
Refinements of the 

~ro~ortion'al Hazards 

9.1 Introduction 

In Chapter 8, we modeled the hazard function for an individual as 
a function of fixed-time covariates. These are explanatory variables 
recorded at the start of the study whose values are fixed throughout the 
course of the study. For instance, in Example 8.5, where acute leukemia 
patients were given a bone marrow transplant, we considered the three 
risk groups, donor age, recipient age, and several other variables, as 
fixed-time covariates. The basic interest there was to evaluate the rela- 
tionship of the risk groups to the hazard of relapse or death, controlling 
for possible confounding variables which might be related to relapse or 
death. As is typical in many survival studies, individuals are monitored 
during the study, and other explanatory variables are recorded whose 
values may change during the course of the study. Some of these vari- 
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ables may be instrumental in predicting survival and need to be sen 
into consideration in evaluating the survival distribution. Such variables 
which change over time are called time-dependent variables. A covari- 
ate that takes on the value 0 until some intermediate event occurs when 
it becomes 1 is an example of a discrete-time dependent covariate. ~ t ,  
also possible to include time-dependent covariates that are essenhuy 
continuous where the value of the covariate is a series of measurements 
of some explanatory characteristic. Examples of this type of covahte 
might be blood pressure, cholesterol, body mass index, size of the t,,.. 
mor, or rate of change in the size of the tumor recorded at different 
times for a patient. Section 9.2 will present methods which detail how 
these variables may be evaluated for their impact on survival. 

As before, let X denote the time to some event and Z(t) = 
[Z,(t), . . ., Zp(t)l' denote a set of covariates or risk factors at t h e  t 
which may effect the survival distribution of X. Here the Zk(t)'s may be 
time-dependent covariates, whose value changes over time or they may 
be constant (or fixed) values known at time 0, as we have discussed in 
Chapter 8. For time-dependent covariates, we assume that their value 
is predictable in the sense that the value of the covariate is known at 
an instant just prior to time t. The basic model due to Cox (1972) is as 
in (8.1.2) with Z replaced by Z(t) and, for the corninonly used model, 

A common use of time-dependent covariates is for testing the pro- 
portional hazards assumption. Here a new covariate is created which 
incorporates a time variable into the relative risk formulation. Section 
9.2 discusses details of this application of time-dependent covariates. 

If the proportional hazard assumption is violated for a variable, then, 
one approach to dealing with this problem is to stra* on this variable. 
Stratification fits a different baseline hazard function for each stratum, so 
that the form of the hazard function for different levels of this variable 
is not constrained by their hazards being proportional. It is assumed, 
however, that the proportional hazards model is appropriate within 
strata for the other covariates. Usually one assumes the same p's for 
the other variables in each stratum. Details of this approach are given 
in section 9.3. 

The basic proportional hazards model can be extended quite easily 
to allow for left-truncated survival data. These extensions are discussed 
in section 9.4. In section 9.5 we see how these methods can be used 
to analyze multistate survival data. By combining the notions of time- 
dependent covariates along with left-truncated regression models, it is 
possible to develop predicted survival probabilities for a patient, given 

the patient's history at some time. This prediction changes as more and 
more of the patient's history is observed. This approach is illustrated by 
the bone marrow transplant experiment first presented in section 1.3. 

3 
f 
* R .2 Ti me-Dependent Covariates 

In this section, our data, based on a sample of size n, consists of 
the triple [Zj, Sj,[Zjtt),O a t s q11, j = 1,. . .. n where TI is the 
time on study for the jth patient, 6J is the event indicator for the jth 
padent (aj = 1 if' event has occurred, 0 if the lifetime is right-cemored) 
and Z,(t) = [Z,(t), . . . , ZjP(t)lt is the vector of covariates for the jth 
individual. For the covariate process, we assume that the value of Zj(t) 
is known for any time at which the subject is under observation. As in 
Chapter 8, we assume that censoring is norunformative in that, given 
Zj(t), the event and censoring time for the fi patient are independent. 
Ethe event times are distinct and 6 < & < * - < tD denotes the ordered 
event times, qo(t,) is the covariate associated with the individual whose 
failure time is ti and Ht,) is the risk set at time ti (that is, R(ti) is the set 
of all individuals who were still under study at a time just prior to ti), 
then, the partial likelihood as described by (8.2.1) is given by 

based on the hazard formulation (9.1.1). Estimation and testing may 
proceed as in Chapter 8 with the approphte alterations of Z to Z(f)>If 
ties are present, then, generalhatiom of the p d  likelihoods described 
in section 8.4 may be used. 

We shall illustrate the use of time-dependent covariates in the follow- 
ing example which is a continuation of Example 8.5. 

In Chapter 8, we examined the relationship between disease-free sur- 
vival and a set of fixed-time factors for patients given a bone marrow 
transplant. In addition to the covariates fixed at the time of transplant, 
there are three intermediate events that occur during the transplant 
recovery process which may be related to the disease-free survival 
time of a patient. These are the development of acute graft-versus- 
host disease (aGVHD), the development of chronic graf-versus-host 



disease (cGVHD) and the return of the patient's platelet count to , 
self-sustaining level (platelet recovery). The timing of these events, if 
they occur, is random. In this example, we shall examine their relation- 
ship to the disease-free survival time and see how the effects of the 
fixed covariates change when these intermediate events occur. in 
the case of fixed factors, we shall make adjustments for these factors in 
the light of the primary comparison of interest, the potential differences 
in leukemia-free survival among the risk groups. 

Each of these time-dependent variables may be coded as an indicator 
variable whose value changes from 0 to 1 at the time of the occurrence 
of the intermediate event. We define the covariates as follows: 

0 if t < time at which acute graft-versus-host disease occurs 
ZA(t) = 1 if t r time at which acute graft-versus-host disease occurs 

,(t) = { 0 if t < time at which the platelets recovered 
1 if t r time at which the platelets recovered 

and 

,(, = { 0 if t < time at which chronic graft-versus-host disease occurs 
1 if t r time at which chronic graft-versus-host disease occurs 

Because the interest in this example is in eliminating possible bias 
in comparing survival for the three risk groups, local tests may be 
performed to assess the significance for each timedependent covariate 
in a model that already has covariates for the two risk groups inclu&d. 
As in Chapter 8, we define Z, = 1 if AML low-risk; Z2 = 1 if AML high- 
risk, and we fit a separate Cox model for each of the three intermediate 
events which include the disease factor (Zl, Z2). The likelihood ratio 
chi-squared statistics (and the associated p-values) of the local tests 
that the risk coefficient p is zero for the time-dependent covariate are 
X2 = 1.17 (p = 0.28) for ZA(t), 0.46 (p = 0.50) for 2,-(t), and 9.64 
(P = 0.002) for Zp(t). A summary of the coefficients, standard errors, 
Wald chi-square statistics and Wald p-values appears in Table 9.1 for 
each of the three regressions. 

Here, we see that only the return to a self-sustaining level of the 
platelets has a significant impact on disease-free survival. The nega- 
tive value of b, suggests that a patient whose platelets have recov- 
ered at a given time has a better chance of survival than a patient 
who, at that time, has yet to have platelets recover. The relative risk 
of exp(-1.1297) = 0.323 suggests that the rate at which patients are 
relapsing or dying after their platelets recover is about one-third the 
rate prior to the time at which their platelets recover. 
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TABLE 9.1 
Time Lkpadent Variables and the Results of Univariate Propo flional Hazards 
Regression in Comparing Risk Groups in Bone Mawow Transplant Study 

Degrees of Wald 
Freedom b SE@) Chi Square p-Value 

ZI 1 -0.5516 0.2880 3.669 0.0554 

z2 1 0.4338 0.2722 2.540 0.1110 

Zdt) 1 0.3184 0.2851 1.247 0.2642 

In the next example, we will continue the model building process, 
started in Example 8.5 with fixed-time covariates, by incorporating time- 
dependent covariates into the study of leukemia patients being given a 
bone marrow transplant. The basic strategy is the same as discussed in 
section 8.7. 

