.4).
Calculating Var(b, — &) = Var(h,) + Var(y) ~ 2 Cov(b, b) = 0.1268 +
0.2137 — 2(0.0683) = 0.2039 we are led, by taking the square root,
to the standard error of (b, — b)) = 0.4515. Now, we can find a 95%
confidence interval for B, — B, as [b; — b — 1.96 SE(b, — &), b, —
b, +1.96 SE(B, — by)] = [0.4997 ~ 1.96(0 4515), 0.4997 + 1.96(0.4515)] =
(—0.3852, 1.3846). Exponentiating the lower and upper limit leads to the
approximate 95% confidence interval for exp(B; — B1) as (0.68,3.99).
Thus, this relative risk cannot be judged to differ from one.
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Both the Wald and the likelihood ratio test can be used
hypthesis Hy : By = B:, B: = B3 or, equivalently, H, : B, =t03tes§t the
This is a test of the hypothesis that, adjusted for age of the za‘ B,
survival is the same for stage II, IIl and IV patients, but not necgsﬂept,
the same as for stage I patients. To perform the likelihood ratiosz:lll
we fit the full model with all four covariates which has a lo ae-s "
likelihood of —188.179, and we fit a model with two covariatgespzmil
2 + 2, + Z; and age (Zy). Here Z* is the indicator of stage 11, 11 >
Iy disease. The log partial likelihood from this model is —193.1 ?;7 _n(‘)r
likelihood ratio chi-squared is 2[—188.179 — (~193.137)] = 9916 p°
large samples under Hj, this statistic has a chi-squared dism'but.ion .w‘(t)lz
two degrees of freedom. (The degrees of freedom are the numberl £
parameters in the full model minus the number of parameters in &(1)
reduced model.) The p-value of this test is 0.0070 which suggests thae
survival is different for at least one of the three advanced stages ‘

To perform the Wald test, we define the C matrix with two con

namely,
_f1 -1 00
c= (0 -1 1 0) ’

and apply (8.5.7). The resulting statistic has a value of 10.7324 with

. wi
degr_ees of freedom for the large-sample chi square. The p-value of chg
test is 0.0047, so the conclusion is the same as for the likelihood ratio
test.

(]

Now we turn our attention to a discussion of interaction. The first
el);imple is an example of an interaction between two categorical vari-
ables.

(qontinued) An alternative coding scheme for the data in section 1.7
discussed earlier is to code the variables as two main effect terms, race
and gender, and an interaction term. For example

Z; =1 fif the subject is a female, 0 otherwise,
Z, =1 if the subject is black, 0 otherwise,

and
Zy = Z) X Z, if the subject is a black female, 0 otherwise.
Again the full model will be

Bt 2) = by(DexplB'Z} = by(DexplB, 2, + B,Z; + B3 2Zs}.
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Note that the parameters f; will have a different interpretation. The
estimates of the parameters are obtained as

= —(.2484, b, = 0.0888, by = 0.7455.

The complete analysis is in Table 8.2.

TABLE 8.2
Analysis of Variance Table for Race, Gender, and Interaction for the Kidney
Transplans Patients Utilizing the “Bresiow” Metbod of Handling Ties

Degrees of Parameter Standard Wald Relative

Variables Freedom  Estimates  Errors  Chi-sqaure p-Values  Risk
Z,: Female 1 —0.2484 0.1985 157 0.2108 0.78
Z;: Black 1 —0.0888 0.2918 0.09 0.7609 0.92
Zy: Interaction 1 0.7455  0.4271 3.05 0.080% . 211

Here the interest will center on the interaction term ;. However, it
is instructive to see that the relative risks for black male, white male,
and black female relative to white female are exp(—0.0888 —(—0.2484))
= 1.17, exp(0 — (—0.2484)) = 1.28, exp(—0.2484 — 0.0888 + 0.7455 —
(—0.2484)) = 1.93, respectively, just as we obtained for the earlier cod-
ing. These are two different coding schemes; the first treats the samples
as four groups and the second treats the samples as a2 2 X 2 factorial
where interest may center on the interaction between gender and race.
The interpretation of the two coding schemes are not inconsistent in
that they lead to the same relative risks.

Next, we shall consider an example of an interaction between a
continuous and a-categorical variable.

(continued) The interaction between age and stage will involve three
product terms, namely, Zs = ZiZy; Zs = ZZs and Z, = Z;Z;, where
Z, i =1,...,4 ate defined as before. Thus, for a 50-year-old man
with Stage II cancer, the three interaction variables will take on the
following values: Z; = 2,Z; = (DG0) = 50; Zg = 4,Z, = WG =0
and Z, = Z;Z4 = (0X(50) = 0. Other combinations of age and stage can
be appropriately formed.

For this model, the estimates of the &’s are by = —7.9461, b, =
—0.1225, b, = 0.8470, by = —0.0026, bs = 0.1203, b = 00114, and
b, = 0.0137. The estimated vatiance-covariance matrix of the estimated
parameters, obtained as the inverse of the Fisher information matrix, is
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13520 2932 2956 0045 —0.191 —0044 —
2932 6093 2957 0044 —0.044 —0.091 —8'822
2956 2957 5884 0044 ~0.044 —0044 —0086

V) = 0045 0044 0044 0001 —0.001 —0.001 =0.001

—0.191 —0044 -0.044 —0.001 0.003 0.001

J | X . 0.
—0.044 —0.091 -0044 —0001 0001 0001 o 88}
—0045 —0044 —0.086 —0.001 0001 0001 0.001

Table 8.3 gives the analysis of variance table for this model.

TABLE 8.3
Analysis of Variance Table for Stage, Age, and the Interaction of Stage by Age
Jor Laryngeal Cancer Patients, Utilizing the “Breslow” Method of. Handling Ties

' Degrees of  Parameter Standard Waid

Variables Freedom Estimates Errors ChiSquare  p-Valye
Z,: Stage Il 1 —7.946 3.6782 46

2,: Stage I 1 ~0.1225 2.4683 o.o<7)3 832
Zy: Stage IV 1 0.8470 24257 0.12 073
Z: Age 1 ~0.0026 0.0261 0.01 092
Zi 2 X 24 1 0.1203 0.0523 5.20 002
Z Z,X Z4 1 0.0114 00375 000 076
2 2,% 2, 1 0.0137 0.0360 0.14 070

Table 8.3 suggests that the effect of stage II on surviv
di'fferent for different ages because a localg test of Bs = 23 ﬁz lt;z
rejected (p-value = 0.02). Furthermore, it is suggested by the local tests
of Bs = 0 (p-value = 0.76) and B, = 0 (p-value = 0.70) that the effects
of stages III and IV on survival may not be different for different ages.
' To test the hypothesis that Bs = B, = 0, we need the full —2 log
hkehhoo_d for all seven parameters which is 370.155 and the reduced
—2 log likelihood for the first five parameters which is 370.316. The
local likelihood ratio chi-squared statistic for testing that there is no
interaction between age and either stage III or IV disease (H, : fs =
B, = 0) is the difference between the reduced —2 log likelihood for
the first five parameters minus the full —2 log likelihood for all seven
parameters = 370.316 — 370.155 = 0.161 with two degrees of freedom
gp-valuf: = 0.92). This provides strong confirmation that the latter two
interaction terms may be dropped from the model and that the risks of
dyuflg for patients with Stages IIl and IV relative to the risk of dying for
patients with Stage I does not depend on age.

