9

Refinements of the
Semiparametric

Proportional Hazards

9.1

Model

Introduction

In Chapter 8, we modeled the hazard function for an individual as
a function of fixed-time covariates. These are explanatory variables
recorded at the start of the study whose values are fixed throughout the
course of the study. For instance, in Example 8.5, where acute leukemia

' patients were given a bone marrow transplant, we considered the three

risk groups, donor age, recipient age, and several other variables, as

. fixed-time covariates. The basic interest there was to evaluate the rela-

tionship of the risk groups to the hazard of relapse or death, controlling
for possible confounding variables which might be related to relapse or
death. As is typical in many survival studies, individuals are monitored
during the study, and other explanatory variables are recorded whose
values may change during the course of the study. Some of these vari-
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the patient’s history
more of the patient’s
the bone marrow transp

at some time. This prediction changes as more and
history is observed. This approach is illustrated by
lant experiment first presented in section 1.3.

Time-Dependent Covariates

EXAMPLE 9.1

In this section, our data, based on a
the triple [7},8,,[2,(0,0 = t = T},
time on study for the jth patient, 3,

sample of size n, consists of
j = 1,...,n where T; is the
is the event indicator for the sth
patient (§; = 1 if event has occurred, O if the lifetime is right-censored)
and Z( = [Zy(®, ..., Zyp@] is the vector of covariates for the jth
individual. For the covariate process, we assume that the value of Z;(#)
is known for any time at which the subject is under observation. As in
Chapter 8, we assume that censoring is noninformative in that, given
Z(1), the event and censoring time for the jth patient are independent.
Ifthe event times are distinctand 4 < < *** < tp denotes the ordered
event times, Z(#,) is the covariate associated with the individual whose
failure time is % and R(t) is the risk set at time 4 (that is, R(#) is the set
of all individuals who were still under study at a time just prior to 2,
then, the partial likelihood as described by (8.2.1) is given by

P
p €Xp [Z BbZ(f)b(ti)]
=] e ,
LY exp [Z B,,Zﬂ,(t,)]

JERUD bh=1

9.2.1)

based on the hazard formulation (9.1.1). Estimation and testing may
r 8 with the appropriate alterations of Z to (ool

proceed as in Chapte
ties are present, then, generalizations of the partial likelihoods described

in section 8.4 may be used.
We shall illustrate the use of time-dependent covariates in the follow-

ing example which is a continuation of Example 8.5.

In Chapter 8, we examined the relationship between disease-free sur-
d-time factors for patients given a bone marrow

vival and a set of fixe
transplant. In addition to the covariates fixed at the time of transplant,

there are three intermediate events that occur during the transplant
recovery process which may be related to the disease-free survival
time of a patient. These are the development of acute graft-versus-
host disease (aGVHD), the development of chronic graft-versus-host
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disease (cGVHD) and the return of the patient’s platelet coup

self-sustaining level (platelet recovery). The timing of these evet > o
th(::*y occur, is random. In this example, we shall examine thejr re]nt§, f
ship to the disease-free survival time and see how the effects afu ol
fixed covariates change when these intermediate events occur (l\sﬂ}e
the case of fixed factors, we shall make adjustments for these faéto o
Fhe light of the primary comparison of interest, the potential differ. e
in leukemia-free survival among the risk groups. enices

Each of these time-dependent variables may be coded as an indic

variable whose value changes from 0 to 1 at the time of the occurr e
of the intermediate event. We define the covariates as follows: enee

Z.(D = { 0 if £ <time at which acute graft-versus-host disease occurs

I if £ = time at which acute graft-versus-host disease occurs

z(H = { (1) if ¢ < time at which the platelets recovered

if £ = time at which the platelets recovered

and

Z(D) = { (1) if + < time a1 which chronic graft-versus-host disease occurs

if £ = time at which chronic graft-versus-host disease occurs

~ Because the interest in this example is in eliminating possi i
in comparing survival for the three risk groups, ]ocalg tI:asts llxjrlzybl;z
performed to assess the significance for each time-dependent covariate
ina model that already has covariates for the two risk groups included
A.xs in Chapter 8, we define Z, = 1 if AML low-risk; Z, = 1 if AML high:
risk, and we fit a separate Cox model for each of the three intermediate
events which include the disease factor (Z,, Z,). The likelihood ratio
chl—squarf-:'d statistics (and the associated p-values) of the local tests
thzalt the risk coefficient 8 is zero for the time-dependent covariate are
X* =117 (p = 0.28) for Z,(#), 0.46 (p = 0.50) for Z.(H), and 9.64
(p = 0.002) for Z(#). A summary of the coefficients, standard errors,
Wald chi-square statistics and Wald p-values appears in Table 9.1 for
each of the three regressions.

Here, we see that only the return to a self-sustaining level of the
platelets has a significant impact on disease-free survival. The nega-
tive value of b, suggests that a patient whose platelets have recov-
ered at a given time has a better chance of survival than a patient
who, at that time, has yet to have platelets recover. The relative risk
of exp(=1.1297) = 0.323 suggests that the rate at which patients are
relapsqlg or dying after their platelets recover is about one-third the
rate prior to the time at which their platelets recover.

9.2 Time-Dependent Covariates 299

EXAMPLE 9.1

TABLE 9.1
Time Dependent Variables and the Results of Univariate Proportional Hazards

Regression in Comparing Risk Groups in Bone Marrow Transplant Study

Degrees of Wald

Freedom b SE(b) Chi Square  p-Value
z 1 —0.5516 0.2880 3.669 0.0554
Z; 1 0.4338 0.2722 2.540 0.1110
FAG 1 0.3184 0.2851 1.247 0.2642
z, 1 —0.6225 0.2962 4.4163 0.0356
Z; 1 0.3657 0.2685 1.8548 0.1732
Z( 1 —0.1948 0.2876 0.4588 0.4982
z, 1 —0.4962 0.2892 2.9435 0.0862
zZ; 1 0.3813 0.2676 2.0306 0.1542
Zp(8) 1 —-1.1297 0.3280 11.8657 0.0006

In the next example, we will continue the model building process,
started in Example 8.5 with fixed-time covariates, by incorporating time-
dependent covariates into the study of leukemia patients being given a
bone marrow transplant. The basic strategy is the same as discussed in
section 8.7.

(continued): InExample 8.5, using a forward stepwise model building
procedure, we found that the factors FAB class (Zy: AML with FAB Grade
4 or 5) and age (Z: Patient age —28; Zs: Donor age —28; Zs = Z4 X Zs),
were key explanatory factors for disease-free survival when comparing
risk groups (Z: AML low-tisk; Z,: AML high-risk) to explain disease-
free survival after a bone marrow transplant. In the previous example,
we found that the time:dependent covariate, Zp(2), which indicates
whether the patient’s platelets have returned to a self-sustaining level,
was an important time-dependent factor in making this comparison. A
natural question is whether these factors are still significantly related
to disease-free survival in a model that includes both fixed and time-
dependent factors. To test for this, we fitted three proportional hazards
models, the first with the fixed factors of FAB class and age, the second
with Z,(®, and the third, a combined model with both the fixed and
time-dependent factors. The disease type factor is included in each of

" the models. The results of these three regressions are summarized in

Table 9.2,

Using these results, we see that a local likelihood ratio test of no
time-dependent covariate effect (adjusting for all fixed effects) has a chi
square of —2[—356.99 — (—353.31)} = 7.36 with one degree of freedom
(p = 0.0067) whereas the local likelihood ratio test of no FAB or age