EXAMPLE 9.1 (continued): In Example 8.5, using a forward stepwise model building 
procedure, we found that the factors FAB class (z3: AML with FAB Grade 
4 or 5) and age (Z4: Patient age - 28; 5: Donor age - 28; Z6 = Z4 X 5 1 ,  
were key explanatory factors for disease-free survival when comparing 
risk groups (Zl: AML low-risk; &: AML high-risk) to explain disease- 
free survival after a bone marrow transplant. In the previous example, 
we found that the time-dependent covariate, Zp(t), which indicates 
whether the patient's platelets have returned to a self-sustaining level, 
was an important time-dependent factor in making this comparison. A 
natural question is whether these factors are still si@cantly related 
to &ease-free survival in a model that includes both fixed and time- 
dependent factors. To test for this, we fitted three proportional hazards 
models, the first with the fixed factors of FAB class and age, the second 
with &(t), and the third, a combined model with both the fixed and 
time-dependent factors. The disease type factor is included in each of 
the models. The results of these three regressions are summarized in 
Table 9.2. 

Using these results, we see that a local likelihood ratio test of no 
time-dependent covariate effect (adjusting for aII fixed effects) has a chi 
square of -2[-356.99 - (-353.31)] = 7.36 with one degree of freedom 
(p = 0.0067) whereas the local likelihood ratio test of no FAB or age 
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TABLE 9.2 Note that, in this model, exp(P1), for example, is the relative risk 
Fired Factor Model, Time Dependent Factor Model and Combined M~~~~ for of death or relapse for an AML low-risk patient as compared to an 
the BMTExample ALL patient, and exp(b) is the excess relative risk between these two 

groups when the patient's platelets return to a normal level, that is, 

Fired Factors Only 
exp(Pl) is the relative risk of these two groups before platelet recovery 

Em-Dependent Factor 
b SE(b) p-value b SE(b) p-value b To determine which of the time-dependent interaction factors should and exp{P1 + b }  is the relative risk after platelet recovery. 

ZI -1.091 0.354 0.002 -0.496 0.289 0.086 -1.032 0.353 o.oM be included in the final model, we shall use a forward, stepwise se- 
ZZ -0.404 0.363 0.265 0.381 0.267 0.154 -0.415 0.365 0,256 lection procedure. Each model will include the three fixed-time factors 
z3 0.837 0.279 0.003 - - - 0.813 0.283 0,004 and the platelet recovery factor. Here, we will base the inference on 
z4 0.007 0.020 0.728 - - - 0.009 0.019 0,626 the likelihood ratio test although one would get the same final result 
z5 0.004 0.018 0.831 - - - 0.m 0.018 0.803 
zb 0.003 0.001 0.001 - - - using the Wald test. The results of this procedure are summarized in 

0.003 0.001 0.002 
Zdt) - - - -1.130 0.328 0.001 -0.996 0.337 0.003 Table 9.3. 
In likelihood -356.99 -361.82 This analysis suggests that the three interaction terms between the 

-353.31 b e d  factors and the timedependent covariate should be included in 

factor adjustment has a chi square of -2[-361.82 - (-353.31)l = 17.02 
with four degrees of freedom (p  = 0.0019). Clearly, both the fixed-time 
and timedependent factors should be adjusted for when comparing 
risk groups. 

Nelrt, we examine the relationships between the timedependent hc- 
tor and the fixed time factors. We define an additional set of time- 
dependent covariates that represent interactions between the timing of 
the return of the platelets to n o d  levels and the fixed-time covariates. 
The factors to be considered are as follows: 

Fixed-Time Main Eflect Factors 

Risk group factor: (Zl: Ah4L low-risk; Z2: AML high risk) 

FAB factor: (5: AML with FA8 Grade '4 or 5) 

Age factor (24: Patient age -28; Z5: Donor age -28; Z6 = Z4 X 5) 

Time-Dependent Main Effect Factor 

Platelet recovery factor [Zp(t)] 

Time-Dependent Interaction Factors 

Risk group X Platelet recovery factor: (Z7(t) = Zl X ZP(t); ZB(t) = 
z2 x ZP(t)> 
FA8 X Platelet recovery factor: = Z, X Zp(t)) 
Age X Platelet recovery factor: (Zlo(t) = Z4 x Zp(t); Zll(t) = 5 X 
Z,(t); Zl2(t) = Zk x ZP(t1) 

TABLE 9.3 
Likelihook And Likelihood Ratio Test for the Inclusion of Interactions Behueen 
Fixed Effects and the Time of Platekt Recovety 

Likelihood DF of 

Factors in Model Log Likelihood Ratio XZ X2 p-Value 

Gmup, FAB, age, &(t) -353.31 
Gmup, FAB, age, Zp(t), group X zp( t )  -349.86 6.89 2 0.0318 
Gmup, FAJ3, age, &(t), FAB X &(t) -351.64 3.33 1 0.0680 
Gmup, FAB, age, %(t), age x &(t) -349.36 7.90 3 0.0482 

Group X &(t) Added to Model 

Likelihood DF of 

Factors in Model Log Likelihood Ratio X2 Xz p-Value 

Group, P B ,  Age, &(t) -347.78 4.15 1 0.0416 
Gmup X &(t),FAJ3 X Z,(t) 
Group, FAB, Age, Zp(t) -343.79 12.14 3 0.0069 
Gmup X &(t), Age X %(t) 

Age X &(t) Added to Model 

Likelihood DF of 

Factors tn Model Log LikeNbood Ratio X2 X2 p -Value 

Group, FAB, Age, &(t),Group X &(t) -341.521 4.53 1 0.0333 
FAB X &(I), Age X %(t) 

FAB X &(t) Added To Model 
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the model. The ANOVA table for the final model is given in Table 9.4. 
Some care must be taken in interpreting these covariates. For example 
here, we see that the relative risk of treatment failure (death or relapsej 
before platelet recovery for an AML low-risk patient compared to an 
ALL patient is exp(1.3073) = 3.696 and a 95% confidence interval fa 
the relative risk is exp(1.3073 + 1.96 X 0.8186) = [0.74,18.39]. fie 
risk of treatment failure after platelet recovery for an AML l~w-~isk 
patient relative to an W patient is exp(1.3073 + (-3.0374)) = 0.18, 
The standard error of the estimate of the risk coefficient after platelet 
recovery, & + L+ is [V(&) + V ( h )  + 2 Cov<&, L+)1lh = l.0.6701 f 0.8570+ 
2(-0.6727)3'12 = 0.4262, so a 95% confidence interval for the relative 
risk of treatment failure after platelet recovery for an AML low-risk 
patient is exp(- 1.7301 + 1.96 X 0.4262) = [O .08,0.411. This suggests 
that the difference in outcome between the AML km-risk patients and 
the W patients is due to different survival rates after the platelets 
recover and that, prior to platelet recovery, the two risk groups are 
quite similar. 