In Tab.le 8.4 the analysis of variance table for the reduced model with
only an interaction between age and stage II disease is presented.

This table suggests that there is a significant interaction between age
and stage II disease, that is, the relative risk of dying for a stage I
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TABLE 8.4
Analysis of Variance Table for Stage, Age, and One Interaction Term (Stage II by
Age) for Laryngeal Cancer Patients, Utilizing the "Breslow” Method of Handling

Ties

Degrees of  Parameter Standard Wald
Variables Freedom Estimates Errors Chi Square  p-Vaiue
Zy:Stage 11 1 —7.3820 3.4027 4.71 0.03
Zy:Stage I 1 0.6218 0.3558 3.05 0.08
Z;:Stage IV 1 1.7534 0.4240 1711 <0.0001
Zi:Age 1 0.0060 0.0149 0.16 0.69
Zs: 2y X 24 1 01117 0.0477 5.49 0.02

patient of age Z; as compared to a stage 1 patient of the same age
depends on that age. This relative risk is exp(8; + BsZ) = exp(—7.382+
0.1117 Age). For example, for a 76-year-old patient, this relative risk is
3.03 whereas for a 60-year-old it is 0.51. This linear combination of the
estimated coefficients not only leads one to an estimated relative risk
which depends on a patient’s age at diagnosis, but also allows us to test
the hypothesis that the the risk of dying for stage I and Il patients is the
same for a given age, that is, we wish to test that the relative risk is one
or, equivalently, that B; + Bs(age) = 0. To test the hypothesis that this
linear combination of the parameters is zero, one forms the quadratic
form based on € = (1,0,0,0,age)’. The resulting chi-squared statistic
is

X2 = (b + bs age)’
V(b)) + age? V(&s) + 2 age Cov(h bs)’

which has a large-sample chi-squared distribution with one degree
of freedom. In this example, V(b)) = 115787, V(b) = 0.00227
and Cov(d, b) = —0.1607, so for a 76-year-old person, X3 equals
(1.1072)2/0 2638 = 4.65 (p-value = 0.03). For a 60-year-old we have a
chi-square of 0.99 with a p-value of 0.32. This suggests that for “young”
ages there is little difference in survival between stage I and II patients
whereas, for older patients, those with stage II disease are more likely

to die.

1. A Monte Carlo study (Li et al, 1996) of the small-sample proper-
ties of the likelihood ratio, Wald, and scores tests was performed
with respect to inference on a dichotomous covariate effect in a Cox
proportional hazards model, as assessed by size and power consid-
erations, under a variety of censoring fractions, sample sizes, and
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hazard distributions. The general conclusion of this study was th
the likelihood ratio test and Wald test performed similarly (althoy eﬁ
the likelihood test ratio test slightly outperformed the Wald test fg
smaller sample sizes). The score test was markedly inferior and is ng:
recommended because it tends to inflate the size of the tegt, These
conclusions held for a variety of censoring fractions.

2. Proc PHREG provides local tests based on the Wald statistic. Tests
for contrasts are available.

3. §-Plus provides building blocks of the likelihood ratio test by runnin
a series of models. Wald tests can be constructed using the estimateq
covariance matrix and parameter estimates.

8.6 Discretizing a Continuous Covariate

As we saw in the previous section the Cox model can be applied when
the covariates are continuous or categorical. The interpretation of the
model, however, is simplest when the covariate is a binary. Here the
relative risk, expi{l, is the ratio of the risk of the event for a patient
with the characteristic versus a patient without the characteristic. Often
a medical investigator would like to treat a continuous covariate, X,
as a binary covariate by assigning a score of 1 to subjects with large

values of X and 0 to those with small values of X. This may be done to.

assign patients to poor- and high-risk groups based on the value of X,
to aid in making graphical plots of patients with good or bad prognosis
based on the binary covariate or simply to make the resulting relative
risk calculations simpler for others to understand.

In most cases a major problem is determining the value of the cut
point between high- and low-risk groups. In some cases this cut point
can be based on biological reasoning and this is the optimal strategy for
determination of the cut point. When no a priori information is available
a “data-oriented” method is sometimes used to choose the cut point.
These methods look at the distribution of the continuous covariate and
divide subjects into groups based on some predetermined statistic on
the covariate. For example, quite often subjects are divided into two
equal groups based on whether they are larger or smaller than the
sample median. These methods tend not to perform well.

In this section we will look at the “outcome-oriented” approach to this
problem. Here we seek a cut point for the covariate which gives us the
largest difference between individuals in the two data-defined groups.
That is, for a continuous covariate, X, we seek a binary covariate Z
definedby Z =1 if X = C and 0 if X < ¢, which makes the outcomes
of the groups with Z = 1 as different from the group with Z = 0
as possible based on some statistic. We would also like to test the

| T

8.6 Discretizing a Continuous Covariate 273

EXAMPLE 8.3

hypothesis that this covariate in its discretized version has no effect on
outcome. This test must be adjusted for the fact that we have biased
the outcome of the test by considering the cut point which gives the
maximum separation between the two groups.

The inference procedure we describe is due to Contal and O’Quigley
(1999) and is based on the log rank test statistic discussed in section
7.3. This statistic is the score statistic from the Cox model. For the
procedure we look at all possible cut points; and for each cut point,
G, we compute the log rank statistic based on the groups defined by
X being less than the cut point or greater than the cut point. That is,
at each event time, #, we find the total number of deaths, d;, and the
total number at risk, #,. We also find the total number of deaths with

" X = G, d and the total number at risk with X = G, #,*. We then

compute the log rank statistic,

D

+
5=3 [d: - d,"T] , ©.6.1
i=1 !
where D is the total number of distinct death times.
The estimated cut point € is the value of C; which yields the maxi-
mum | S |. At this cut point the Cox regression model is

Wt | X) = by(Dexp{bZ},

where Z = 1if X = , 0 otherwise. The usual tests of Hy : & = 0
can not be used here since we picked the cut point €, which is most
favorable to rejecting Hy. To compute the proper test statistic we need
first to compute the quantity s* defined by

1 & ! 1
- 1-) —— (8.6.2)
The test statistic is then

max | S |
= —— (8.6.3)
) Q svD—1
which under the null hypothesis has a limiting distribution of the supre-
mum of the absolute value of a Brownian Bridge. For Q > 1 the p-value
of the test is approximately equal to 2exp{-2Q%.