300 _ Chapter 9 Refinements of the Semiparametric Proportional Hazards Model
TABLE 9.2
Fixed Factor Model, Time Dependent Factor Model and ¢ j
the BMT Example mbed Mode for
Fixed Factors Only Time-Dependent Factor All Factors
b SE(b) p-Value b SE(b) p-Value b SE(H) D-Valu,
e
Z -1.001 0354 0002  —0.49 0.289
! ) . 0.086 -1.032 0.353
z —0.404 0363 0265 0.381 0267 015  —0.415 0365 oo
z 0.837 0.279 0.003 - - - 0.813 0.283 P
Z 0.007 0.020 0.728 - - - 0.009 0.019 o
Zs 0.004 0.018 0.831 - - - 0.004 0.018 hoted
?(0 0.003 0.001 0.001 - - - 0.003 0.001 2‘385
@0 - - - -L130 0328 0001 -09% 0337 000
-356.99 -361.82 ~353,31 '

factor adjustment has a chi square of —2[—361.82 — (—353.3

: ; 311 =17,
mgl tf;:xr _gegreeg of ﬁf'eedom (p = 0.0019). Clearly, both the ﬁxed-tixgz
an e-dependent factors should be adjust i
o e e adjusted for when comparing

Next, we examine the relationships between the time-depend

R . ent fac-

tor and the ﬁxegi time factors. We define an additional get of timg-
dependent covariates that represent interactions between the timing of
the return of the platelets to normal levels and the fixed-time covariates
The factors to be considered are as follows: .

Fixed-Time Main Effect Factors

Risk group factor: (Z;: AML low-risk; Z: AML high risk)
FAB factor: (Z;: AML with FAB Grade 4 or 5)
Age factor (Z;: Patient age —28; Z;: Donor age ~28; Z; = Zy X Zs)

Time-Dependent Main Effect Factor:
Platelet recovery factor [Z:(#)]
Time-Dependent Interaction Factors

Risk group X Platelet recovery factor: (Z,(t) = Z, X Zu(8); Z(D) =
Z, X Z(5) 7 1 P( )y 8( )

FAB X Platelet recovery factor: (Z(9) = Z; X Z(£)

Age X Platelet recovery factor: (Zy(t) = Z; X Zo(8); Zi(D) = 2 X
Zt); ZuD) = Z X Zp(2) BT ARS8
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Note that, in this model, exp(B,), for example, is the relative risk
of death or relapse for an AML low-risk patient as compared t0 an
ALL patient, and exp{B;} is the excess relative risk between these two
groups when the patient’s platelets return to a normal level, that is,
exp(By) is the relative risk of these two groups before platelet recovery
and exp{B; + B} is the relative risk after platelet recovery.

To determine which of the time-dependent interaction factors should
be included in the final model, we shall use a forward, stepwise se-
lection procedure. Each model will include the three fixed-time factors
and the platelet recovery factor, Here, we will base the inference on
the likelihood ratio test although one would get the same final result
using the Wald test. The results of this procedure are summarized in
Table 9.3.

This analysis suggests that the three interaction terms between the
fixed factors and the time-dependent covariate should be included in

TABLE 9.3
Likeliboods And Likelihood Ratio Tests for the Inclusion of Interactions Between

Fixed Effects and the Time of Platelet Recovery

FAB X Z,(p), Age X Z,(®)

2 Likelibood DFof
~ Factors in Model Log Likelibood Ratio X* Xt p-Value
’ Group, FAB, age, Z,(9) —353.31
_ Group, FAB, age, Z,(#), group X Z,($) —349.86 6.89 2 0.0318
" Group, FAB, age, Z,(1), FAB X Z(D —351.64 3.33 1 0.0680
. Group, FAB, age, Z,(#), age X Z,(D —349.36 7.90 3 0.0482
‘ Group X 2,(#) Added to Model
. Likelibood DFof
Factors in Model Log Likelibood Ratio X? X? p-Value
Group, FAB, Age, Z,() —347.78 415 1 0.0416
Group X Z,(#),FAB X Z,(9)
Group, FAB, Age, Z,(® —343.79 12.14 3 0.0069
Group X Zy(1), Age X Z,(9)
Age X Z(t) Added to Model
Likelibood DFof
¢ Factors in Model Log Likelibood Ratio X* X2 p-Value
Group, FAB, Age, Z,(#),Group X Z,(£) ~341.521 453 1 0.0333

FAB X Z,(#) Added To Model
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the model. The ANOVA table for the final model is given in Table
Some care must be taken in interpreting these covariates. For exam9.4'
here, we see that the relative risk of treatment failure (death or rela; ple,
before Platelet recovery for an AML low-risk patient compared tpse)
ALL patient is exp(1.3073) = 3.696 and a 95% confidence interva(J) faIl
the relative risk is exp(1.3073 £ 1.96 X 0.8186) = [0.74, 18 39] Tl:)r
rlsk_ of treatment failure after platelet recovery for an A,ML.lov.v o
patient relative to an ALL patient is exp(1.3073 + (—3.0374)) = (;nlssk
The standard error of the estimate of the risk coefficient after platél :
recovery, b+ b is [V(b) + V(&) +2 Cov(h,, b)IV2 = [0.6701 +0 8570‘-31.t
%(—0.6727)]1/ 2 = 04262, so a 95% confidence interval for the ;elati
nsk of treatment failure after platelet recovery for an AML low-n':}(:
patient is exp(—1.7301 * 1.96 X 0.4262) = [0.08,0.411. This sugge
that the difference in outcome between the AML low-risk patieniga[sltg
the ALL pagieﬂr;ts is due to different survival rates after the platelets
recov i i

roc :r:i?ar. at, prior to platelet recovery, the two risk groups are

TABLE 9.4
ANOVA Table for a Model With Fixed Factors, Time to Platelet
3 R
Their Interactions o, dnd

Degrees of Wald

. Freedom b SE(B)  ChiSquare  p-Value

?: AANNE Lc:;vh n‘fkk 1 1.3073 0.8186 2.550 0.1103
2° et
Jr A hgh ik 1 1.1071 1.2242 0.818 0.3658
Grade 4 or 5 1 —1.2348 111 .

Zs: Patient age —28 1 —0.1538 0.052? ;;422 802(6)22
Zs: Donor age —28 1 0.1166 0.0434 7.229 0.0072
Zsg=Z; X Zs 1 0.0026 0.0020 1.786 0.1814
Zp(D: Platelet Recovery 1 —0.3062 0.6936 0.195 0.6589
ZA(D = 2y X Zp(t) 1 —~3.0374 0.9257 10.765 0.0010
Z(8) = Z, X Zp(D 1 —1.8675 1.2908 2.093 0.1479
Zy(t) = Z; X Z(D) 1 24535 1.1609 4.467 0'0346
Zio(®) = Zs X Zo(D 1 01933 00588 10821  0.0010
Zp (D = 25 X Zp (D 1 —0.1470 0.0480 9.383 0.0022
220 = Zg X Zp(D) 1 0.0001 0.0023 0.003 0:9561

A major use of time-dependent covariate methodology is to test the
proportional hazards assumption. To test the proportionality assumption
for a .ﬁxed—t.lme covariate Z;, we artificially create a time-dependent
covariate, Z,(#), defined as

Z(D = Z X gD .22

SRR
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EXAMPLE 9.2

EXAMPLE 9.1

Here, g(#) is 2 known function of the time ¢. In most applications, we
take g(#) = In 2. A proportional hazards model is fit to Z; and Z,(¢) and
the estimates of B; and B, along with the local test of the null hypothesis
that B, = 0 is obtained. Under this proportional hazards model, the
hazard rate at time ¢ is b(t | Z) = b, () explB; Z; + B(Zy X ()], s0 if
we compare two individuals with distinct values of Z;, the ratio of their
hazard rates is

Z
——Z[[:lzi]] = exp{BilZ1 — Z]1 + B.g(DIZ, — Z[1},
1

which depends on ¢ if B; is not equal to zero. (Compare this to (8.1.3)
where the proportional hazards assumption holds.) Thus, a test of I, :
B; = 0 is a test for the proportional hazards assumption. The ability of
this test to detect nonproportional hazards will depend on the choice
of g(#). This method will be illustrated in the following examples.