TABLE 9.4 
ANOVA Table for a Model With Fixed Factors, Tim to Platelet Recovery, a& 
n e i r  Interactions 

Degrna of wald 
Freedom b SE(b) Chi Square p-Value 

Zl: AML Low risk 1 1.3073 0.8186 2.550 0.1103 
Z,: AML high risk 1 1.1071 1.2242 0.818 0.3658 
5: AML with FAB 
Grade 4 or 5 1 -1.2348 1.1139 1.229 0.2676 

Z4: Patient age -28 1 -0.1538 0.0545 7.948 0.0048 
5: Donor age -28 1 0.1166 0.0434 7.229 0.0072 
Z 6 = Z 4 X 5  1 0.0026 0.0020 1.786 0.1814 
Zp(t): Platelet Recovery 1 -0.3062 0.6936 0.195 0.6589 
ZAt) = ZI X Zp(t) 1 -3.0374 0.9257 10.765 0.0010 
&(t) = ZZ X Zp(t) 1 -1.8675 1.2908 2.093 0.1479 
&(t) = Z3 X &(t) 1 2.4535 1.1609 4.467 0.0346 
Zdt) = a x ZP(~) 1 0.1933 0.0588 10.821 0.0010 
ZII(~> = 5 x Zp(t) 1 -0.1470 0.0480 9.383 0.0022 

A major use of time-dependent covariate methodology is to test the 
proportional hazards assumption. To test the proportionality assumption 
for a fixed-time covariate Zl, we artificially create a time-dependent 
covariate, .&(t), defined as 
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Here, g(t) is a known function of the time t. In most applications, we 
take g(t) = In t. A proportional hazards model is fit to Zl and Zz(t) and 
the estimates of pl and pz along with the local test of the null hypothesis 
that Pz = 0 is obtained. Under this proportional hazards model, the 
hazard rate at time t is hit I Zl) = h,(t) exp[plZl + Pz(Z1 X &))I, so if 
we compare two individuals with distinct values of Zl, the ratio of their 
hazard rates is 

-- at I ''I - exp&[Z1 - Z;I + BZg(t)U - Z:l}, 
Mt I z;l 

which depends on t if pz is not equal to zero. (Compare this to (8.1.3) 
where the proportional hazards assumption holds.) Thus, a test of H, : 
pz = 0 is a test for the proportional hazards assumption. The ability of 
this test to detect nonproportional hazards will depend on the choice 
of g(t). This method will be illustrated in the following examples. 

EXAMPLE 9.2 In Example 8.2, a proportional hazards model, with a single covariate 
Zl denoting the placement of a catheter either percutaneously (Zl = 1) 
or surgically (Zl = O), was fit to the time to first exit-site infection (in 
months) in patients with renal insufficiency. In Figure 8.1, a graphical 
check of the proportional hazards assumption was made which casts 
doubt on the assumption of proportional hazards between the event 
times for the two types of catheters. Here, we will formally test this 
assumption employing the methodology of time-dependent covariates. 
To perform the test, we define Zz(t) = Zl X In t and fit the Cox model 
with covariates Zl and Z2(t). Thus the relative risk of an individual 
with a percutaneously placed catheter compared to a surgically placed 
catheter is given by 

which is a constant only if pz = 0. This is the rationale for testing 
the local hypothesis H, : p2 = 0 to check the proportional hazards 
assumption. 

The likelihood ratio statistic (and associated p-value) for this local 
test is 12.22 ( p  = 0.0005). The Wald chi-squared statistic for this local 
test is (-1.4622)~/0345 = 6.19 (p-value = 0.013). Thus, the evidence 
is strong that the hazards are not proportional, and, hence, the statistical 
model in Example 8.2 needs to be modified accordingly. 

EXAMPLE 9.1 (continued): We shall illustrate the testing of the proportionality haz- 
ards assumption for the fixed-time factors used in Example 8.5. As in 
that example, we create fixed-time covariates for the patient's disease 
status (Zl = 1 if AML low-risk: & = 1 if AML high-risk); waiting time 
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from diagnosis to transplant (5) ;  FAB classification (Z4 = 1 if M 4  or 
M5 for AML patients); use of graft-versus-host prophylactic combining 
methotrexate (Z5 = 1 if MTX used); and for the combined patient and 
donor characteristics including sex (Z6 = 1 if male donor; Z7 = 1 if 
male recipient; Z8 = Z6 X Z7 = 1 if donor and recipient are male); CMV 
status (5 = 1 if donor is CMV positive; Zlo = 1 if recipient is CMV pas- 
itive; Zll = Zg X Zlo = 1 if donor and recipient are CMV positive); and 
age (Z12 = donor age - 28; ZI3 = recipient age - 28; Z14 = Z12 X Zlj), 

For each factor, we create a set of time-dependent covariates of the 
form Zi+14(t) = Zi X ln t. To check the proportional hazards assumption, 
we fit separate models for each factor which include the fixed values 
of covariates constituting the factor and the artificial time-dependent 
covariates created from these fixed-time covariates. A local test is then 
performed of the hypothesis that all p's are zero for the timedependent 
covariates for this factor. The results are given in Table 9.5. Here we 
see that the factor MTX has nonproportional hazards whereas there is 
no reason to doubt the proportionality assumption for the other factors. 
In the next section, we will reexamine this model, adjusting for the use 
of MTX by fitting a stratified proportional hazards regression model. 

TABLE 9.5 
Tests of the Proportional Hazards Assumption for the Bone Marrow Transplant 
Data 

Waki Degrees of 
Factor Chi Square Freedom p-Value 

Group 1.735 2 0.4200 
Waiting time 0.005 1 0.9441 
Fab status 0.444 1 0.5051 
MTX 4.322 1 0.0376 
Sex 0.220 3 0.9743 
CMV status 1.687 3 0.6398 

Age 4.759 3 0.1903 

When the proportional hazards assumption is not satisfied, as in 
Example 9.2, and interest centers upon a binary covariate, Z], whose 
relative risk changes over time, one approach is to introduce a time- 
dependent covariate as follows. Let 

Z2(t) = & X g(t) = g(t) if the covariate Zl takes on the value 1 

= 0 if the covariate Zl takes on the value 0, 

where g(t) is a known function of time. In Example 9.2, we took 
g(t) = In t. One difficulty with this approach is that the function g(t) is 
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usually unknown. In such cases, it may be preferable to use a procedure 
that would allow the function g(t) to be estimated from the data. 

One simple approach to this problem is to fit a model with an in- 
dicator function for g(t). In the simplest approach, we defme a time- 
dependent covariate 

Here we have a proportional hazards model with hazard rate 

where ho(t) is the baseline hazard rate. Note that, in this model, exp(p,) 
is the relative risk, prior to time r ,  for the group with Zl = 1 relative to 
the group with Z, = 0, and exp(P1 + A) is the relative risk, after time 
r, for the group with & = 1 relative to the group with Zl = 0, that is, 
e x p a )  is the increase in relative risk after time r and 7 is sometimes 
referred to as the "change point" for the relative risk (Matthews and 
Farewell 1982 and Liang et al., 1990). 

An equivalent coding for this piecewise proportional hazards model 
is to use a model with two timedependent covariates, &(t) and Z3(t). 
Here, &(t) is as in (9.2.3), 

For this coding we have 

The two models will have an identical log likelihood with P1 in model 
1 equal to 03 in the second model and PI + pz in the first model equal 
to 8, in the second model. Note that ee, is the relative risk before Z and 
eh is the relative risk after Z. 

To determine the optimal value of r,  either model is fit for a set 
of r values, and the value of the maximized log partial likelihood is 
recorded. Because the likelihood will change values only at an event 
time, a model is fit with r equal to each of the event times. The value 
of r which yields the largest log partial likelihood is the optimal value 
of 7. Proportional hazards can, then, be tested for each region and if it 
fails, for t on either side of r,  then this process can be repeated in that 
region. This procedure is illuscrated in the next example. .. 

EXAMPLE9.2 (continued): In Example 9.2, the proportional hazards assumption 
was rejected with respect to placement of the catheter. Instead of in- 
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~oducing a time-dependent covariate with a known function of time, 
a "change point" 7 for the relative risk will be intloduced. Because the 
likelihood changes only at the event times, Table 9.6 presents the log 
partial likelihood using the Breslow modification for ties, as a function 
of all 7's at the failure times. 

TABLE 9.6 
Log Partial Likelihood as a Function of r at the Failure Times 

t vent ~imes  Log Partial Likelibood 

0.5 -97.878 
1.5 - 100.224 
2.5 -97.630 
3.5 -97.500 
4.5 -99.683 
5.5 - 100.493 
6.5 -98.856 
8.5 -100.428 
9.5 -101.084 
10.5 -101.668 
11.5 -102.168 
15.5 -100.829 
16.5 -101.477 
18.5 -102.059 
23.5 - 102.620 

We see from this table that a value of T equal to 3.5 maximizes the 
log partial likelihood. Using this model and the coding as in model two 
we have the following ANOVA table. 