(continued) In section 1.7 we discussed a trial of 863 kidney transplant
patients. We would like to examine categorizing the patients into high-
or low-risk groups based on their age at transplant. We shall look at
separate analyses by race and sex.

Consider first the sample of 92 black males. Here the transplants
occurred at 43 distinct ages, which are potential candidates for a cut
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point. There were 14 distinct death times, which gives $* = 0.8268, The
maximum value of | S, | is at age 58 and Q = 0.8029, which gives 2
p-value of at least 0.30 (see Theoretical Note 3). This suggests that age
is not related to outcome for black males.

The following table gives the results for other race and sex combigg.
tions, 1t also gives the estimated relative risk of the high-risk (Age = cyt.
point) group compared to the low-risk group. Also presented are the
results of a model which treats age continuously. Figure 8.2 depicts the
estimates | S, | for each of the four sex and race combinations that
are used to find the estimated cut point. Here we find close agreement
between the discrete model! for age and the continuous model.

TABLE 8.5
Age Cut Poinis for Kidney Transplant Patients

Discrete Model - Continuous Model
Jfor Age Sfor Age
Race/Sex CutPoint Q  pvalue RR(95%CD b(SE) P
Black/male 58 0.8029 >0.30 2.3(0.5 - 104) 0.036(0.024) 0.14
White/male 41 31232 <0001 26(1.6-4.D 0.060(0.010) < 0.001
Black/female 48 0.9445 > 030 2608 -84 0.034(0.026) <020

White/fernale 36 19310 0001 4.4(1.9-106) 0.04200012) < 0.001

Theoretical Notes

1. Wu (2001) shows that if a test is based on the best cut point without
some adjustment for multiple testing then this test rejects too often
when the null hypothesis is true.

2. The method discussed here, based on the score statistic, is due to
Contal and O’Quigley (1999). An alternative method, due to Jes-
persen (1986), is also based on the supremum of the absolute value
of the log rank tests. His variance is slightly different than that pre-
sented here and in a Monte Carlo study. Wu (2001) shows that
this statistic’s performance is not quite as good as the Contral and
O'Quigley statistic,

3. The limiting distribution of Q under the null hypothesis is the same
as the supremum of the absolute value of a Brownian bridge. The
p-value can be found by

PIQ = gl = 2) (—~1V*"exp{-2/¢}, 864
f=1
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which is approximately equal to 2exp{—2¢} when ¢ >1.Forg=1
the p-value is at least 0.30.

Practical Notes

1. Estimation of the cut point can be perfqrqle'd by finding the Cctlll(t) p%u;t
which maximizes any of the three statistics d1§cussed in se teil 8.4,
the Wald, Score, or likelihood ratio tests. All give approximately

answer. _ ' .

2. %221?12 inference on an unadjusted Cox model w1th a b11:alry cqz;n;::
based on the cut-point model leads to tests which falsely ct'rie)n t the
null hypothesis of treatment effect too often. Some correcto
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be made to these tests to ensure that the overall level of inference j

correct. ®
3. Estimation of the cut point can be performed by using existi

ware to identify the model which };ives the mzximux%\ testn:tiﬁssoﬁ&-

The test discussed here requires additional calculations. «
4. The Martingale residual plot discussed in section 11.3 can be used

to check the appropriateness of discretizing a continuous covariate

8.7 Model Building Using the Proportional
Hazards Model

In an earlier example, we explored the modeling of age and stage on
the survival of patients with laryngeal cancer. In many studies, a variety
of explanatory factors are measured and a major question in analyzing
such data sets is how to incorporate these factors in the modelin

procedure. &

The distinction between factors and variables is sometimes 2 bit v:
although we shall refer to single-degree-of-freedom independent ?falrli?
ables (such as age that is treated continuously) as either factors or
variables, whereas we shall refer to multiple-degree-of-freedom inde-
pendent variables (such as stage) as factors.

As mentioned at the beginning of this chapter, two distinctly different,
yet important, problems in regression are i) to adjust for potential con-
_founf:lmg (or explanatory) variables when one has a specific hypothesis
in mind and the desire is to compare two or more groups with respect
to survival times or i) to predict the distribution of the time to some
event from a list of explanatory variables with no particular prior hy-
pothesis in mind. Utilizing the proportional hazards model introduced
in section 2.6 and the testing procedures more fully explained in this
chapter, we shall detail the approaches used for these two situations
and illustrate them with two examples.

First, if one has a particular hypothesis in mind, then interest centers
upon that particular hypothesis and any model building will be done
to adjust that particular comparison (or comparisons) for other noncon-
trollable factors. Often, the other explanatory factors are simply viewed
as adjusters or confounders and interest in them matters only insofar as
they affect the assessment of the basic hypothesis. Examples of such
possible confounders are demographic variables, such as age, gender,
race, etc.; patient clinical variables at the onset of the clinical trial that
may reflect the patient’s condition, such as severity of disease, size of
tumor, physiological variables, etc.; and, in the case of transplantation,
characteristics of the donor.
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The starting point of the model building process for this problem is to
perform the global test of the primary hypothesis described in sections
8.3 and 8.4. This gives the investigator an impression of the simple,
unadjusted relationship between the basic hypothesized factor and sur-
vival. In searching for possible confounders, it is useful to examine the
simple relationship between the other explanatory factors and survival,
adjusted for the factor of interest because, if there is obviously no re-
lationship between a factor and survival, then, it is not likely to be a
confounder. Thus, the next step is to consider the relationship between
each of the other explanatory factors and survival, given that the factor
stated in the basic hypothesis is already in the model. These local tests
were described in detail in section 8.5. This process is continued by
exploring the relationships between each of the remaining explanatory
variables and survival, given that the factor stated in the basic hypoth-
esis and the one next most related to survival (assuming that the basic
variable is in the model) are in the model. If no significant confounders
are found at any step in this process, then we stop and base our infer-
ence about the primary hypothesis on the last model. This approach is
illustrated in the next example.

Another approach advocated as useful in model building, is one due
to Akaike (1973) which examines the likelihood and the number of
parameters included in the model. It attempts to balance the need for
a model which fits the data very well to that of having a simple model
with few parameters. More specifically, the Akaike information criterion
(AIC), examines the statistic

AIC = —2Log L+ kp,

where p is the number of regression parameters in the model, & is some
predetermined constant (which we shall take as 2), and 1 is the usual
likelihood function. This criterion, will decrease as variables are added
to the model. At some point, the criterion will increase which is a signal
that the added variables are unnecessary. The AIC is reminiscent of the
adjusted R? in least-squares regression, in that both are attempting to
adjust the fit of the model by the number of parameters included. This
criterion will also be recorded in the following example.