In Example 8.2, a proportional hazards model, with a single covariate
Z, denoting the placement of a catheter either percutaneously (Z; = 1)
or surgically (Z; = 0), was fit to the time to first exit-site infection (in
months) in patients with renal insufficiency. In Figure 8.1, a graphical
check of the proportional hazards assumption was made which casts
doubt on the assumption of proportional hazards between the event
times for the two types of catheters. Here, we will formally test this
assumption employing the methodology of time-dependent covariates.
To perform the test, we define Z,() = Z, X In ¢ and fit the Cox model
with covariates Z; and Z,(#). Thus the relative risk of an individual
with a percutaneously placed catheter compared to a surgically placed
catheter is given by

W1\ 2 = D/t Z1 = 0) = exp(y + Baln ) = * exp(BD,

which is a constant only if 8, = 0. This is the rationale for testing
the local hypothesis H, : B = 0 to check the proportional hazards
assumption.

The likelihood ratio statistic (and associated p-value) for this local
test is 12.22 (p = 0.0005). The Wald chi-squared statistic for this local
test is (—1.4622)2/0.345 = 6.19 (p-value = 0.013). Thus, the evidence
is strong that the hazards are not proportional, and, hence, the statistical
model in Example 8.2 needs to be modified accordingly.

(continued): We shall illustrate the testing of the proportionality haz-
ards assumption for the fixed-time factors used in Example 8.5. As in
that example, we create fixed-time covariates for the patient’s disease
status (Z = 1 if AML low-risk: Z, = 1 if AML high-risk); waiting time
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from diagnosis to transplant (Z3); FAB classification (Z; = 1 if M4 o,
M5 for AML patients); use of graft-versus-host prophylactic combining
methotrexate (Zs = 1 if MTX used); and for the combined patient ang
donor characteristics including sex (Z; = 1 if male donor; Z, = 1 ¢
male recipient; Zg = Zg X Z; = 1 if donor and recipient are male); Cvy
status (Z, = 1 if donor is CMV positive; Zj, = 1 if recipient is CMV pos-
itive; Zyy = Zy X Zy; = 1 if donor and recipient are CMV positive); and
age (Z;, = donor age — 28; Z;; = recipient age — 28; Zy; = Zj; X Z,)),
For each factor, we create a set of time-dependent covariates of the
form Z;+14(8) = Z; XIn ¢. To check the proportional hazards assumption,
we fit separate models for each factor which include the fixed values
of covariates constituting the factor and the artificial time-dependent
covariates created from these fixed-time covariates. A local test is then
performed of the hypothesis that all B's are zero for the time-dependent
covariates for this factor. The results are given in Table 9.5. Here we
see that the factor MTX has nonproportional hazards whereas there is
no reason to doubt the proportionality assumption for the other factors.
In the next section, we will reexamine this model, adjusting for the use
of MTX by fitting a stratified proportional hazards regression model.

TABLE 9.5
Tests of the Proportional Hazards Assumption for the Bone Marrow Transplant
Data

Wald Degrees of
Factor Chi Square Freedom p-Value
Group 1.735 2 0.4200
Waiting time 0.005 1 0.9441
Fab status 0.444 1 0.5051
MTX 4.322 1 0.0376
Sex 0.220 3 0.9743
CMV status 1.687 3 0.6398
Age 4.759 3 0.1903

When the proportional hazards assumption is not satisfied, as in
Example 9.2, and interest centers upon a binary covariate, Z;, whose
relative risk changes over time, one approach is to introduce a time-
dependent covariate as follows. Let

Zy(D) = 7 X g(t) = g(&) if the covariate Z; takes on the value 1
=0 if the covariate Z; takes on the value 0,

where g(p) is a known function of time. In Example 9.2, we took
g() = In¢. One difficulty with this approach is that the functlon g is
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EXAMPLE 9.2

usually unknown. In such cases, it may be preferable to use a procedure
that would allow the function g(#) to be estimated from the data.

One simple approach to this problem is to fit a model with an in-
dicator function for g(#). In the simplest approach, we define a time-
dependent covariate

= Zl fer>7
ZXD {0 frer 9.2.3)

Here we have a proportional hazards model with hazard rate

bo(8) exp(prZ;) iftsr
bo(t) exp[(Bl + Bz)zll fe>r

where b,(?) is the baseline hazard rate. Note that, in this model, exp(8,)
is the relative risk, prior to time 7, for the group with 2z, = 1 relative to
the group with Z;, = 0, and exp(B; + B,) is the relative risk, afier time
7, for the group with Z; = 1 relative to the group with Z; = 0, that is,
exp(B,) is the increase in relative risk after time 7 and 7 is sometimes
referred to as the “change point” for the relative risk (Matthews and
Farewell 1982 and Liang et al., 1990).

An equivalent coding for this piecewise proportional hazards model
is to use a model with two time-dependent covariates, Z,(#) and Z;(¥).
Here, Z,(¥) is as in (9.2.3),

B | 2 = {

= Zl ift=r
Z(D { 0 ifr>1’ ©0.24)
For this coding we have
= [b(D)e®E fr=r
12 = { b(De*s ift>71"

The two models will have an identical log likelihood with 8, in model
1 equal to 65 in the second model and B; + B; in the first model equal
to 6, in the second model. Note that €% is the relative risk before Z and
€% is the relative risk after Z.

To determine the optimal value of 7, either model is fit for a set
of 7 values, and the value of the maximized log partial likelihood is
recorded. Because the likelihood will change values only at an event
time, a model is fit with 7 equal to each of the event times. The value
of 7 which yields the largest log partial likelihood is the optimal value
of 7. Proportional hazards can, then, be tested for each region and if it
fails, for ¢ on either side of 7, then this process can be repeated in that
regxon This procedure is illustrated in the next example. T

(continued): In Example 9.2, the proportional hazards assumption
was rejected with respect to placement of the catheter. Instead of in-
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troducing a time-dependent covariate with a k_nown function of time,
a “change point” 7 for the relative risk will be introduced. Because the
likelihood changes only at the event times, Table 9.6'presents the log
partial likelihood using the Breslow modification for ties, as a function
of all 7's at the failure times.

TABLE 9.6 ‘ .
Log Partial Likelthood as a Function of T at the Failure Times

Event Times Log Partial Likelthood

0.5 ~97.878
15 —100.224
2.5 ~97.630
3.5 ~97.500
4.5 —99.683
5.5 -100.493
6.5 —98.856
8.5 ~100.428
9.5 ~101.084
10.5 ~101.668
11.5 ~102.168
15.5 ~100.829
165 ~101.477
18.5 ~102.059
23.5 —102.620

We see from this table that a value of T equal to 3.5 n?aximizes the
log partial likelihood. Using this model and the coding as in model two
we have the following ANOVA table.

rees of Wald
l;'ergeedom b . SE(b)  ChiSquare  p-Value
.0060
ZyD: 2, ift=35 1 —2.089 0.7597 7.56 0
&323 : Z: ift>35 1 1.081 0.7832 191 0.1672

Here, we see that, up to 3.5 months, patients with a percutanec_msly
placed catheter do significantly better than patients given a sur cally
placed catheter (relative risk = exp(—2.089) = 0.124) whereas, after
35 months, there is no evidence of any difference between the two

oups of patients. o
ngopchecll: for proportional hazards within the two time intervals, we
fit 2 model with two additional time-dependent covariates, Zs(9) -1-1
Z(H X Int and Zs(H) = Z(#) X Int. In this model, the test of the nu
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Practical Notes

- Theoretical Note

hypothesis that 85 = 0 is 2 test of proportional hazards in the first 3.5
months, whereas the test of the null hypothesis that 85 = 0 is a test
of the proportional hazards assumption after 3.5 months. The p-values
of the local Wald tests of these hypotheses are 0.8169 and 0.2806,
respectively. Thus, there is no need to further divide the subintervals,

1. SAS PHREG, in the presence of ties, defaults to Breslow’s likelihood
and allows the user to specify either the discrete, Efron, or “exact”
likelihood.