O e S m  of wald 
Freedom b SE@) ChiSquare p-vafue 

&(t) : 2, if t 5 3.5 1 -2.089 0.7597 7.56 0.0060 
&(t) : & if t 7 3.5 1 1.081 0.7832 1.91 0.1672 

Here, we see that, up to 3.5 months, patients with a percutaneously 
placed catheter do sigmiicantly better than patients given a surgically 
placed catheter (relative risk = exp(-2,089) = 0.124) whereas, after 
3.5 months, there is no evidence of any difference between the two 
groups of patients. 

To check for proportional hazards within the two time intervals, we 
fit a model with two additional time-dependent covariates, &(t) = 
Z2(t) X In t and &(t) = Z3(t) X 1" t. In this model, the test of the null 
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hypothesis that P4 = 0 is a test of proportional hazards in the first 3.5 
months, whereas the test of the null hypothesis that P5 = 0 is a test 
of the proportional hazards assumption after 3.5 months. The p-values 
of the local Wald tests of these hypotheses are 0.8169 and 0.2806, 
respectively. Thus, there is no need to further divide the subintervals. 

Pra ctica 1 Notes 

1. SAS PHREG, in the presence of ties, defaults to Breslow's likelihood 
and allows the user to specify either the discrete, Efron, or "exactn 
likelihood. 

2. In S-Plus, timedependent covariates in the proportional hazards 
model are handled in the routine coxph which uses Efron's like- 
lihood as a default. Breslow's likelihood and the exact likelihood are 
available when there are ties between the event times. 

3. To treat a covariate as a fixed-time covariate, it must be known at 
the onset of the study. For example, the covariate that signifies that 
platelets return to a self-sustaining level is not a fixed-time covariate 
because it is not known at the onset of the study whether a patient 
will experience this event or not. Such events, which occur at some 
intermediate time, are treated as time-dependent covariates. 

4. EXimating the survival function or the cumulative hazard function 
is difficult for proportional hazards models with time-dependent co- 
variates because the integral of h,(t) exp[8'Z(t)] depends on the ran- 
dom process Zt). Unless this is a deterministic function, this integral 
requires additionally estimating the distribution of the development 
of a t ) .  Christensen et al. (1986) suggest an estimator to use in this 
case. 

Theoretical Note 

1. Kalbfleisch and Prentice (1980) distinguish between two types of 
time-dependent covariates. The first are eJcternul covariates whose 
value at any time does not depend on the failure process. Examples 
of such covariates are fixed-time covariates, time-dependent covari- 
ates whose value is completely under the control of the investigator 

/ (e.g., a planned schedule of treatments under the control of the in- 
vestigator), and ancillary time-dependent covariates that are the out- 
put of a stochastic process external to the failure process (e.g., daily 
temperature as a predictor of survival from a heart attack). Inference 
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for external covariates follows by the notions discussed in Chapter 
8 and the survival function is estimated by the obvious changes to 
the estimator in section 8.6. The second type of time-dependent co- 
variates are internal covariates which are time measurements taken 
on an individual. These covariates are measured only as long as the 
individual is still under observation, so that the distribution of these 
covariates carries information about the failure process. Examples of 
internal covariates are the times to acute or chronic GVHD and the 
time to the return of platelets to a normal level in Example 9.1. For 
this type of covariate, the partial likelihood construction is still valid, 
but it is not possible to estimate the conditional survival function 
because PIX r t 1 Z(t)l = 1 (if Z(t) is known, the subject must be 
alive and at risk of failure). 

Stratified Proportional Hazards Models 

As we saw in the previous section, there are instances when the propor- 
tional hazards assumption is violated for some covariate. In such cases, 
it may be possible to s t r a e  on that variable and employ the propor- 
tional hazards model within each stratum for the other covariates. Here 
the subjects in the jth stratum have an arbitrary baseline hazard func- 
tion hoj(t) and the effect of other explanatory variables on the hazard 
function can be represented by a proportional hazards model in that 
stratum as 

In this model, the regression coefficients are assumed to be the same in 
each stratum although the baseline hazard functions may be merent 
and completely unrelated. 

Estimation and hypothesis testing methods follow as before, where 
the partd log likelihood function is given by 

where LLj(P) is the log partial likelihood (see (8.3.2)) using only the 
data for those individuals in the $h stratum. The derivatives for the 
log likelihood in (9.3.2) are found by summing the derivatives across 
each stratum. U(/3) is, then, maximized with respect to /3 utilizing the 
methods in Chapter 8. The survival function for the jth stratum, when 
the covariates are aU fixed at time 0,  may be estimated as described in 
section 8.8. 

EXAMPLE 9.1 (continued): As we saw in the previous section, the patients who 
where given MTX as a graft-versus-host prophylactic did not have haz- 
ard rates proportional to those patients not given MTX. One way to deal 
with this problem is to stratify on the use of MTX which involves fitting 
distinct baseline hazard rates to the two groups. Of interest, as seen in 
Table 9.2, is a model for the factors of disease group (Zl,  Zz), FAB class 
(231, Age (Z4,5,&) and platelet recovery time Zp(t). Assuming that 
the effects of the covariates are the same for patients given MTX or not 
given MTX, we have the model summarized in Table 9.7. 

TABLE 9.7 
Anova Tabk for a Cox Model Stratz@d on the Use of MlX 

m r ~  of Wald 
Effect Freedom b SECb) ChiSquare p-Value 

ZI: AML LOW-Risk 1 -0.9903 0.3666 7.298 0.0069 
&: AML High-Risk 1 -0.3632 0.3714 0.957 0.3280 
5: AML with FAB 

Grade 4 or 5 1 0.8920 0.2835 9.902 0.0017 
Zq: Patient age -28 1 0.0095 0.0198 0.231 0.6305 
5: Donor age -28 1 -0.0014 0.0179 0.006 0.9373 
Z6=Zqxs 1 0.0026 0.0009 7.425 0.0064 
Zp(t): Platelet Recovery 1 -1.0033 0.3445 8.481 0.0036 

The Wald chi square of the test of the hypothesis of no group effect 
(,& : = & = 0)  is 8.916 with a p-value of 0.0116. The results from 
the stratified model in this case are quite close to those obtained in the 
unstratified model. 

A key assumption in using a stratified proportional hazards model is 
that the covariates are acting similarly on the baseline hazard function 
in each stratum. This can be tested by using either a likelihood ratio test 
or a Wald test. To perform the likelihood ratio test, we fit the stratified 
model, which assumes common B's in each stratum, and obtain the log 
pattial likelihood, W). Using only data from the jth stratum, a Cox 
model is fit and the estimator bj and the log p r t . d  likelihood LLj(b,) are 
obtained. The log likelihood under the model, with distinct covariates 
for each of the s strata, is UJ(b/). The likelihood ratio chi square 
for the test that the p's are the same in each stratum is -2r-l - 
C;,l Uj(b,ll which has a large-sample, chi-square distribution with 
(S - 1)p degrees of freedom under the null hypothesis. 
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To construct the Wald test, the model with distinct p's in each stratum 
is found by fitting distinct proportional hazards models to each stratum. 
Estimates from different strata are asymptotically independent because 
the information matrix of the combined model is block diagonal. ne 
Wald test is constructed by using an appropriate contrast matrix as 
discussed in section 8.5. This method of testing is equivalent to testing 
for an interaction between a stratification variable and the covariates in a 
stratified proportional hazards model. These approaches are illustrated 
in the following continuation of the previous example. 