Continuing the discussion of the study of acute leukemia patients being
given a bone marrow transplant, as introduced in section 1.3 and con-
tinued in Examples 4.2 and 7.5, we shall adjust the basic comparisons
of the three risk groups, acute lymphoblastic leukemia (ALL), low-risk
acute myeloctic leukemia (AML low-risk), and high- risk acute myeloctic
leukemia (AML high-risk), so as to reduce the possible bias which may
exist in making those comparisons (because this was not 2 randomized
clinical trial). Because this chapter discusses only fixed-time covariates,
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we will use only the fixed-time covariates as possible confounders in
making the comparisons among risk groups.

The first step in the model-building process is the global test of the
hypothesis of no difference in disease-free survival, As discussed ip
section 8.2, we define two binary covariates (Z; = 1 if AML low-rigk.
Z; = 1 if AML high-risk) for the factor of interest. The global Walg
chi-squared (with two degrees of freedom) statistic is 13.01 (p-valye =
0.001). The AIC for this model is 737.29.

In this example, there are two sets of factors. The first set of factors is
measured only on the patient. These are Z;: waiting time from diagnosis
to transplant, Zy: indicator of FAB (French-American-British) classifica-
tion M4 or M5 for AML patients, and Zs: indicator of whether the pa-
tient was given a graft-versus-host prophylactic combining methotrexate
(MTX) with cyclosporine and possibly methylprednisilone. Tests involy.
ing these factors will have one degree of freedom.

The second set of factors is based on combinations of patient and
donor characteristics and cannot be described by a single covariate,
These factors are sex (Zg = 1 if male donor, Z; = 1 if male recipien,
and Zg = Z; X Z; = 1 if donor and recipient are male), CMV statys
(% = 1if donor is CMV positive, Z;y = 1 if recipient is CMV positive,
and Zyy = Z;X Zy, = 1 if donor and recipient are CMV positive), and age
(Zy2 = donor age — 28, Z; = recipient age — 28, and Z;4 = Zy; X Z3).
Tests involving these factors will have three degrees of freedom.

Table 8.6 gives the local Wald tests for the six factors. Here, all models
include the covariates Z; and Z, for the factor of primary interest.
We find that the factor FAB dassification (Z,) has the smallest Akaike
information criterion and the smallest p-value. This factor is added to
the model/ Table 8.7 gives the local Wald tests of all other factors not
in the model with Z,, Z,, and Z; in the model. From this table, we see
that the factor age (Zy;, Zy3, and Zyy) should be added to the model.
Table 88 continues the model building by testing for factors not in the
model,’ adjusted for risk group, FAB class, and age. In this table, we

TABLE 8.6
Local Tests for Possible Confounders, Adjusted for Risk Groups

Degrees of Wald

Factor Freedom Chi-Square p-Value Alc

Waiting time (Z3) 1 1.18 0.277 73795
FAB class (Z) 1 8.08 0.004 731.02
MTX (Z5) 1 2.03 0.155 737.35
Sex (Z, Z;, Z) 3 191 0.591 741.44
CMV staws (%, Zyg, Zyy) 3 0.19 0.980 743.10
Age (Zi2, Zy3, Z1g) 3 11.98 0007 733.18
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the local tests are nonsignificant and that the AIC is larger
il'el:nthtfl;f }’lor the model with disease group, FAB class, and gge.alon.e.
Thus, the model building process stops and the final r_nodel is given in
Table 8.9. In this model, the local Wald test of the primary hypothe‘snts1
of no difference between risk groups has a p-value of 0.003, whic
suggests that there is a difference in survival rates l?etween at leaStd u;vo
of the risk groups after adjustment for the patient’s FAB class an th?sr
the donor and patient’s age. Although we have used Wald tests in

TABLE 8.7 )
Local Tests for Possible Confounders, Adjusted for Risk Groups and FAB Class

Degrees of Wald
Factor Freedom Chi-Square D-Value AlIC
iting ti 1 1.18 0.277 731.68
vlv‘i,’?lxngzst)‘me @ 1 2.05 0.152 731.06
Sex (Z, Z;, Z) 3 0.92 0.820 736.11
CMV status (Z, 2,9, Z11) 3 0.02 g.ﬁ 33;.83
Age (Zy, Zyz, Z10) 3 13.05 X .

TABLE 8.8 ‘
Local Tests for Possible Confounders, Adjusted for Risk Groups, FAB Class, and

Age

Degrees of Wald
Factor Freedom Chi-Square p-Value AlC
iting ti 1 0.46 0.495 727.48
mlxngzsme @ 1 144 0.229 726.58
Sex (Z, Z7, Zy) 3 137 0.713 730.61
CMV status (Z, Zxo, Z11) 3 0.58 0.902 731.42

TABLE 8.9
Analysis of Variance Table for the Final Model for Bone Marrow Transplants

Wald
Iﬁ:ﬁ:f b SE(D) Chi-Square p-Value

- 0.354 9.48 0.002
2 ; by 0.363 124 0.265
Z 1 0.837 0.279 9.03 0.003
Zys 1 0.004 0.018 0.05 38_’;;
Zy3 1 0.007 0.020 0.12 0.‘7)01
214 1 0.003 0.001 11.01 .
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example, similar conclusions are obtained if the likeliho

is used throughout. od ratio Statistic

N

The second situation, where re. i i
' ituation, gression techniques a is i

rr;odelmg thev dlstrlbu_non of the time—to-some—ev(elnt frornc; 251612[] b
planatory variables with no particular prior hypothesis in mind S
interest centers upon identifying a set of variables which wil| - iliere,
mveslt;gator in mode}mg survival or identifying a set of variables ;:/him
may be used in testing a hypothesis in some future study (h ch
generating), Y ypothess

The starting point of model buildin i

g for this problem i

tsieparaste global tests for each explanatory factog as firer;cﬁggdpiiﬁom
tl;)ns .3 and 84, S0 as to examine the simple relationship betwsec-

e exPlanathy variables and survival. The purpose in this ste b 1o
ascer't:m which fa}ctor ?s most related to survival. The next step ﬁ o
consider the relatlpnshlp between each of the other explanatoP f; o
tgci)‘r’se éngt tthﬂe1 ofne 1derétiﬁed as the most significant one) and surr);i:a?

at the factor identified as the most significant is al in the
model. ’I"hese lpcal tests are also described in detail in seitirgsdsysm’lrjz
process is continued by exploring the relationship between each 6f the
;gg:laﬁﬂrag aesxptﬁanatory fagcltl?gs and survival, assuming that the variable
; € mos!t significant one and the one next '
to survival (given the first variable is in the mod ey o
D) are already i

model. The p-value approach requi ignifican i

¢ X \ requires a significance level for enteri
Z?nn};zle;uﬁz rxtge moti:llel.A'Enli approach is illustrated in the ngx?:;g

. ore, the Akaike information criterion may b

assess the extent to which the investigator wishes to inchz’deev:sriiglg

into the model. This approach i i idi
oy vablen to inclugg. is especially useful for deciding how