2. In S-Plus, time-dependent covariates in the proportional hazards
model are handled in the routine coxph which uses Efron’s like-
lihood as a default. Breslow’s likelihood and the exact likelihood are
available when there are ties between the event times.

3. To treat a covariate as a fixed-time covariate, it must be known at
the onset of the study. For example, the covariate that signifies that
platelets return to a self-sustaining level is not a fixed-time covariate
because it is not known at the onset of the study whether a patient
will experience this event or not. Such events, which occur at some
intermediate time, are treated as time-dependent covariates.

4. Estimating the survival function or the cumulative hazard function
is difficult for proportional hazards models with time-dependent co-
variates because the integral of b,(#) explB8'Z(9)] depends on the ran-
dom process Z(#). Unless this is a deterministic function, this integral
requires additionally estimating the distribution of the development
of Z(#. Christensen et al. (1986) suggest an estimator to use in this
case.

1. Kalbfleisch and Prentice (1980) distinguish between two types of

time-dependent covariates. The first are external covariates whose
value at any time does not depend on the failure process. Examples
of such covariates are fixed-time covariates, time-dependent covari-
ates whose value is completely under the control of the investigator
" (e.g., a planned schedule of treatments under the control of the in-
vestigator), and ancillary time-dependent covariates that are the out-
put of a stochastic process external to the failure process (e.g., daily
temperature as a predictor of survival from a heart attack). Inference
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for external covariates follows by the notions discu§sed in Chapter
8 and the survival function is estimated by the o_bvxous changes to
the estimator in section 8.6. The second type of time-dependent co-
variates are internal covariates which are time measurements taken
on an individual. These covariates are measured prﬂy as long as the
individual is still under observation, so that the distribution of these
covariates carries information about the failure process. Examples of
internal covariates are the times to acute or chrc_)mc GVHD and the
time to the return of platelets to a normal level in Ew'(am‘ple 91 F_ol-
this type of covariate, the partial likelihood gqnstrucuoq is still va}ld,
but it is not possible to estimate the conditional surv1ya1 function
because PLX = t | Z(®) = 1 Gf Z(®) is known, the subject must be
alive and at risk of failure).

9.3 Stratified Proportional Hazards Models

in the previous section, there are instances when the propor-
ﬁg:,; li;varu(;s asslflmption is violated for some covariate. In such cases,
it may be possible to stratify on that variable and employ tl}e propor-
tional hazards model within each stratum for the other covariates. Here
the subjects in the jth stratum have an arbitrary b_aselme hazard func-
tion b,,(#) and the effect of other explanatpry variables on the hazarcl
function can be represented by a proportional hazards model in that

stratum as
bt Z(D] = b (D explBZBL j=1,...,5. 03D

i i i be the same in
In this model, the regression coefficients are assurped to .
er;ch stratum although the baseline hazard functions may be different
letely unrelated.
angs:i(:nrgg:neasxfld hypothesis testing methods follow as before, where
the partial log likelihood function is given by

LI(B) = L) + LB + -+ + + [LL(P)], 932

is the log partial likelihood (see (8.3.2)) usipg only the
gft:“fao?tjlggze individugalz in the jth stratum. The derivatives for tl;i
log likelihood in (9.3.2) are found by summing the denvan\./f?s‘acr:)h s
each stratum. ZI(B) is, then, maximized with respect 0 [ u'uhzmghen
methods in Chapter 8. The survival function for _the Jth stratum, bv;d -
the covariates are all fixed at time 0, may be estimated as descri
section 8.8. .
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EXAMPLE 9.1

(continued): As we saw in the previous section, the patients who
where given MTX as a graft-versus-host prophylactic did not have haz-
ard rates proportional to those patients not given MTX. One way to deal
with this problem is to stratify on the use of MTX which involves fitting
distinct baseline hazard rates to the two groups. Of interest, as seen in
Table 9.2, is a model for the factors of disease group (Z,, Z,), FAB class
(%), Age (Z;, Z;, Zs) and platelet recovery time Zu(). Assuming that
the effects of the covariates are the same for patients given MTX or not
given MTX, we have the model summarized in Table 9.7.

TABLE 9.7
Anova Table for a Cox Model Stratified on the Use of MTX

Degrees of Wald
Effect Freedom b SE(b)  ChiSquare p-Value
Z,: AML Low-Risk 1 ~0.9903 0.3666 7.298 0.0069

Z,: AML High-Risk

Z3: AML with FAB
Grade 4 or 5

Zy: Patient age —28

Zs: Donor age —28

Z=2XZ

Zy(D): Platelet Recovery

ey

~0.3632 0.3714 0.957 0.3280

0.8920 0.2835 9.902 0.0017
0.0095 0.0198 0.231 0.6305
~0.0014 0.0179 0.006 0.9373
0.0026 0.0009 7425 0.0064
~1.0033 0.3445 8.481 0.0036

L N oY

The Wald chi square of the test of the hypothesis of no group effect
(Hy : By = B, = 0) is 8.916 with a p-value of 0.0116. The results from
the stratified model in this case are quite close to those obtained in the
unstratified model.

A key assumption in using a stratified proportional hazards model is
that the covariates are acting similarly on the baseline hazard function
in each stratum. This can be tested by using either a likelihood ratio test
or a Wald test. To perform the likelihood ratio test, we fit the stratified
model, which assumes common B’s in each stratum, and obtain the log
partial likelihood, ZL(b). Using only data from the jth stratum, a Cox
model is fit and the estimator b, and the log partial likelihood LL,(b ) are
obtained. The log likelihood under the model, with distinct covariates
for each of the s strata, is 37_, LL,(,). The likelihood ratio chi square
for the test that the B’s are the same in each stratum is —2[ZL(b) —
25=1 L] which has a large-sample, chi-square distribution with
(s — 1)p degrees of freedom under the null hypothesis.
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To construct the Wald test, the model with distinct B’s in each stratug,
is found by fitting distinct proportional hazards models to each stratupy,
Estimates from different strata are asymptotically independent becayse
the information matrix of the combined model is block diagonal. The
Wald test is constructed by using an appropriate contrast matrix ag
discussed in section 8.5. This method of testing is equivalent to testing
for an interaction between a stratification variable and the covariates in 3
stratified proportional hazards model. These approaches are illustrateq
in the following continuation of the previous example.

(continued) To test the hypothesis that the effects of disease group,
FAB status, age, and platelet recovery are the same in both MTX
strata, we fitted distinct Cox models to the two strata. The log partia|
likelihoods are —219.677, based on the 97 patients not given MTX,
and —80.467 based on the 40 patients given MTX. The log partial
likelihood from the stratified model, assuming the same fB’s in each
stratum (Table 9.7), is —303.189. The likelihood ratio chi square is
~2{—303.189 — [(—219.677) + (—80.467)}} = 6.09. The degrees of free-
dom of the test are 7, so the p-value of the test is 0.5292, suggesting no
evidence that the covariates are operating differently on patients with
or without MTX as a preventive treatment for graft-versus-host disease.