FXAMPLE 9.1 (continued) To test the hypothesis that the effects of disease group, 
FAB status, age, and platelet recovery are the same in both 
strata, we fitted distinct Cox models to the two strata. The log parm 
likelihoods are -219.677, based on the 97 patients not given MTx, 
and -80.467 based on the 40 patients given MTX. The log partial 
likelihood from the stratified model, assuming the same p's in each 
stratum (Table 9.7), is -303.189. The likelihood ratio chi square is 
-2{-303.189 - [(-219.677) + (-80.467)]} = 6.09. The degrees of free- 
dom of the test are 7, so the p-value of the test is 0.5292, suggesting no 
evidence that the covariates are operating differently on patients with 
or without MTX as a preventive treatment for graft-versus-host disease. 

To further check the assumption of equal effects of the covariates on 
the two strata, we shaU do a series of one-degree-of-freedom Wald tests 
comparing each of p's in the two strata. Here, we use the results from 
fitting the proportional hazards model, separately, in the two strata. For 
a given covariate, the estimates in the two strata are asymptotically in- 
dependent, so a Wald test that = &,, where pji is the risk coefficient 

TABLE 9.8 
One Degree of Freedom Wald Tests Comparing Risk Coefficients in theM7Xand 
No MlX Strata 

No M7X MZX 
Effect b SE(b) b SE(b) xZ p-Value 

Z,: AML low-risk - 1.1982 0.4585 -0.5626 0.6385 0.654 0.4188 
Z,: AML high-risk -0.2963 0.4454 -0.8596 0.9175 0.305 0.5807 
Z3: AML with FAB 

Grade 4 or 5 1.0888 0.3385 0.3459 0.6511 1.025 0.3114 
Z4: Patient age -28 0.0276 0.0259 0.0114 0.0391 0.120 0.7290 
5: Donor age -28 -0.0203 0.0253 0.0343 0.0310 1.858 0.19 
Z6 = 2 4  X 5 0.0022 0.0014 0.0014 0.0023 0.103 0.7489 
&(t): Platelet recovery -0.8829 0.4759 -1.0089 0.5511 0.030 0.8626 
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of the ith covariate in the jth strata, is 

The results, summarized in Table 9.8, c o h  that, for each of the 
covariates, there is no reason to suspect that the P's are different in the 
two strata and the stratified model is appropriate. 

The stratified proportional hazards model can be used to model 
matched pair experiments. Here, for each pair, we assume the model 
(9.3.1) with the strata defined by the matched pairs. When the number 
of pairs is large, then, the large-sample properties of the estimators from 
this model are valid. In this approach, the factors used in the match- 
ing are not adjusted for in the regression function, but are adjusted for 
by fitting distinct baseline rates for each pair. This is illustrated in the 
following example. 

WAMPLE 9.3 In section 1.2, the results of a clinical trial of a drug Qmercaptopurine 
(6-MP) versus a placebo in 42 children with acute leukemia was de- 
scribed. The trial was conducted by matching pairs of patients at a 
given hospital by remission status (complete or partd) and randomiz- 
ing within the pair to either a 6-MP or placebo maintenance therapy. 
Patients were followed until their leukemia returned (relapse) or until 
the end of the study. In Example 4.1, the survival curves for the two 
groups were estimated, and, in Example 7.7, using a stratified log rank 
test, we saw that survival was different in the two groups. 

To estimate the relative risk of relapse in the 6-MP group as compared 
to the placebo group, we fit a Cox model stratified on the pair number. A 
single covariate is used with the value Z = 1 if the patient was given 6- 
MP and 0 if given a placebo. The estimate of P is - 1.792 with a standard 
error of 0.624. The likelihood ratio chi square of the test of 0 = 0 is 
11.887 @ = 0.0006), the score chi square is 10.714 (p = 0.0011) and 
the Wald chi square is 8.255 (p = 0.0041) suggesting a significant 
difference in relapse rates between the two treatment groups. Note that 
the score test chi square is exactly the stratified log-& chi square 
found in Example 7.7. A 95% confidence interval for the relative risk 
is exp(-1.792 2 1.96 X 0.6236) = [0.049,0.5661. Thus, patients given a 
placebo are between 2 to 20 times more likely to relapse than patients 
given 6-W. 
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Practical Notes 

1. When stratification is employed, the tests of hypotheses on regres. 
sion coefficients will have good power only if the deviations from 
the null hypotheses are the same in all strata. 

2. The large sample stratified tests of hypotheses on regression coeffi- 
cients are appropriate when either the sample size within strata is 
large or when when the number of strata is large. 

3. Estimation of the survival function or cumulative hazard function for 
each stratum can be obtained using the estimators in section 8.8. 

9.4 Left Truncation 

In this section, we shall examine how to apply the proportional hazards 
regression model when the data is left-truncated. The most common 
situation, where left-truncated data arises, is when the event time X is 
the age of the subject and persons are not observed from birth but rather 
from some other time V corresponding to their entry into the study. 
This is the case for the example introduced in section 1.16 where the 
age, 4, at death for the ith subject in a retirement center in California 
was recorded. Because an individual must survive to a sufficient age V, 
to enter the retirement community, and all individuals who died prior 
to entering the retirement community were not included in this study, 
the life lengths considered in this study are left-truncated. 

Another situation which gives rise to this type of data is when the 
event time X is measured from some landmark, but only subjects who 
experience some intermediate event at time V are to be included in the 
study. This is the case for the bone marrow transplant example where 
we wish to draw an inference about X, the time from transplant to death 
or relapse, for those patients whose platelets have recovered to a self- 
sustaining level. If V is the time until platelets recover for the patient, 
then only patients who experience this intermediate event are entered 
into the study. Again, life lengths in this study will be left-truncated. 
The times are sometimes called delayed entry times. 

To formulate a proportional hazards regression model for a set of 
covariates Z, we model the conditional hazard rate of t, given Z and 
X > V, that is, we model 
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If the event time X and the entry time V are conditionally independent, 
given the covariates Z, then a simple calculation shows that the con- 
ditional hazard K t  I Z(t), X > V )  and the unconditional hazard rate, 
h(t I Z) are equivalent (Andersen, et al., 1993). 

To estimate the regression coefficients with left-truncated data, the 
partial likelihoods are modified to account for delayed entry into the 
risk set. To do this, in all of the partial likelihoods presented thus far, 
we d e h e  the risk set R(t) at time t as the set of all individuals who are 
still under study at a time just prior to t. Here, R(t) = Cj I VJ < t < T,}. 
With this modification, the techniques, discussed in Chapter 8 and in 
earlier sections of this chapter, can be applied to left-truncated data. We 
shall illustrate these methods in the following two examples. 

EXAMPLE 9.4 For the Channing House data set introduced in section 1.16, we lookat 
the effect of gender on survival. To fit this model, we modify the risk set 
to include only those individuals at age t who entered the retirement 
home at an earlier age and are still under study. The size of this risk set 
changes with time as depicted in Figure 4.10. The estimated regression 
coefficient for gender is 0.3158 with a standard error of 0.1731 Wald p- 
value of 0.0682). Thus, there is not a significant difference, with respect 
to survival, between males and females. 

EXAMPLE 9.5 In the bone marrow transplant study described in section 1.3, we found, 
in Example 9.1, one important variable predicting that disease-free sur- 
vival is the time until the platelet count returns to a self-sustaining 
level. It is of interest to make an inference about disease-free survival 
among only those patients who have had their platelets return to a 
self-sustaining level. 

We shall fit the model stratified on the use of MTX to prevent graft- 
versus-host disease: 

h(t 1 z, MTX) = hoJ(t) exp(B1Zl, for j = MTX, No MTX. 

The data is left-truncated because only patients whose platelets have 
returned to a normal level at time t are included in the risk set at that 
time. The resulting ANOVA table for this model is given in Table 9.9. 