In section 1.14 (see Example 5.4), a data set i ing ti i
of breast-fed infants waspdescribed. In f}iglggl:ndglleg n“r;es;vtic;}:v:: argnng
a model predictive of the distribution of time to weianing Fixec?—tim
factors measured by questionaire include race of mother (b'lack whit ;
or _other), poverty status indicator, smoking status of mother at birth gf
chﬂd,' al,coh'ol drinking status of mother at birth of child, age of moth
athchﬂd s_buth, education of mother at birth-of child ’(less than hléhcr
isr(l: di(;(;ltz;n(gh ?;:lhool graduate, some college), and lack of prenatal care
v a“rl::)) ' er sought prenatal care after third month or never sought
In building a model, we are mainly inter i i i
contribute to th_e distribution of the g‘me t: ieeirhfg?%lggaf\?séoﬁezmg
?re lrlnany_ ties in this data set, we shall use the “discrete” likelihood
or handling ties. Table 8.10 contains the results of the single-factor
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TABLE 8.10
Global Tests for Each Factor Potentially Related to Weaning Time

Degrees of Wald

Factor Freedom Chi-Square p-Value AlC

Race of mother 2 8.03 0.018 5481.67
Poverty at birth 1 0.71 0.399 5486.69
Smoking 1 10.05 0.002 5477.61
Alcohol 1 2.01 0.157 5485.48
Age 1 0.15 0.698 5487.26
Education 2 6.95 0.031 5482.36
No prenatal care 1 0.16 0.687 5487.25

TABLE 8.11
Local Tests for Each Factor Potentially Related to Weaning Time, Adjusted for

Mother’s Smoking Status

Degrees of Wald

Factor Freedom Chi-Square p-Value AlC
Race of mother 2 12.38 0.002 5469.71
Poverty at birth 1 1.42 0.234 5478.17
Alcohol 1 1.04 0.307 5478.59
Age 1 0.01 0.954 5479.61
Education 2 3.87 0.145 5477.71

1 0.02 0.888 5479.59

No prenatal care

wald tests. Race of mother, mother’s smoking status, and education
of mother are all significantly related to the time to weaning in the
simple regressions. The most significant factor, mother's smoking status,
is added to the model, and local tests for the remaining factors are given
in Table 8.11. From this table, we add the race factor to the model and
perform the local tests for the remaining factors (Table 8.12). In Table
8.12, we see that all the remaining risk factors are not significantata 5
percent significance level. If model selection criterion is based on the
p-value (< 0.05) of the local tests, we would stop at this point and take,
as our final model, one with two factors, smoking status and race. The
ANOVA Table for this model is given in Table 8.13A. Model building
based on the AIC, however, suggests adding the poverty factor to the
model because the AIC with this factor is smaller than that without the
factor. Proceeding based on the AIC, we find that the AIC is increased
when any other factor is added to a model with race, smoking, and
poverty included as factors (table not shown). The ANOVA table for the
final model, based on the AIC, is in Table 8.13B.
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TABLE 8.12

Local Tests for Each Factor Potentiall '
ly Related to Weaning Tt i
Motber's Smoking Status and Race 8 Time, Adjusted for

Degrees of Wald
Factor Freedom Chi-Square p-Value Alc
Poverty at birth 1 2.99 0.084
:lgceohol 1 116 0.281 ??33122
Education 2 206 oo St
E 2.08 0.353 5471.60
O prenatal care 1 0.03 0.854 5471.67

TABLE 8.13A
ANOVA Table for the Time to Weaning Based on the p-Value Approach

Degrees of Wald
Freedom b SE(Y) Chi-Square D-Value
Smoking 1 0.308 0.0
. .081 14.34 <
Ece—Black 1 0.156 0111 198 g'fgé
ce~Other 1 0.350 0.102 11.75 <0:001
TABLE 8.13B
ANQVA Table for the Time to Weaning, Based on the AIC Approach
Degtees of Wald
Freedom b SE(b) Chi-Square D-Value
Smoking 1 0.328 0.082
. i 15.
gjcz—_glack 1 0.184 0.112 2.38 <((;(1)g(1)
Bic ther 1 0374 0103 13.18 <0.001
overty 1 -0.163 0.094 2.99 0.084

1. In the example, the stepwise model building wa

stati‘stic. The choice of this statistic is arbitxgmjwy :nlzdaisglg:l t}t?: :Zglrg
or likelihood ratio statistic could be used. For data sets with a large
number of covariates, the score statistic may be more efficient in
early steps of this process because high-dimensional models need
SV(;]teEe aﬁt fzltcs:,ach step. Automated procedures which can be used

actors are a single covari i i ing
either the scote or Wald ‘sxtla?tlistic. variate, aie avalable in SAS using
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; 8.8 Estimation

2. The model selection procedure discussed here is a forward selection
procedure. An alternative model building procedure is a backward
selection procedure which starts with the model with all factors, and,
at each step, removes the least significant factor from the model. A
stepwise model selection procedure combines the forward and back-
ward procedures. All three procedures for single covariate factors are
available in SAS.

3. The choice of k in the AIC reflects how conservative one wishes to
be in model building (larger values of & will include fewer variables).

of the Survival Function

Once we have obtained estimates of the risk coefficients B from a
proportional hazards regression model, it may be of interest to estimate
the survival probability for a new patient with a given set of covariates
Z,. The estimator of the survival function is based on Breslow’s estimator
of the baseline cumulative hazard rate derived in the Theoretical Notes
of section 8.3.

To construct this estimator we, first, fit a proportional hazards model
to the data and obtain the partial maximum likelihood estimators b and
the estimated covariance matrix V(b) from the inverse of the information
matrix. Let ; < #, < - - * < fp denote the distinct death times and d; be
the number of deaths at time #. Let

P
W(f{;b) = Z exp (Z bszb) .

JER®E) b=1

8.8.1

The estimator of the cumulative baseline hazard rate Hy(#) = Js bo(1e) du
is given by
A a
H® = ,‘zs", Wt b)’

which is a step function with jumps at the observed death times. This
estimator reduces to the Nelson—Aalen estimator of section 4.2, when
there are no covariates present, and can be derived naturally using a
profile likelihood construction (see Theoretical Note 2 of section 8.3).
The estimator of the baseline survival function, So(#) = expl—Hy(D)} is
given by

(8.8.2)

365 = expl—H, Dl 8.8.3

This is an estimator of the survival function of an individual with a
baseline set of covariate values, Z = 0. To estimate the survival function
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for an individual with a covariate vector Z = Z,, we use the estimator
Stz = Z) = (=™, (88.49)

Under rather mild regularity conditions this estimator, for fixed ¢
has an asymptotic normal distribution with mean S(t | Z = Z,) and 5
variance which can be estimated by

V812 = Z)) = (S(t| Z = ZOPIQ:1() + Q5 Z). (88.5)
Here,

4,
= Z W 88.6)

4=t

is an estimator of the variance of H,(#) if b were the true value of B.
Here

Q28 Z)) = Qs(t; Z) VI)Qs(t; Z,) (8.8.7)
with Q; the p-vector whose kth element is defined by

’ W{k) .
Q;(r,zo>,,=z[ “‘"”—zok“ 4

> | Fab m], E=1_..,p (889

where

W(k)(tg;b) = Z ij exp(b'Z j)
JER()

Q:z reflects the uncertainty in the estimation process added by estimating
B. Here, Q3(¢, Z,) is large when Z, is far from the average covariate in
the risk set. Using this variance estimate, pointwise confidence intervals
for the survival function can be constructed for $(t | Z = Z,) using
the techniques discussed in section 4.3. Again, the log-transformed or
arcsine-square-root-transformed intervals perform better than the naive,
linear, confidence interval.