To further check the assumption of equal effects of the covariates on
the two strata, we shall do a series of one-degree-of-freedom Wald tests
comparing each of §’s in the two strata. Here, we use the results from
fitting the proportional hazards model, separately, in the two strata. For
a given covariate, the estimates in the two strata are asyrpptouea.lly_ in-
dependent, so a Wald test that By; = Bz, where B is the risk coefficient

TABLE 9.8
One Degree of Freedom Wald Tests Comparing Risk Coefficients in the MIX and
No MTX Strata

No MTX MIX
Effect b SE(b) b SE(b) X2 p-Value
Z,: AML low-risk —1.1982 04585 —05626 0.6385 0.654 0.4188

Z,: AML high-risk —02963 04454 —08596 09175 0305 0.5807

Zy: AML with PAB

Grade 4 or 5 1.0888  0.3385 03459 06511 1025 03114
Zs: Patient age —28 0.0276  0.0259 0.0114 00391 0120 072%0
Zs: Donor age —28 —0.0203 0.0253 0.0343 00310 1858 01729
Zs=Zs X 2Zs 0.0022 0.0014 0.0014 00023 0.103 07489

Zp(t): Platelet recovery  —08829 04750 —10089 05511 0030 08626
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of the ith covariate in the jth strata, is

2 _ [y — bl -
X SB[y, + SEAG SEZ[Q,]’z 1,...,7.

The results, summarized in Table 9.8, confirm that, for each of the
covariates, there is no reason to suspect that the B8’s are different in the
two strata and the stratified model is appropriate.

The stratified proportional hazards model can be used to model
matched pair experiments. Here, for each pair, we assume the model
(9.3.1) with the strata defined by the matched pairs. When the number
of pairs is large, then, the large-sample properties of the estimators from
this model are valid. In this approach, the factors used in the match-
ing are not adjusted for in the regression function, but are adjusted for
by fitting distinct baseline rates for each pair. This is illustrated in the
following example.

In section 1.2, the results of a clinical trial of a drug 6-mercaptopurine
(6-MP) versus a placebo in 42 children with acute leukemia was de-
scribed. The trial was conducted by matching pairs of patients at a
given hospital by remission status (complete or partial) and randomiz-
ing within the pair to either a 6-MP or placebo maintenance therapy.
Patients were followed until their leukemia returned (relapse) or until
the end of the study. In Example 4.1, the survival curves for the two
groups were estimated, and, in Example 7.7, using a stratified log rank
test, we saw that survival was different in the two groups.

To estimate the relative risk of relapse in the 6-MP group as compared
to the placebo group, we fit a Cox model stratified on the pair number. A
single covariate is used with the value Z = 1 if the patient was given 6-
MP and 0 if given a placebo. The estimate of 8 is —1.792 with a standard
error of 0.624. The likelihood ratio chi square of the test of 8 = 0 is
11.887 (p = 0.0000), the score chi square is 10.714 (p = 0.0011) and
the Wald chi square is 8.255 (p = 0.0041) suggesting a significant
difference in relapse rates between the two treatment groups. Note that
the score test chi square is exactly the stratified log-rank chi square

“found in Example 7.7. A 95% confidence interval for the relative risk

is exp(—1.792 £ 1.96 X 0.6236) = [0.049, 0.566]. Thus, patients given a
placebo are between 2 t6 20 times more likely to relapse than patients
given 6-MP.
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1. When stratification is employed, the tests of hypotheses on regres-
sion coefficients will have good power only if the deviations from
the null hypotheses are the same in all strata.

2. The large sample stratified tests of hypotheses on regression coeffi-
cients are appropriate when either the sample size within strata is
large or when when the number of strata is large.

3. Estimation of the survival function or cumulative hazard function for
each stratum can be obtained using the estimators in section 8.8.

9.4 Left Truncation

In this section, we shall examine how to apply the proportional hazards
regression model when the data is left-truncated. The most common
situation, where left-truncated data arises, is when the event time X is
the age of the subject and persons are not observed from birth but rather
from some other time V corresponding to their entry into the study.
This is the case for the example introduced in section 1.16 where the
age, X, at death for the ith subject in a retirement center in California
was recorded. Because an individual must survive to a sufficient age V;
to enter the retirement community, and all individuals who died prior
to entering the retirement community were not included in this study,
the life lengths considered in this study are left-truncated.

Another situation which gives rise to this type of data is when the
event time X is measured from some landmark, but only subjects who
experience some intermediate event at time V are to be included in the
study. This is the case for the bone marrow transplant example where
we wish to draw an inference about X, the time from transplant to death
or relapse, for those patients whose platelets have recovered to a §e]f-
sustaining level. If V is the time until platelets recover for the patient,
then only patients who experience this intermediate event are entered
into the study. Again, life lengths in this study will be left-truncated.
The times V; are sometimes called delayed entry times.

To formulate a proportional hazards regression model for a set of
covariates Z, we model the conditional hazard rate of ¢, given Z and
X >V, that is, we model

PX=t|Z,X>V)

Wt|Z,X> V)= prrs Hzx> v

9.4 Left Truncation 313

EXAMPLE 9.4

EXAMPLE 9.5

If the event time X and the entry time V are conditionally independent,
given the covariates Z, then a simple calculation shows that the con-
ditional hazard &t | Z(), X > V) and the unconditional hazard rate,
B(t | Z) are equivalent (Andersen, et al., 1993).

To estimate the regression coefficients with lefi-truncated data, the
partial likelihoods are modified to account for delayed entry into the
risk set. To do this, in all of the partial likelihoods presented thus far,
we define the risk set R(?) at time # as the set of all individuals who are
still under study at a time just prior to ¢. Here, R(D = {j | V; < t < T}}.
With this modification, the techniques, discussed in Chapter 8 and in
earlier sections of this chapter, can be applied to left-truncated data. We
shall illustrate these methods in the following two examples.

For the Channing House data set introduced in section 1.16, we look at
the effect of gender on survival. To fit this model, we modify the risk set
to include only those individuals at age ¢ who entered the retirement
home at an earlier age and are still under study. The size of this risk set
changes with time as depicted in Figure 4.10. The estimated regression
coefficient for gender is 0.3158 with a standard error of 0.1731 (Wald p-
value of 0.0682). Thus, there is not a significant difference, with respect
to survival, between males and females.

In the bone marrow transplant study described in section 1.3, we found,
in Example 9.1, one important variable predicting that disease-free sur-
vival is the time until the platelet count returns to a self-sustaining
level. It is of interest to make an inference about disease-free survival
among only those patients who have had their platelets return to a
self-sustaining level.

We shall fit the model stratified on the use of MTX to prevent graft-
versus-host disease:

Bt | Z,MTX) = by () exp(B‘D), for j = MTX, No MTX.

- The data is left-truncated because only patients whose platelets have

returned to a normal level at time # are included in the risk set at that
time. The resulting ANOVA table for this model is given in Table 9.9.

The Wald test of the hypothesis of no group effect has a chi square of
18.27 with two degrees of freedom. The p-value of this test is smaller
than 0.0001, strongly suggesting differences among the three disease
groups in disease-free survival afier platelet recovery.
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TABLE 9.9
Anova Table for a Cox Model for Patients Whose Platelets Have Returned 1,

Normal Levels, Stratified on the Use of MTX

Degrees of Wald

Effect Freedom b SE(b)  ChiSquare P-Valye
Zy: AML low-risk 1 —-1.7521 0.4376 16.03 <0.0001
Zp: AML high-risk 1 —0.7504 0.4077 3.39 0.0657
Z3: AML with FAB

Grade 4 or 5 1 1.2775 0.3249 15.46 <0.0001
Zj: Patient age —28 1 0.0417 0.0223 3.51 0.0611
Zs: Donor age —28 1 —0.0346 0.0207 2.80 0.0943
Zo=Z4y X Zs 1 0.0023 0.0012 3.49 0.0617

1. Age is often used as a covariate when it should be used as a left-
truncation point. When age is used as a left-truncation point, it is
unnecessary to use it as a covariate in the model.