The Wald test of the hypothesis of no group effect has a chi square of 
18.27 with two degrees of freedom. The p-value of this test is smaller 
than 0.0001, strongly suggesting differences among the three disease 
groups in disease-free survival after platelet recovery. 
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TABLE 9.9 
Anova Table for a Cox Model for Patients Whose Platelets Have Returned to 
N o d  Levek, Stratified on the Use of- 

Degrees of 
E f f i t  Freedom b SE(b) 

Wald 
Chi Square 

Z]: AML low-risk 1 -1.7521 0.4376 
Z,: AML. high-risk 1 -0.7504 0.4077 
Z3: AML. with FAB 

Grade 4 or 5 1 1.2775 0.3249 
Z4: Patient age -28 1 0.0417 0.0223 
5: Donor age -28 1 -0.0346 0.0207 
Z h = z 4 X Z s  1 0.0023 0.0012 

Practica I Notes 

1. Age is often used as a covariate when it should be used as a left- 
truncation point. When age is used as a left-truncation point, it is 
unnecessary to use it as a covariate in the model. 

2. Left truncation can be performed in S-Plus and SAS. 
3. The survival function for left-truncated proportional hazards regres- 

sion models with fixed covariates can be estimated by using the 
techniques in section 8.8. 

Theoretical Note 

1. A key assumption for the left-truncated Cox model is that the event 
time X and the delayed entry time V are independent, given the 
covariates Z. If this assumption is not valid, then, the estimators of 
the risk coefficients are not appropriate. See Keiding (1992) for a 
discussion of this assumption and additional examples. 

9.5 Synthesis of Time-varying Effects . 
(Multistate Modeling) 

In previous sections of this chapter, we saw how we can use tinIe+ 
dependent covariates or left-truncation to study time-varying effects on 
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survival. Timedependent covariates, in particular, provide us with im- 
portant information on how changes in a subject's history effect survival. 
In this section, using the bone marrow transplant example, we shall il- 
lustrate how these analyses can be combined to give an investigator a 
complete picture of the way changes in a patient's status can affect the 
prediction of patient outcome. 

The basis of this approach is the notion of a patient's history at a given 
time. Intuitively, a "history" is all the information collected on a patient 
up to a given time t. It consists of all the patient's covariates measured 
at time 0 (the fixed time covariates) and the complete knowledge of all 
timedependent covariates up to time t. In the bone marrow transplant 
example discussed in Example 9.1, there are two possible histories 
when we consider the effects of platelet recovery on disease-free sur- 
vival. The first history, at time t, consists of all the fixed-time covariates 
(4: AML low-risk; Zz: AML high-risk; 5: AML with FAB Grade 4 or 5; 
24: Patient age -28; 5 :  Donor age -28; Zg : Z4 X 51,  the knowledge 
that platelets have yet to return to normal levels by time t, and the 
knowledge that the patient is alive and disease free. If we denote the 
patient's random platelet recovery time by T, and the event time by X ,  
then, this history can be denoted as Hl(t) = {Z, Tp > t, X > t}. The 
second history a patient could have at time t consists of the patient's 
fixed-time covariates, the fact that platelets have returned to nominal 
levels, and the knowledge that the patient is alive and disease free. 
This history is denoted by Hz(t) = {Z, T, r t, X > t}. We shall call the 
process H = [H(t),O I t < ml a "history processn for a patient. The 
history process reflects what happens to the patient over the course of 
their lifetime under study. 

The goal of a survival synthesis is to make predictions of patient 
outcome based on their history at time t. We shall look at estimating 
ds I H(t)l = Prw I s I H(t)l. This function, called a prediction pro- 
cess, in ow example is the probability that a patient will relapse or die 
in the interval t to s given all the information we have observed about 
the patient up to time t. Notice that the prediction process depends 
on the patient's history H, the time t at which the history is known, 
and the point at which we wish to make a prediction s. By fixing t and 
s and varying the history, we can compare how different patient histo- 
ries effect outcome. By fixing H and s and varying t, we can see how 
leaming more and more about the patient's history affects outcome. By 
fixing H and t and varying s, we can obtain an analog of the survival 
function. 

For the transplant example, the computation of .rr depends on three 
hazard rates that are functions of the fixed time covariates (see Fig- 
we 9.1). For simplicity, we will, for the moment, ignore the dependence 
of these rates on the fixed covariates. The first rate h,(t) is the hazard 
rate for the time to platelet recovery. The second hazard rate hl(t) is 
the rate at which individuals, whose platelets have yet to recover, either 
die or relapse. The third hazard rate h(t) is the rate at which patients, 
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Figure 9.1 Pwiblepaths to relapse or death 

TRANSPLANT - 
whose platelets have returned to normal level, die or relapse. As we 
shall see, these rates are directly estimable from an appropriate Cox 
model. 

Using these rates, 

RELAPSE OR 
DEATH 

Here the function exp[- S: &(u)dul is the chance that a patient will not 
die or relapse between t to r and Q ( r )  is approximately the conditional 
probability of treatment failure at time r, given survival to time r ,  so 
that their product is approximately the probability of failure at time r .  
For Hl(t), 

= l s e r p  [- lr b l ( d d u  - lr L+,(u)du] [b l ( r )  + b,(r)n(s,  r)]  dr. 

Here, the exponential is the probability of not failing and not having 
platelet recovery between t to r ,  h l ( r )  is the conditional probability of 
failure at time r ,  and h p ( r ) ~ ] ( s ,  r )  is the probability of platelet recovery 
at time r and, then, failure in the interval r to s .  

To estimate and ?rz we needed to estimate h,, hl, and &. We shall 
present two approaches, one based on assuming proportional hazards 
between h, and & and the second based on assuming distinct baseline 
hazard rates. The first approach uses a Cox model with timedependent 
covariates whereas the second uses a left-truncated Cox model. Both 
approaches require estimating the hazard rate for platelet recovery time. 
To estimate this rate, we fit a Cox proportional hazard rate model to 
the data, using platelet recovery as the event. For individuals whose 
platelets do not return to a nominal level, we censor their on study 
time at the time of treatment failure (death or relapse) or at the end 
of the study period if they are disease free. A careful modeling of the 

I - 
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TABLE 9.10 
Risk Factors for Pkatelet Recovery 

- 

Effect b sE@) p-Value 

Patient age -28 +0.0360 0.0163 0.0266 
Donor age -28 -0.0262 0.0148 0.0766 
Patient X donor age -0.0027 0.0010 0.0052 
MTXused -1.0423 0.2233 >0.0001 

risk factors for platelet recovery is performed using the covariates, as 
in Example 8.5. The best fitting model, given in Table 9.10, shows that 
platelet recovery depends on the use of MIX as a graft-versus-host 
treatment and on the patient's and donor's ages. Using these estimates, 
we compute Breslqw's estimate of the cumulative baseline hazard rate 
for Tp (see 8.8.2), HOp(t). 

The first approach to estimating hl and & is based on assuming 
proportional hazards between hl and &. A timedependent covariate 
approach is used, and we define 12 timedependent covariates as fol- 
lows: 

I &fore Platekt Recovery: After Platekt Recovay: 
Zl(t) = 1 if AML low-risk and t 4 Tp &(t) = 1 if AML low-risk and t > Tp 
Zz(t) = 1 if AML high-risk and t 4 Tp &(t) = 1 if AML high-risk and t > Tp 
Z3(t)= 1 ifAMLFABGrade4or5 and t s  Tp g ( t ) = l  ifAML~ABGrade4or5andt> Tp 
&(t) = Patient age -28 if t 5 Tp Zlo(t) = Patient age -28 if t > Tp 
Zs(t) = Donor age -28 if t 5 Tp 

a t ) ,  = Z4(t) x Zs(t1; 
Zll(t) = Donor age - 28 if t > Tp 

Z1z(t) = ZIO(t) x Zll(t). 

Here, Zl(t), . . ., &(t) are the effects of the fixed-time covariates o n  
disease-free survival before platelet recovery, and &(t), . . . , ZIZ(t) are 
the corresponding effects on disease-free survival after platelet recovery. 