(continued) We shall estimate the survival functions for survival after
detection of laryngeal cancer based on the Cox regression model sum-
marized in Table 8.1. Here, we wish to produce a curve for each of
the four stages of disease. Because an adjustment for age is included in
our model, we shall provide an estimate for a sixty-year-old male. The
baseline survival function S, is estimated directly from Eqgs. (8.8.2) and
(8.8.3). The estimate of survival for a stage I cancer patent (of age 60 at
diagnosiS) is so(t)exp(0.0189>(60); fora stage II patient SO(,)exp(o.olas)x +D.1386);
for a stage III patient Sy(Hx00189X60+06383). and for a stage IV patient
Sp(#)PO018XE0+1693D Eioyre 8 3 shows the estimates of the four survival
curves,
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Bstimated Survival Function, S(t)

Figure 8.3 Estimated survival functions Jfor a 60 year old larynx cancer pa-
tient. Stage I Cancer (- ) Stage I Cancer (——) Stage II Cancer ——)
Stage IV (————-=) '

ve years, the estimated survival probabilities for a 60-}fear—
olc? tarf:a 0.;031 for a Stage I patient, 0.6672 for a Stage II patient,
0.5132 for a Stage TII patient, and 0.1473 for a Stage IV patient. Using
Egs. (8.8.5(8.8.8), we find that the standard errors of these esumatogs
are 0.0737, 0.1059, 0.0949, and 0.0996, respectively. At 5 years, 95%
confidence intervals for the survival function, based on the log transfor-
mation (4.3.2), are (0.5319,0.8215), (0.4176,0.8290), (.0.3171,0.6788).
and (0.0218, 0.3834), for stages I, II, TII, and IV, respectively.

1. An alternative estimator of the baseline hazard rate ha§ been pro-
posed by Kalbfleisch and Prentice (1973). When there is at most a
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single death at each time, this estimator is given by

HyH = 1- (1 _ iexp(b‘z))\
’ ,,g, { w(t;b) )

fvgheg there are ties betwe.en the death times, then, the estimator i
und numerically by solving a system of equations. Thi inky
used in SAS. T Sattic s
2, 31;6;1;&\;:1 es??hators of the ba'seline survival function are the prog
e In g t.ho e Breslov'v estimator of the cumulative hazard pay !

» in the case of no tied deaths, is given by ©

§z(t|0)=H(1 - 173‘5)
1

H=t

or the product integral of th i i i
Rot oo g e Kalbfleisch and Prentice estimator (see

Salo=1] [1 _ 8exp('Z) r‘f’(-b’m
b=t w(;b) .

Each of these can be used in E i

1 in be q. (8.8.4) to obtain an esti
ZuﬁrvI;\;al for an mdnvxd_ual with a covariate vector Z,, Tnngr:x)i&g
efcp(b‘tzr) fng(ihleﬁa) is g:;/lj:n by first adjusting Ho(#) by the factor
2 1d, , constructing a product-limit esti
B2y = Bl ez givengbyp uct-limit estimator based on

Scizy = H[l - ‘leg“’_'z«)}
W=t W(t;b)

Under rather mild regularity conditi
: ) tions, each of the four estimat

of _S(t | Z.,)’LS asymptotically normal with the correct mean zmccl)rs
vaf;;nce estimated by (8.8.5). )

e estimators S, and S; can take negati is i

: gative values. Th

gsrt?:ll::n wher} the nsl.fs sets are small in the right-handlstalisl (();fﬂthz
estima alesf;)rT);pézz‘L,li};,iattk:s }2*'xlappen{:,l v;'lhen one is attempting to predict

/ value which is extreme as compared t
Ezymagar;ea C\Qhﬁeoﬁ thotsie remala.m' ing at risk when the gregicﬁgnmiz

g n - 1Ne negative value is a signal to the investigat
predictions for this covariate value should not be made iistlﬁzsl roergir-(t)]ré:t

. The SAS procedure PHREG uses the Kalbfleisch and Prentice estima-

;?lr ‘des(ciribgd in Note 1. A recent Monte Carlo study by Andersen and
! El;lred99 ) shows that this estimator has a larger bias and mean-
qu errof than the other three estimators of survival. Breslow"
estimator is also available in SAS. ' ’

. 5-Plus has both the Breslow and Kalbfleisch and Prentice estimator

available in the function surv. fit.
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8.1

8.2

5. As was the case for confidence intervals for the survival function

discussed in Chapter 4, Andersen and Klein (1996) show that the log-
transformed confidence interval for S(¢ | Z,) seems to work best, and
the arcsine-square-root confidence interval is a close second. The
routine use of the linear confidence interval is not recommended.

6. Based on an extensive Monte Carlo study by Andersen and Klein

(1996), it can be shown that the estimators S; and §; have the small-
est bias and are recommended. The estimator 3, available in SAS,
seems to perform quite poorly for continuous and mixed, continuous
covariate models.

In section 1.10, times to death or relapse (in days) are given for 23 non-
Hodgkin's lymphoma (NHL) patients, 11 receiving an allogenic (Allo)
transplant from an HLA-matched sibling donor and 12 patients receiving
an autologous (Auto) transplant. Also, data on 20 Hodgkin's lymphoma
(HOD) patients, 5 receiving an allogenic (Allo) transplant from an HLA-
matched sibling donor and 15 patients receiving an autologous (Auto)
transplant is given.

(2) Treating NHL Allo as the baseline hazard function, state the appro-

priate coding which would allow the investigator to test for any
difference in survival functions for the four groups, treating them
as four independent groups.

(b) Treating NHL Allo as the baseline hazard function, state the ap-

propriate coding which would allow the investigator to test for an
interaction between type of transplant and disease type using main
effects and interaction terms.