2. Left truncation can be performed in S-Plus and SAS.

3. The survival function for lefi-truncated proportional hazards regres-
sion models with fixed covariates can be estimated by using the
techniques in section 8.8.

1. A key assumption for the left-truncated Cox model is that the event
time X and the delayed entry time V are independent, given the
covariates Z. If this assumption is not valid, then, the estimators of
the risk coefficients are not appropriate. See Keiding (1992) for a
discussion of this assumption and additional examples.

9.5 Synthesis of Time-varying Effects
(Multistate Modeling)

In previous sections of this chapter, we saw how we can use time-
dependent covariates or left-truncation to study time-varying effects on
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survival. Time-dependent covariates, in particular, provide us with im-
portant information on how changes in a subject’s history effect survival.
In this section, using the bone marrow transplant example, we shall il-
lustrate how these analyses can be combined to give an investigator a
complete picture of the way changes in a patient’s status can affect the
prediction of patient outcome.

The basis of this approach is the notion of a patient’s history at a given
time. Intuitively, a “history” is all the information collected on a patient
up to a given time ¢. It consists of all the patient’s covariates measured
at time O (the fixed time covariates) and the complete knowledge of all
time-dependent covariates up to time ¢. In the bone marrow transplant
example discussed in Example 9.1, there are two possible histories
when we consider the effects of platelet recovery on disease-free sur-
vival. The first history, at time ¢, consists of all the fixed-time covariates
(Z,: AML low-risk; Z;: AML high-risk; Z;: AMIL with FAB Grade 4 or 5;
Zy: Patient age —28; Zs: Donor age —28; Z; : Z; X Zs), the knowledge
that platelets have yet to return to normal levels by time ¢, and the
knowledge that the patient is alive and disease free. If we denote the
patient’s random platelet recovery time by 7, and the event time by X,
then, this history can be denoted as Hi(f) = {Z, T, > ¢, X > t}. The
second history a patient could have at time ¢ consists of the patient’s
fixed-time covariates, the fact that platelets have returned to nominal
levels, and the knowledge that the patient is alive and disease free.
This history is denoted by Hy() = {Z, T, < t, X > t}. We shall call the
process H = [H(£),0 =< ¢ < o] a “history process” for a patient. The
history process reflects what happens to the patient over the course of
their lifetime under study.

The goal of a survival synthesis is to make predictions of patient
outcome based on their history at time ¢£. We shall look at estimating
als | H()] = PriX = s | H(#). This function, called a prediction pro-
cess, in our example is the probability that a patient will relapse or die
in the interval ¢ to s given all the information we have observed about
the patient up to time #. Notice that the prediction process depends
on the patient’s history H, the time ¢ at which the history is knowmn,
and the point at which we wish to make a prediction s. By fixing ¢ and
s and varying the history, we can compare how different patient histo-
ries effect outcome. By fixing H and s and varying ¢, we can see how
learning more and more about the patient’s history affects outcome. By
fixing H and ¢ and varying s, we can obtain an analog of the survival
function.

For the transplant example, the computation of 7 depends on three
hazard rates that are functions of the fixed time covariates (see Fig-
ure 9.1). For simplicity, we will, for the moment, ignore the dependence
of these rates on the fixed covariates. The first rate 4,(#) is the hazard
rate for the time to platelet recovery. The second hazard rate b,(f) is
the rate at which individuals, whose platelets have yet to recover, either
die or relapse. The third hazard rate b,(#) is the rate at which patients,
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Figure 9.1 Possible paths to relapse or death

whose platelets have returned to normal level, die or relapse. As we
shall see, these rates are directly estimable from an appropriate Cox
model.

Using these rates,

mis; D) =w(s | B =Pr@¢<X=s|L,>8

= [(nrrexpl- [ mduidr. ©3D
t t

Here the function expl— f, b,(2)dul is the chance that a patient will not

die or relapse between ¢ to r and by(r) is approximately the conditional

probability of treatment failure at time 7, given survival to time 7, so

that their product is approximately the probability of failure at time .

For Hy(D,

m(s; D = wls | By (D] 952

= / ' exp [— / ' b(1)du — /; ’ bp(u)du] [5y(r) + by(r)my(s, )] dr.

Here, the exponential is the probability of not failing and not having
platelet recovery between ? to r, by(r) is the conditional probability of
failure at time 7, and b,(r)m;(s, r) is the probability of platelet recovery
at time r and, then, failure in the interval r to s.

To estimate 1, and ; we needed to estimate by, by, and b,. We shall
present two approaches, one based on assuming proportional hazards
between b, and b, and the second based on assuming distinct baseline
hazard rates. The first approach uses a Cox model with time-dependent
covariates whereas the second uses a left-truncated Cox model. Both
approaches require estimating the hazard rate for platelet recovery time.
To estimate this rate, we fit a Cox proportional hazard rate model to
the data, using platelet recovery as the event. For individuals whose
platelets do not return to a nominal level, we censor their on study
time at the time of treatment failure (death or relapse) or at the end
of the study period if they are disease free. A careful modeling of the
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Before Platelet Recovery:

Z(H = 1if AML low-risk and ¢t < T,

Z(H = 1 if AML high-risk and ¢ < T,

Zy(H) = 1if AMLFAB Grade 4or5and r < T,
Z,(H) = Patient age —28 if t = 1,

Z5(H = Donor age —28if t < 7,

Zs(D) = Z{(H) X Zs(®);

TABLE 9.10
Risk Factors for Platelet Recovery

Effect b SE(b) p-Value
Patient age —28 +0.0360 0.0163 0.0266
Donor age —28 —0.0262 0.0148 0.0766
Patient X donor age —0.0027 0.0010 0.0052

MTX used —1.0423 0.2233 >0.0001

.dSk factors for platelet recovery is performed using the covariates, as
in Example 8.5. The best fitting model, given in Table 9.10, shows I:hat
platelet recovery depends on the use of MTX as a graft-versus-host
treatment and on the patient’s and donor’s ages. Using these estimates
we compute Breslow’s estimate of the cumulative baseline hazard rate
for T, (see 8.8.2), H, (9.

The l"lrst approach to estimating b and b, is based on assuming
proportional hazards between b, and b,. A time-dependent covariate

fpproach is used, and we define 12 time-dependent covariates as fol-
ows:

Afier Platelet Recovery:
Z, (D = 1 if AML low-risk and ¢ > 7,
Zy(») = 1 if AML high-risk and ¢ > 7,,
Zy(#) = 1 if AML FAB Grade 4 or 5and ¢ > 7,
Zyo(#) = Patient age —28 if ¢ > T,
Z;(H) = Donor age —28if t > T,
Zy (D = Zy(D) X Z(D.

Here, Zi(®, ..., 2D are the effects of the fixed-time covariates on
gllsease-free sgvniva.lffbefore platelet recovery, and Z(9), ..., Z;,() are
e corresponding effects on disease-free survival after platelet
The Cox model we fit is Fpaisictiecovery.