The Cox model we fit is 

h(t I Z(u), 0 5 u 4 t )  = ho(t) exp C pJzJ(t)  [;: ] . (9.5.3) 
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TABLE 9.11 
Estimates Of Risk Coefjcients for the Two Models 

Before Platelet Recovery 

Efect 

Proportional Hazards Lej-Tnmcated 
Model l Model ll 

b SE@) p - Value b SECb) P-Vdue - 
AML low-risk 1.5353 0.6347 0.0156 1.4666 0.9117 0.1100 
AML high-risk 1.3066 1.1602 0.2601 1.4478 1.3333 0.2776 
AML FAB Grade 4 or 5 -1.2411 1.1155 0.2659 - 1.7536 1.3214 0.1838 
Patient age -28 -0.1596 0.0539 0.0031 -0.1616 0.0619 0.Wl 
Donor age -28 0.1194 0.0437 0.0063 0.1258 0.0475 0.0081 
Patient X donor age interaction 0.0028 0.0019 0.1413 0.0032 0.0021 0.1% 

Atkr  Platelet Recovery 

Efect 

P r o p o r t i o ~ l  Hazards Lej-Truncated 
Model l Model ll 

b SECb) p-Value b SE@) P-Value 
- 

AML low-risk - 1.7622 0.4183 < 0.0001 -1.7161 0.4255 < 0.0001 
AML high-risk -0.7914 0.3991 0.0474 -0.7565 0.4075 0.0634 
AML FAB Grade 4 or 5 1.2222 0.3224 < 0.0001 1.2116 0.3222 0.0002 
Patient age -28 0.0404 0.0216 0.0610 0.0387 0.0218 0.0754 
Donor age -28 -0.0308 0.0203 0.1305 -0.0292 0.0205 0.1540 
Patient X donor age interacrion 0.0027 0.0012 0.0294 0.0027 0.0012 0.0305 

Fitting this model, we obtain the partial likelihood estimates h, . . . , h2 
(see Table 9.11), and, using the~e~estimates, Breslow's estimate of the 
cumulative baseline hazard rate H,(t) is computed. The estimates of 
Hk(t) = Ji hk(u)du, k = 1,2 are given by 

A,(t) = Ao(t) exp z bjZj(t) I:. I 
and 

A,(t) = Ao(t) exp z bjzj(t) [5 I 
An alternative to the proportional hazards model is to fit a model 

with distinct baseline hazard rates for the time to death or relapse for 
patients before and after platelet recovery, that is, we fit the Cox model 

9.5 Synthesis of Time-varying Effects (Multistate Modeling) 3 1 9  

hl(t 1 Z) = hOl(t)exp(~;,, PjZj) to the data before platelet recovery 
by censoring any individual whose platelets recover prior to death or 
relapse at their platelet recovery time. Using this modified data set, we  
obtain an estimate H1(t) = ~ ~ ~ ( t ) e x ~ [ ~ ; = ,  bjZj(t)l, where Hal is Bres- 
low's estimator of the baseline hazard function. To estimate the hazard 
rate after the platelet recovery time, notice that only patients whose 
platelets return to nominal levels provide any information on this rate. 
To estimate parameters of the model &(t I Z) = h,(t)exp(~;=, cr,Z,), 
we use a left-truncated likelihood with patients entering the risk set at 
time Tp.  Using the estimates of a obtained from maximization of this 
partial likelihood, an estimate of &(t) is obtained using Breslow's es- 
timator (8.8.2) where W(t; a) is based on the left-truncated risk set at 
time t. The estimate of &(t) is Hz(t) = Hoz(t) exp[C?=, ajZj(tll. 

Figure 9.2 Estimted baseline cumulatitx hazard rates under the two mode&. 
Model 1 (-) Model 2: pre platelet recovety C-) post platekt reccovety 
C---) 
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Having estimated the basic cumulative hazard rates Hp, HI, and Hz, 

estimating q and r2 proceeds by substituting these values in Eq. (9.5.1) 
and (9.5.2). Thus, we have the following estimates: 

and 

e1(s, t )  = exd-[Ejl(q)  - fil(t)l - [EjP(r,) - IjP(t)l} (3.5.6) 
I:(t<r,5s) 

Here, the times q are when an individual either-has platelets recover or 
when they experience an event. The values AH(ri) are the jump sizes 
of the estimate fi(ri) at the time ri. 

b I 
5 Ib is 

wetfa PDn TmMplanr 

Figure 9.3 Comparison of predicted probability of death or relapse in the 
fitst hm yeam after transphnt for an ALL patient. Platelets recovered (-) 
Platelets not recovered No MIX  (-) Pk#ekts not r e c w e d  M l X  (---I 
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In the current example, the two models give quite similar pictures 
of the effects of fixed covariates and of platelet recovery on disease- 
free suwiyal. Figure 9.2 is a plot of the cumulative baseline hazar* for 
model I, H,,(t), and the before and after platelet recovery rates, Hol(t) 
and fioz(t), respectively. From these plots, we see that the baseline rates 
from the two models are quite similar. In the remainder of this section, 
we shall base our discussion on Model I, because this model, which 
requires estimating a single baseline hazard rate, has a higher statistical 
precision. 

First, we consider the effects of platelet recovery for a fixed time 
period. Here, we look at a comparison of r1(2 years, t) and r2(2 years, 
t )  as a function of the number of weeks post transplant at which the 
prediction is to be made. Because these probabilities depend on the 

Figure 9.4 Comparison of predicted probability of death or relapse in the 
fint huo yeam after transplant for an  AML low riskpatienz. Platelets recovered 
(-1 Platelets not recovered No (-) Platelets not recovered 
(--- ) 
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fixed-time covariates, we fix the patient FAB status at not being M4 .or 
M5 (5 = 0 = &) and patient and donor age at 28 years (Z4 = z5 = 
& = ZIO = ZI1 = Zlz = 0). In Figure 9.3, we present results for ALL 
patients (Zl = & = Z7 = & = O), in Figure 9.4 for AML low-hk 
patients (& = & = 1; Z2 = & = 01, and, in Figure 9.5, for Am 
high-risk patients (Zl = & = 0; & = & = 1). A single curve (the 
solid line) is given for the probability of death or relapse within the first 
two years after transplant for a patient who at t weeks has had platelets 
recover. Two curves are presented for the corresponding probability for 
a patient who has yet to have platelets recover. The first (short dashed 
line) is for patients not given h!TX and the second (long dashed line) 
for those that did receive MTX. Note that, because this covariate affects 
only the platelet recovery rate, there is a single curve for individuals 

I 

I I"' 
.- 

Figure 9.5 Comparison ofpreditedprobabiIi& of death or relapse in thejrst 
two yeats affer transpkant fir an AMt high risk patient. Platekts r e c d  
/-) Pkatekts not recowed No M1X (-) Pkatekts not recowed MIX 
(---) 
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whose platelets have recovered. A careful examination of these figures 
shows that, for ALL patients (with this set of other covariates), delayed 
platelet recovery seems to have only a smaU effect. For AML patients, it 
seems clear that delayed platelet recovery beyond about 4 weeks seems 
to predict a much greater chance of death or relapse than individuals 
who have had platelets return to normal prior to this time. Clearly, 
for AML patients, if the platelets do not recover by week 10-11, the 
patient has a very poor prognosis, and some therapeutic measures are 
indicated. 