(© Suppose that we have the following model for the hazard rates in
the four groups:

(¢ |[NHL Allo) = by(®)

1t |HOD Allo) = hy(Dexp(®
B(r | NHL Auto) = by(Dexp(1.5)
(¢ |HOD Auto) = ho(Hexp(.5)

What are the risk coefficients, 8, i = 1,2,3, for the interaction
model in part &? _
In section 1.6 a study is described which evaluates a protocol change in

disinfectant practices in a large midwestern university medical center.
Of primary interest in the study is 2 comparison of two methods of
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8.3

8.4

body cleansing. The first method, used exclusively from

to June 1984, consisted of a routine bathing czlreymethoéa?ille?trizl1983
face ‘decoqtamination with 10% povidone-iodine followed with re S\lm
l?ath{ng with Dial soap). From June 1984 to the end of the smdgu o
riod in Dgcember 1985, body cleansing was initially performed usir? 2?
ch‘lorhex1dine gluconate. Eighty-four patients were in the group wh(g) \
ceived the new bathing solution, chlorhexidine, and 70 patients servre-
as 'the control group who received routine bathing care, povido o
iodine. Included in the data set is a covariate that measu;es the tg;i
sugface area burned. The data is reported on our web site.

testt?:)i the appropriate coding which would allow the investigator to

(@) any difference in survival functions for the two groups.

(b) any difference in survival functions for the twi st
total area burned. © groups adjusting for

In section 1.11, a study was conducted on the effects of ploidy on the
prognosis of patients with cancer of the tongue. Tissue samples were
exammeq to determine if the tumor had a aneuploid or diploid DNA
Proﬁle. Times to death for these two groups of patients are recorded
in Table 1.6. To analyze this data create a single indicator variable, Z
which reflects the type of tumor. o

(@ Find the p-value of a test of the hypothesis of no effect of ploidy on
fiurvwal using the score test and the Breslow method of handling
es.

® Esﬁmte B and its standard error using the Breslow method of
ganglhnfg ties. glmcil:1 a 915% confidence interval for the relative risk of

eath of an individual with an aneuploid tumor
individual with a diploid tumor, P 2 compared to an

(c) Repeat (a) using the likelihood test. Compare your answer to that
of part a.

(d) Repeat (2) using the Wald test. Compare your answer to those in
parts a and c.

In Exercise 7 of Chapter 7, three different treatments were administered
to rats who had F98 glioma cells implanted into their brains. The data
for the three groups of rats lists the death times. (in days) in that exercise.
Create two dummy variables, Z, = 1 if animal is in the “radiation only”
group, 0 otherwise; Z, = 1 if animal is in the “radiation plus BPA”
group, 0 otherwise. Use the Breslow method of handling ties in the
problems below.

(2) Estimate B; and B, and their respective standard errors. Find a
950/? confidence interval for the relative risk of death of an animal
radiated only compared to an untreated animal.
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8.5

8.6

(b) Test the global hypothesis of no effect of either radiation or radia-
tion plus BPA on survival. Perform the test using all the three tests
(Wald, likelihood ratio, and score test).

(0 Test the hypothesis that the effect a radiated only animal has on
survival is the same as the effect of radiation plus BPA (ie., Test
Hy: B = B

(d) Find an estimate and a 95% confidence interval for the relative risk
of death for 2 radiation plus BPA animal as compared to a radiated
only animal.

(e) Test the hypothesis that any radiation given as a treatment (either
radiation alone or with BPA) has a different effect on survival than
no radiation. Use the likelihood ratio test.

() Repeat part (€) using a Wald test.

Using the data set in Exercise 1, using the Breslow method of handling

ties,

(2) Analyze the data by performing a global test of no effect of group
as defined in Exercise 8.1(a) on survival. Construct an ANOVA table
to summarize estimates of the risk coefficients and the results of the
one degree of freedom tests for each covariate in the model.

(b) Repeat part (2) using the coding as described in Exercise 8.1(b).
Furthermore, test the hypothesis of disease type by transplant in-
teraction using a likelihood ratio rest based on this coding. Repeat
using the Wald test.

(©) Find point estimates and 95% confidence intervals for the relative
sisk of death for an NHL Auto transplant patient as compared to an
NHL Allo transplant patient.

(d) Find the p-value of a test of the hypothesis that the hazard rates
are the same for HOD Allo transplants and NHL Allo patients, using
the Wald test. Repeat a similar test for Auto patients. -

(e) Test the hypothesis, using the Wald test, that the hazard rates for
Auto transplant and Allo transplant patients are the same for each
disease group against the alternative that the hazard rates for Auto
transplant and Allo transplant patients for at least one group are dif-
ferent using a two-degree of freedom test of Hj : Bt |NHL Allo) =

Wt | NHL Auto) and H, : it | HOD Allo) = k(¢ | HOD Auto).

In section 1.13, data on the time to hospitalization of pneumonia in
young children was discussed. The data is presented on our web site.
In the sample there were 3,470 annual personal interviews. An investi-
gator is interested in assessing race, poverty status, and their interaction
on time to hospitalization of pneumonia. Use the discrete method for
handling ties to answer the following questions.

(2) Estimate the parameters of your model and their standard errors.

Construct and interpret an “ANOVA” table for this model.
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8.7

8.8

8.9

()] Brovide point estimates and 95% confidence intervals for the reja
risk pf hospitalization for pneumonia for a person raised in povewe
relative to a person not raised in poverty for each race. rty

(c) Test that blacks raised in i
: poverty have a different hospitalizar;
for pneumonia rate than whites not raised in poverty. plalization

In section 1.6 a study is described which evaluates the relatio, hi

of various covariates to staphylococcus infection in a large midns P
ern university medical center (see Exercise 8.2). One of the covavYCSt-
recorded in the data set is the total surface area burned. Use Bres;me’s
method for handing ties to answer the following questjons. ows

(2) Find the optimal cutpoint to categori i i i
; gorize patients into high- o -
risk groups for staphylococcus infection based on their t%tal sfxr];w
area burned for each disinfectant practice. e
) Test the hypoth'esis that there is a difference in times to infection for
high- and lpw—nsk groups using the cutpoints obtained in (a). Using
the cut points obtained in (a) find the relative risk of the high-risk
group compared to the low-tisk group for each disinfectant practice
© Anz‘alyze r.hg data using total surface area burned as a continuous
v'anable. Give the parameter estimate, standard error, and relative
risk for total surface area burned. Compare with the answer in ®)

In section 1.3, data gathered from a multicenter trial of pati i
three groups (AI_‘L, AML low-risk, and AML high-risk) wag aft(l)el:ltgvsveﬁ
after t:.tansplantatlon until relapse, death, or end of study. One of the
covariates recorded in the data set is the waiting time to transplant (in
days). Use Breslow’s method for handling ties in the following.

(@) You are asked to categorize pati i i i
patients into high- or low-risk grou
for disease-free survival based on the waiti i trans o
variable for the ALL group. wating fine 1o plant

® Anglyze r.he? data using waiting time to transplant as a categorized
vagable using the cut point obtained in (a). Give the parameter
estimate, standard error, and relative risk of the high-risk group
compared to the low-risk group for the ALL group.

© Anglyze th? data using waiting time to transplant as a continuous
variable. Give the parameter estimate, standard error, and relative

risk for waiting time to transplant for the ALL i
oy P group. Compare with

Use the Breslow method for handling ties and the Wald test in the

following.