12 ]
Bt 20,0 = u < ) = hy(Dexp [E B,z,(:)] ©:53)
=1
6
bo(t) €xp Bij(t)] if t < 7;,

/=1
12

b(Hexp [Z ﬁjZ,(t):l fr=1,
1=7
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TABLE 9.11
Estimates Of Risk Coefficients for the Two Models
Before Platelet Recovery
Proportional Hazards Left-Truncated
Model I Model I
Effect b SE®) p-Value b SE(b) D-Value
AML low-risk 1.5353 0.6347 0.0156 1.4666 0.9117 0.1100
AML high-risk 1.3066 1.1602 0.2601 1.4478 1.3333 0.2776
AML FAB Grade 4 or 5 —1.2411 1.1155 0.2659 —1.7536 1.3214 0.1838
Patient age —28 -0.1596 0.0539 0.0031 —0.1616 0.0619 0.0091
Donor age —28 0.1194 0.0437 0.0063 0.1258 0.0475 0.0081
Patient X donor age interaction 0.0028 0.0019 0.1413 0.0032 0.0021 0.1304
After Platelet Recovery
Proportional Hazards Left-Truncated
Model 1 Model I
Effect b SE(b) D-Value b SE(b) D-Value
AML low-risk —-1.7622 0.4183 < 0.0001 ~1.7161 0.4255 < 0.0001
AML high-risk —0.7914 0.3991 0.0474 —0.7565 0.4075 0.0634
AML FAB Grade 4 or 5 - 1.2222 0.3224 < 0.0001 1.2116 0.3222 0.0002
Patient age —28 0.0404 0.0216 0.0610 0.0387 0.0218 0.0754
Donor age —28 —0.0308 0.0203 0.1305 —0.0292 0.0205 0.1540
Patient X donor age interaction 0.0027 0.0012 0.0294 0.0027 0.0012 0.0305

Fitting this model, we obtain the partial likelihood estimates b, ..., b,
(see Table 9.11), and, using these estimates, Breslow’s estimate of the
cumulative baseline hazard rate H,(f) is computed. The estimates of
H(D = [; be(1)du, k = 1,2 are given by

6
gl(t) = ﬁo(t) €xXp Z bij(t)
=1

and ©54)

12 .
H ()= Aexp > bz,
=7

An alternative to the proportional hazards model is to fit a model
with distinct baseline hazard rates for the time to death or relapse for
patients before and after platelet recovery, that is, we fit the Cox model
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bt Z) = by(®d exp(2j=1 B;Z)) to the data before platelet recovery
by censoring any individual whose platelets recover prior to death or
relapse at their platelet recovery time. Using this modified data set, we
obtain an estimate H,(#) = Hy (9 exp[Z:j=1 b,Z (1), where Hy, is Bres-
low’s estimator of the baseline hazard function. To estimate the hazard
rate after the platelet recovery time, notice that only patients whose
platelets return to nominal levels provide any information on this rate.
To estimate parameters of the model b,(¢t | Z) = byp(D exp(Ei=1 a,Z),
we use a left-truncated likelihood with patients entering the risk set at
time 7,. Using the estimates of & obtained from maximization of this
partial likelihood, an estimate of Hy,(#) is obtained using Breslow’s es-
timator (8.8.2) where W(t; @) is based on the left-truncated risk set at
time ¢. The estimate of Hy(®) is Hy(8) = Hy(® exp[Zjﬁ=1 a,Z(D}.

0.8

Estimated Baseline Cumulative Hazard Rate

| T T 1
4] 5 10 15

Months Post Transplant

Figure 9.2 Estimated baseline cumulative bazard rates under the two models.
Model 1 (——) Model 2: pre platelet recovery (- ) post platelet recovery
———)
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Having estimated the basic cumulative hazard rates H,, Hy, and H,
estimating m and 1, proceeds by substituting these values in Eq. (9.5.1)
and (9.5.2). Thus, we have the following estimates:

(s ) = E CXP{—[IA'IZ(’{) — B (OB, (r), ©5.5)

#:(<r;=ss)
and

=Y exp{~A:(n) - B:®] - [Hyn) - H®  956)

(1< n=<s)
AAFL () + AR () inGs, 1}

Here, the times 7; are when an individual either has platelets recover or
when they experience an event. The values AH(ry) are the jump sizes
of the estimate H(r,) at the time 7;.

10]

0.8

04

Predicted Probability of Death or Relapse

0.2

00

T T )
9 5 10 15

Weeks Post Transplant

Figure 9.3 Comparison of predicted probability of death or relapse in ihe
first two years after transplant for an ALL patient. Platelets recovered (- )
Platelets not recovered No MTX (——) Platelets not recovered MTX (———)
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In the current example, the two models give quite similar pictures
of the effects of fixed covariates and of platelet recovery on disease-
free survival. Figure 9.2 is a plot of the cumulative baseline hazards for
model I, H,,(#), and the before and after platelet recovery rates, Hy, (£
and Hy,(9), respectively. From these plots, we see that the baseline rates
from the two models are quite similar. In the remainder of this section,
we shall base our discussion on Model I, because this model, which
requires estimating a single baseline hazard rate, has a higher statistical
precision. '

First, we consider the effects of platelet recovery for a fixed time
period. Here, we look at a comparison of m (2 years, ) and m»(2 years,
1) as a function of the number of weeks post transplant at which the
prediction is to be made. Because these probabilities depend on the

Lo+

0.8+

O.ﬂ .

T Lt

Predicted Probability of Death or Relapse

O.ﬂ S
- R
Rt I P

0.0+

T 1 T T
0 5 10 15

‘Weeks Post Transplant

Figure 9.4 Comparison of predtcfed probability of death or relapse in the
Jirst two years affter transplant for an AML low risk patient. Platelets recovered
(———) Platelets not recovered No MTX (———-) Platelets not recovered MTX
———)
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fixed-time covariates, we fix the patient FAB status at not being M4 of
M5 (Z; = 0 = Z) and patient and donor age at 28 years (Z;, = Z =
Zs = Zyy = Zpn = Zi; = Q). In Figure 9.3, we present results for Ay
patients (Z; = Z, = Z, = Zz = (), in Figure 9.4 for AML low-risk
patients (Z, = Z, = 1; Z; = Z = 0), and, in Figure 9.5, for AML
high-risk patients (Z; = Z; = 0; Z, = Zz = 1). A single curve (the
solid line) is given for the probability of death or relapse within the firs
two years after transplant for a patient who at ¢ weeks has had platelets
recover. Two curves are presented for the corresponding probability for
a patient who has yet to have platelets recover. The first (short dashed
line) is for patients not given MTX and the second (long dashed line)
for those that did receive MTX. Note that, because this covariate affects
only the platelet recovery rate, there is a single curve for individuals

Predicted Probability of Death or Relapse

0.2+

0.0

R
1] 5 10 15

‘Weelks Post Transplant

Figure 9.5 Comparison of predicted probability of death or relapse in the first
two years after transplant for an AML high risk patient. Platelets recovered
(———) Platelets not recovered No MIX (——) Platelets not recovered MIX
———)
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whose platelets have recovered. A careful examination of these figures
shows that, for ALL patients (with this set of other covariates), delayed
platelet recovery seems to have only a small effect. For AML patients, it
seems clear that delayed platelet recovery beyond about 4 weeks seems
to predict a much greater chance of death or relapse than individuals
who have had platelets return to normal prior to this time. Clearly,
for AML patients, if the platelets do not recover by week 10-11, the
patient has a very poor prognosis, and some therapeutic measures are
indicated.