Figures 9.6-9.8 provide an alternate approach to looking at the effect 
of platelet recovery on disease-free survival. Here, we fix the time, 
when the history is known, at either 3, 7, or 10 weeks and look at 

Figure 9.6 Disease flee survival probabilities fir an ALL patient g i m  their 
histoy at 3 weeks. PkateIets recowed (-1 Pkakkts not recoveted No MiX 
(-) Platekts not r e c w e d  MIX (--- ) 
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Figure 9.7 k a s e  free survioal probabilities for an W patient g i m  tbeir 
history at 7 weeks. Platekts recouered (-) Platekts not recovered No M l X  
(-) Platekts not recovered MIX  (---) 

the diseasefree survival curves for an W patient with one of the two 
histories at that time, that is, we compute 1 - ~ ~ ( s ,  to) and 1 - -(S, to), 
for to = 3, 7, or 10 weeks. Again, the fixed-time covariates for FAB 
status and age are set at 0, and separate curyes are fitted for patients 
with or without the MTX treatment. From Figure 9.6, again, we see 
only a small effect of platelet recovery if we make estimates based on 
the history at week 3. At week 7 we see that patients who were given 
MTX at transplant at this time, and whose platelets have yet to return 
to normal do much worse than other patients. At week 10, this pattern 
is dramatically enhanced and, here, patients, who were not given MTX 
and whose platelets have yet to recover, also do poorly. 
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Figure 9.8 &ease free susvival probabilities fm an W patient g i m  their 
history at 10 uneeks. Platekts recowed (-) Platekts not recouered No MZY 
(-4 Platelets not recooered M X  (---) 

Practical Notes 

1. A more detailed example, which extends these techniques to mul- 
tiple intermediate events and end points using Model I, can be found 
in Klein, Keiding and Copelan (1994). 

2. Extensions of Model I1 to more complex situations can be found in 
Andersen et al. (1993). 

3. Qian (1995) provides standard error estimates for these estimators. 
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9.6 Exercises 

9.1 In Exercise 8.1, a proportional hazards model was fit to data from a 
study of the effects of ploidy on survival for patients with cancer of 
the tongue. A single binary covariate was used. Using an appropriate 
timedependent covariate, test the hypothesis that the hazard rates for 
the two groups are proportional. 

9.2 In Exercise 8.2, a proportional hazards model was fit to data from a 
study of the survival of rats implanted with F98 glioma cells in their 
brains. Three groups of rats were considered: control rats, rats given 
radiation only, and rats given radiation plus BPA. Using an appropriate 
set of timedependent covariates, test that the hazard rates of the three 
groups are proportional. 

9.3 In Example 7.9, data from a clinical trial of chemotherapy and chemo- 
therapy combined with radiotherapy in treating locally umesectable 
gastric cancer is given. Of interest in this study is a comparison of the 
efficacy of the two treatments on overall survival. 
(a) Using an appropriate proportional hazards model, test the hypoth- 

esis of difference in survival between the two treatment regimes. 
Find a 95% confidence interval for the relative risk of death for pa- 
tients treated only with chemotherapy compared to patients treated 
with chemotherapy plus radiation. 

(b) Confirm that the hazard rates for the two treatment groups have 
nonproportional hazards using a timedependent covariate in the 
proportional hazards model. 

(c) Because the hazard rates for the two treatment groups are not pro- 
portional, consider a model with two tirnedependent covariates: 

1 if chemotherapy only and t 5 7, and 
0 otherwise 

&(t) = { 1 if chemotherapy only and t > 7, 

0 otherwise 

Find the value of r which maximizes the partial likelihood for this 
model. 

(d) Using the model constructed in part c discuss the relationship be- 
tween the two treatments for locauy umesectable gastric cancer 
and survival. Compare the relative risks obtained from this model 
with the relative risks obtained in part a. Explain how a physician 
should present this model to a patient. 

9.4 Consider the data on bone marrow transplantation for acute leukemia 
patients discussed in section 1.3. As noted in Exercise 7.8, graft-versus- 

host (GVHD) disease is considered to have an antileukemic effect. To 
test this hypothesis, a Cox regression model will be fit to the times 
to relapse of these leukemia patients. Here patients who die prior to 
relapse are considered as censored observations. 

Fit a proportional hazards model with appropriate time-dependent 
covariates which can be used to determine which of four time-varying 
GVHD groups (patient's yet to develop any GVHD, patient's who have 
had acute GVHD, chronic GVHD, or both acute and chronic GVHD) 
has the lowest relapse risk. Estimate model parameters, and make the 
appropriate hypothesis tests. Provide point estimates and 95% confi- 
dence intervals for the relative risk of relapse for the GVHD groups as 
compared to the group with no GVHD at time t. 

In Exercise 12 of Chapter 7, a stratified test of the equality of the four 
stages of laryngeal cancer was conducted. In that problem, the test was 
stratified on the cancer being diagnosed prior to 1975 or not. The data 
for this comparison is found on our web site. 

Fit a proportional hazards model, stratified on the cancer being 
diagnosed either prior to 1975 or not. Include, in the model, indi- 
cator variables for stage of disease and a continuous covariate for 
patient age, as in Example 8.3. Produce an ANOVA table for the 
fitted model, and compare this to the results for the unstratified 
model found in Example 8.3. 

(b) Using a likelihood ratio test, test the hypothesis that the effects of 
the stage and age factors are the same in the two strata. 

(c) Repeat part b using a Wald test. 

In Exercise 13 of Chapter 7, data was presented on a litter-matched 
study of the tumorigenesis of a drug. The data is found in that exercise. 

(a) Ignoring the fact that this was a litter-matched study, fit a propor- 
tional hazards model to this data to estimate the relative risk of 
tumorigenesis of the drugged rats as compared to the control rats. 
Find a 95% confidence interval for this relative risk. 

(b) Repeat part a using a proportional hazards model stratified on litter. 
Compare your results. 

In Example 8.5, a proportional hazards model was built to the data on 
disease-free survival for bone marrow transplantation patients. Of pri- 
mary interest in that example was the comparison of disease states, and 
possible factors to be adjusted for were the patients' FAB status, their 
waiting time to transplant, donor and recipient gender, CMV status, and 
age. Because patients who developed acute graft-versus-host disease 
may have different risk factors for disease-free survival, find the best 
fitting model for these factors for those patients who have experienced 
acute graft-versus-host disease. Compare your final model to that found 
in Example 8.5. 
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9.8 In the bum study described in section 1.6 and as a follow-up to Exer. 

cises 8.2 and 8.9- 
(a) Introduce a time-dependent covariate that reflects the time at which 

a wound was excised. Investigate the effects of the timing of wound 
excision on the time until infection occurs. 

(b) Introduce another time-dependent covariate that reflects the time 
when a prophylactic antibiotic treatment was administered. Investi- 
gate the effect of having a prophylactic antibiotic treatment on the 
time until infection occurs. 

(c) Fit a full model, adjusting for all other explanatory covariates as 
needed to the time until infection occurs. Test for proportional 
hazards and deal with any variables with nonproportional hazards, 
as you deem appropriate. 

(d) Make an inference about the time until infection among those indi- 
viduals who had a prophylactic antibiotic treatment administered. 
Adjust for all other explanatory covariates, as needed. Test for pro- 
portional hazards, and deal with any variables with nonproportional 
hazards, as you deem appropriate. 

Additive Hazards ... 

Regression Models 

10.1 Introduction 

In the last two chapters, we examined regression models for survival 
data based on a proportional hazards model. In this model, the effect 
of the covariates was to act multiplicatively on some unknown baseline 
hazard rate. Covariates which do not act on the baseline hazard rate in 
this fashion were modeled either by the inclusion of a time-dependent 
covariate or by stratification. 

In this chapter, we shall consider an alternative to the semiparametric 
multiplicative hazard model, namely, the additive hazard model. As in 
the multiplicative hazards model, we have an event time X whose dis- 
tribution depends on a vector of, possibly, time-dependent covariates, 
Z(t) = [Z,(t), . . ., Z,(t)l. We assume that the hazard rate at time t, for 
an individual with covariate vector Z(t), is a linear combination of the 
Zk(tYs, that is, 

where the Pa(t)'s are covariate functions to be estimated from the data. 
Two additive modelsare presented in this chapter. The first, due to 

Aalen (19891, allows the regression coefficients, bk(t), to be functions 