@) U§mg_ the data set in section 1.6, test the hypothesis that the dis-
tributions _of the times to staphylococcus infection are the same in
the two disinfectant groups.

(b) Test the hyp9thesis that the distributions of the times to staphylo-
coccus infection are the same in the two disinfectant groups adjust-
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8.10

ing for the total area burned, Z;. Compare your results to those in
part a.

(©) Also available in the data set is information on other factors that may
be associated with the timing of staphylococcus infection. Some of
these factors are gender, race, total surface area burned, and type
of burn (chemical, scald, electrical, flame). For each factor create
a set of fixed-time covariates. Test the hypothesis that the times
to staphylococcus infection are the same for the two disinfectant
groups using 2 model which adjusts for each of these factors.

(d) Since one is primarily interested in comparing the two bathing so-
Jutions, interest will center upon building a model with the view
of testing that particular comparison adjusting for the other non-
controllable factors in part (¢). Using a forward selection approach,
build such a model using the p-value approach. Based on the final
model, test the hypothesis of primary interest.

In section 1.3, several event times are described for patients receiving
a bone marrow transplant for leukemia. Consider the time t0 devel-
opment of acute graft-versus-host discase (AGVHD). As a prophylactic
treatment, patients at two of the hospitals were given a treatment com-
bining methotrexate (MIX) with cyclosporine and possibly methylpred-
nisilone. Patients at the other hospitals were not given methotrexate but
sather a combination of cyclosporine and methylprednisilone. Of pri-
mary interest in studying AGVHD is a test of the effectiveness of the
MTX regime to prevent AGVHD. Use Breslow’s method for handling
ties to answer the following exercises.

(2) Using an appropriate Cox model test the hypothesis of no difference
in the rate of development of AGVHD between MTX and no MIX
patients. Find a point estimate and a 95% confidence interval for
the relative risk of AGVHD for patients on the MTX protocol as
compared to those not given MTX.

(b) Patients were also grouped into risk categories based on their sta-
tus at the time of transplantation. These categories were as follows:
acute lymphoblastic leukemia (ALL) with 38 patients and acute mye-
loctic leukemia (AML). The latter category was further subdivided
into low-risk—first remission (54 patients) and high-risk—second
remission or untreated first relapse or second or greater relapse or
never in remission (45 patients). Test the hypothesis of interest (no
effect of MTX on development of AGVHD) adjusting for the three
disease categories.

(O Test for the possibility of an interaction effect on AGVHD between
the disease categories and the use MTX.

(d) Using the factors of age, sex, CMV status, FAB class, waiting time
to transplant, and disease category as defined in Example 8.5, find
the best model to test the primary hypothesis of no MTX effect on
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8.11

8.12

——

the occurrence of AGVHD. Test the primary hypothesis and find an
estimate of the relative risk of occurrence of AGVHD for an MTxX
patient as compared to a non-MTX patient.

In section 1.13, data gathered from annual personal interviews cor,.
ducted for the National Longitudinal Survey of Youth (NLSY) from 1979
through 1986 was presented. This data was used to study whether oy
not the mother’s feeding choice protected the infant against hospitalized
pneumonia in the first year of life. Ages of young children at the time
they were hospitalized with pneumonia were recorded as well as the
observed ages of those infants that were not hospitalized with pney-
monia during the study period. The data is available from our web sjge
which can be reached via the authors’ pages at hftp://WWW.Spl‘i_nger.,
ny.com. Use the discrete method for handling ties in the following.

(a) Consider the dummy variable Z = 1 if infants were breast fed at
birth, 0 if infants were never breast fed, and test the hypothesis
Hy : B = 0, ie., the survival functions for the two types of breast
feeding are equal, using the score, likelihood ratio, and Wald tests,
Find the estimate of B, b, the standard error of &, and the relative
risk using the Wald test.

(b) Also available in the data set is information on other factors that may
be associated with the timing of hospitalized pneumonia. These
factors are age of the mother at the infant’s birth, rural-urban en-
vironment of the mother, use of alcohol by the mother (no drinks,
less than one drink, 1-2 drinks, 3—4 drinks, or more than 4 drinks
per month), mother’s cigarette use (none, less than 1 pack/day, 1 or
more pack/day), region of country (northeast, north central, south,
or west), birthweight of infant (less the 5.5 Ibs or 5.5 Ibs or more),
poverty status of mother (yes/no), race of mother (white, black,
or other), or number of siblings of infant. For each factor create a
set of fixed-time covariates. Test the hypothesis that the times to
hospitalized pneumonia are the same for the two feeding groups
adjusting for each of these factors in a separate model using the
Wald test.

(c) Since one is primarily interested in comparing the two types of
breast feeding, interest will center upon building a model with the
view of testing the particular comparison of interest adjusting for
the other noncontrollable fixed covariates in part b. Build such a
model using the AIC approach and the Wald test.

(d) Summarize your findings from this data set.

A major problem in certain sub-populations is the occurrence of sexu-
ally transmitted diseases (STD). Even if one ignores the letha] effects of
the acquired immune deficiency syndrome, other STD’s still have a sig-
nificant impact on the morbidity of the community. Two of these STD’s
are the focus of this investigation—gonorrhea and chlamydia. Both of

8.9 Exercises 293

8.13

814

these diseases can be prevented and effectively treated. The purpose
of the study described in section 1.12 is to identify those factors w}ngh
are related to time until reinfection by either gonorrhea or chla}myd1a
given a patient with an initial infection of gonorrhea or chlamydia. The
data for this study is available from our web site. N

Possible factors related to reinfection are the individual’s race
(black/white), marital status (divorced/separated, married, single), age
at time of initial infection, years of schooling, initial infection type (gon-
orrhea, chlamydia, both), number of partaers within the last 30 days,
oral sex within the last year, rectal sex within the past year, presence of
symptoms (abdominal pain, discharge, dysuria, itch, lesion, rash, lymph
node involvement), and condom use. If the factors that are related to a
greater risk of reinfection can be identified, then interventions qould be
targeted to those individuals who are at greatest risk for rem.fecnon‘, Use
regression techniques to find those factors which are most predictive
of the distribution of the time until reinfection from this hst of ﬁxgd
explanatory factors with no particular prior hypothesis in mind. Build
such a model using the p-value approach. Use the Breslow method for
handling ties and the Wald test in the model building.

Find 95% confidence intervals for the survival functions for the two
bathing solutions at 20 days for a patient with 25% of total surface area
of body burned, using data in Section 1.6.

(2) Estimate the survival functions of the time to AGVHD for the_ MIX
and no MTX treatment groups discussed in Exercise 8.10, ad!usted
for disease category. Provide a separate estimate for each disease
group. :

(b) Find 95% confidence intervals for the survival functions for the two
patient treatment groups at 80 days for AML high-risk patients.