Figures 9.6-9.8 provide an alternate approach to looking at the effect
of platelet recovery on disease-free survival. Here, we fix the time,
when the history is known, at either 3, 7, or 10 weeks and look at

0.9+

0.8

0.1

Bstimated Disease Free Survival

0.6

0.5

0.4

T
10 20 30

o

Months Post Transplant

Figure 9.6 Disease free survival probabilities for an ALL patient given their
bistory at 3 weeks. Platelets recovered (- ) Platelets not recovered No MIX
(—) Platelets not recovered MIX (———)
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Figure 9.7 Disease free survival probabilities for an ALL patient given their
bistory at 7 weeks. Platelets recovered (-
(—) Platelets not recovered MIX (———)

-} Platelets not recovered No MTX

the disease-free survival curves for an ALL patient with one of the two
histories at that time, that is, we compute 1 — m(s, &) and 1 — m(s, £,),
for ¢, = 3, 7, or 10 weeks. Again, the fixed-time covariates for FAB
status and age are set at 0, and separate curves are fitted for patients
with or without the MTX treatment. From Figure 9.6, again, we see
only a small effect of platelet recovery if we make estimates based on
the history at week 3. At week 7 we see that patients who were given
MTX at transplant at this time, and whose platelets have yet to return
to normal do much worse than other patients. At week 10, this pattern
is dramatically enhanced and, here, patients, who were not given MTX
and whose platelets have yet to recover, also do poorly.
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Practical Notes
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Figure 9.8 Disease free survival probabilities for an ALL patient given their
bistory at 10 weeks. Platelets recovered ) Platelets not recovered No MTX
(——-) Platelets not recovered MTX (———)

1. A more detailed example, which extends these techniques to mul-
tiple intermediate events and end points using Model 1, can be found
in Klein, Keiding and Copelan (1994).

2. Extensions of Model II to more complex situations can be found in
Andersen et al. (1993).

3. Qian (1995) provides standard error estimates for these estimators.
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9.6 Exercises

9.1

9.2

9.3

9.4

In Exercise 8.1, a proportional hazards model was fit to data from
study of the effects of ploidy on survival for patients with cancer of
the tongue. A single binary covariate was used. Using an appropriate
time-dependent covariate, test the hypothesis that the hazard rates for
the two groups are proportional,

In Exercise 8.2, a proportional hazards model was fit to data from a
study of the survival of rats implanted with F98 glioma cells in their
brains. Three groups of rats were considered: control rats, rats given
radiation only, and rats given radiation plus BPA. Using an appropriate
set of time-dependent covariates, test that the hazard rates of the three
groups are proportional.

In Example 7.9, data from a clinical trial of chemotherapy and chemo-

therapy combined with radiotherapy in treating locally unresectable

gastric cancer is given. Of interest in this study is a comparison of the
efficacy of the two treatments on overall survival.

(a) Using an appropriate proportional hazards model, test the hypoth-
esis of difference in survival between the two treatment regimes.
Find a 95% confidence interval for the relative risk of death for pa-
tients treated only with chemotherapy compared to pauents treated
with chemotherapy plus radiation.

(b) Confirm that the hazard rates for the two treatment groups have
nonproportional hazards using a time-dependent covariate in the
proportional hazards model.

(c) Because the hazard rates for the two treatment groups are not pro-
portional, consider a model with two time-dependent covariates:

— J 1 if chemotherapy only and ¢ < 7, and
zZ( = .
0 otherwise

_ J 1 if chemotherapy only and ¢ > 7,
Z(H =
0 otherwise

Find the value of T which maximizes the partial likelihood for this
model.

(d) Using the model constructed in part ¢ discuss the relationship be-
tween the two treatments for locally unresectable gastric cancer
and survival. Compare the relative risks obtained from this model
with the relative risks obtained in part a. Explain how a physician
should present this model to a patient.

Consider the data on bone marrow transplantation for acute leukemia
patients discussed in section 1.3. As noted in Exercise 7.8, graft-versus-
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9.5

9.6

9-7

host (GVHD) disease is considered to have an antileukemic effect. To
test this hypothesis, a Cox regression model will be fit to the times
to relapse of these leukemia patients. Here patients who die prior to
relapse are considered as censored observations.

Fit a proportional hazards model with appropriate time-dependent
covariates which can be used to determine which of four time-varying
GVHD groups (patient’s yet to develop any GVHD, patient’s who have
had acute GVHD, chronic GVHD, or both acute and chronic GVHD)
has the lowest relapse risk. Estimate model parameters, and make the
appropriate hypothesis tests. Provide point estimates and 95% confi-
dence intervals for the relative risk of relapse for the GVHD groups as
compared to the group with no GVHD at time ¢.

In Exercise 12 of Chapter 7, a stratified test of the equality of the four
stages of laryngeal cancer was conducted. In that problem, the test was
stratified on the cancer being diagnosed prior to 1975 or not. The data
for this comparison is found on our web site.

(a) Fit a proportional hazards model, stratified on the cancer being
diagnosed either prior to 1975 or not. Include, in the model, indi-
cator variables for stage of disease and a continuous covariate for
patient age, as in Example 8.3. Produce an ANOVA table for the
fitted model, and compare this to the results for the unstratified
model found in Example 8.3.

(b) Using a likelihood ratio test, test the hypothesis that the effects of
the stage and age factors are the same in the two strata.

(©) Repeat part b using a Wald test.

In Exercise 13 of Chapter 7, data was presented on a litter-matched
study of the tumorigenesis of a drug. The data is found in that exercise.

(a) Ignoring the fact that this was a litter-matched study, fit a propor-
tional hazards model to this data to estimate the relative risk of
tumorigenesis of the drugged rats as compared to the control rats.
Find a 95% confidence interval for this relative risk.

(b) Repeat part a using a proportional hazards model stratified on litter.
Compare your results.

In Example 8.5, a proportional hazards model was built to the data on
disease-free survival for bone marrow transplantation patients. Of pri-
mary interest in that example was the comparison of disease states, and
possible factors to be adjusted for were the patients’ FAB status, their
waiting time to transplant, donor and recipient gender, CMV status, and
age. Because patients who developed acute graft-versus-host disease
may have different risk factors for disease-free survival, find the best
fitting model for these factors for those patients who have experienced
acute graft-versus-host disease. Compare your final model to that found
in Example 8.5.






328

Chapter 9 Refinements of the Semiparametric Proportional Hazards Model

9.8

In the burn study described in section 1.6 and as a follow-up to Exer.
cises 8.2 and 8.9—

(2) Introduce a time-dependent covariate that reflects the time at which
a wound was excised. Investigate the effects of the timing of wound
excision on the time until infection occurs.

(b) Introduce another time-dependent covariate that reflects the time
when a prophylactic antibiotic treatment was administered. Investi-
gate the effect of having a prophylactic antibiotic treatment on the
time until infection occurs.

(o) Fit a full model, adjusting for all other explanatory covariates as
needed to the time until infection occurs. Test for proportional
hazards and deal with any variables with nonproportional hazards,
as you deem appropriate.

(d) Make an inference about the time until infection among those indj-
viduals who had a prophylactic antibiotic treatment administered,
Adjust for all other explanatory covariates, as needed. Test for pro-
portional hazards, and deal with any variables with nonproportional
hazards, as you deem appropriate.

10.1

10

Additive Hazards
Regression Models

Introduction

In the last two chapters, we examined regression models for survival
data based on a proportional hazards model. In this model, the effect
of the covariates was to act multiplicatively on some unknown baseline
hazard rate. Covariates which do not act on the baseline hazard rate in

‘this fashion were modeled either by the inclusion of a time-dependent

covariate or by stratification.

In this chapter, we shall consider an alternative to the semiparametric
multiplicative hazard model, namely, the additive hazard model. As in
the multiplicative hazards model, we have an event time X whose dis-
tribution depends on a vector of, possibly, time-dependent covariates,
zZ(H = [z, ..., Z,(D]. We assume that the hazard rate at time ¢, for
an individual with covariate vector Z(#), is a linear combination of the
Zy(D)'s, that is,

P
He | Z(D] = B() + Y B(DZ(D),

k=1

where the Bx(£)’s are covariate functions to be estimated from the data.
Two additive models are presented in this chapter. The first, due to
Aalen (1989), allows the regression coefficients, b,(#), to be functions



