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this data in a model which adjusts for age, examine the proportional 
hazards assumption for the stage of disease by the following graphical 
methods. 
(a) A plot of the logarithms of the cumulative baseline hazard rates for 

each disease stage. 
(b) A plot of the difference in the log cumulative hazard rates for the 

disease stages. 
(c) An Andersen plot. 
(d) A score residual plot. 

11.4 In Exercise 1 of Chapter 8 a Cox model was fit to data on the survival 
times of patients with an aneuploid or diploid DNA tumor profile. 
(a) Check the proportional hazards assumption for this data by plotting 

the logarithms of the cumulative baseline hazard rates for each 
ploidy group. 

(b) Check for proportional hazards by plotting the difference in the log 
cumulative hazard rates for the two groups. 

(c) Check for proportional hazards by using an Andersen plot. 
(d) Check for proportional hazards by using a score residual plot. 

11.5 In Example 8.3 and its continuation in section 8.4 a proportional hazards 
model was fit to the data on the time to death of 863 kidney transplant 
patients. (The data is presented on our web site.) Covariates in the 
model were gender, race, and a gender by race interaction. 
(a) Check this data for possible outliers by making an appropriate plot 

of the deviance residuals. 
(b) For each of the three covariates in this model find the four most 

influential observations on the estimates of the regression c o d -  
cients. Explain why these observations are so influential. 

11.6 (a) For the data on survival times of patients with an aneuploid or 
diploid DNA tumor profile in Exercise 4 determine which, if any, 
observations are outliers by making an appropriate deviance resid- 
ual plot. 

(b) Find the three points that have the greatest influence on the estimate 
of the regression effect by constructing a plot of the adjusted score 
residuals. Explain why these three points are so influential in light 
of your fitted regression model. 

Inference for Parametric 
Regression Models 

k, 

12.1 Introduction 

In previous chapters, we focused on nonparametric methods for de- 
scribing the survival experience of a population and regression models 
for survival data which do not require any specific distributional as- 
sumptions about the shape of the survival function. In this chapter, 
we shall discuss the use of parametric models for estimating univari- 
ate survival and for the censored-data regression problem. When these 
parametric models provide a good fit to data, they tend to give more 
precise estimates of the quantities of interest because these estimates 
are based on fewer parameters. Of course, if the parametric model is 
chosen incorrectly, it may lead to consistent estimators of the wrong 
quantity. 
All of the models we shall consider in this chapter have an accehated 

failure-time model representation and a linear model representation in 
log time. Let X denote the time to the event and Z a vector of fixed- 
time explanatory covariates. The accelerated failure-time model states 
that the survival function of an individual with covariate Z at time 
x is the same as the survival function of an individual with a baseline 
survival function at a time xexp(OtZ), where 8' = (el, . . . , OD) is a vector 
of regression coefficients. In other words, the accelerated failure-time 
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model is defined by the relationship 

S(x 1 Z) = So[exp(O'Z)xl, for all x. (12.1.1) 

The factor exp(OtZ) is called an acceleration factor telling the investi- 
gator how a change in covariate values changes the time scale from the 
baseline time scale. One implication of this model is that the hazard 
rate for an individual with covariate Z is related to a baseline hazard 
rate by 

h(x I Z) = exp(OtZ)bo[exp(8'Z)x1, for all x. (12.1.2) 

A second implication is that the median time to the event with a covari- 
ate Z is the baseline median time to event divided by the acceleration 
factor. 

The second representation of the relationship between covariate val- 
ues and survival is the linear relationship between log time and the 
covariate values. Here, we assume the usual linear model for log time, 
namely, 

where $ = (y,, . . . , yp) is a vector of regression coefficients and W is 
the error distribution. The regression coefficients have an interpretation 
similar to those in standard normal theory regression. 

The two representations are closely related. If we let So(x) be the 
survival function of the random variable e x p b  + u r n ,  then, the linear 
log-time model is equivalent to the accelerated failure-time model with 
8 = -7. 

A variety of models can be used for W or, equivalently, for So (see 
Table 2.2). In section 12.2, we focus on estimation for the Weibull dis- 
tribution for which W has a standard extreme value distribution. This 
model is very flexible because it has a hazard rate that can be either in- 
creasing, decreasing, or constant. It has the unique property that, along 
with the accelerated failure-time re~resentation, it is the only ~arametric 
distribution that also has a propoAonal hazards representatibn. 
In section 12.3, we focus on the log logistic distribution for which W 

has a standard logistic distribution. This model has a hazard rate that 
is humpshaped (see Chapter 2). This model is the only accelerated 
failure-time model that also has a representation as a p+oportiona~ odds 
model, that is, for the log logistic distribution, the odds of survival 
beyond time t are given by 

where fl = -y/u. 
In section 12.4, we will examine several other models popular for 

survival data. These include the log normal distribution and the gener- 
alized gamma distribution which can be used to discriminate between 
models. 
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In these sections, maximum likelihood estimation of the parameters 
is presented for each of these parametric models. The parameters of the 
log-time, linear model are estimated first and their variance-covariance 
matrix, readily available in most major software packages, is reported. 
From these values, the maximum likelihood estimates of functions of the 
parameters, along with their approximate variance-covariance matrix, 
may be obtained using the method of statistical differentials, also called 
the delta method. 

In section 12.5, graphical methods for assessing the fit of these mod- 
els are presented. For univariate problems, we use the hazard rates 
displayed in Table 2.2 and the Nelson-Aalen estimator of the cumu- 
lative hazard rate, to make hazard plots for each parametric model. 
A hazard plot is a plot of the appropriate function of the cumulative 
hazard function as the ordinate versus the appropriate function of time 
as the abscissa. Each distribution will have its own functions of the 
cumulative hazard and time. Such plots should be straight lines if the 
model is correct. 

To assess the fit of regression models, we present analogs of the 
Cox-Snell, martingale and deviance residuals presented in Chapter 11. A 
quantilequantile plot is also presented for checking that the accelerated 
failure-time model fits a set of data. 

1 2.2 Wei bu l l ~ i s t r i  bution 

The Weibull distribution, discussed in Chapter 2, is a very flexible model 
for lifetime data. It has a hazard rate which is either monotone increas- 
ing, decreasing, or constant. It is the only parametric regression model 
which has both a proportional hazards representation and an acceler- 
ated failure-time representation. In this section, we shall first examine 
estimating the parameters of the Weibull distribution in the univariate 
setting and, then, examine the regression problem for this model. 

The survival function for the Weibull distribution is given by 

and the' hazard rate is expressed by 

bx(x) = 

Taking the log transform of time, the univariate survival function for 
Y = lnxisgiven by 

If we redefine, the parameters as A = exp(-p/u) and u = l / a ,  then, 
Y follows the form of a log linear model with 
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where W is the extreme value distribution with probability density 
function, 

fw(w) = exdw-  e S  (12.2.2) 

and survival function, 

Sw(w) = exp(-e?. (12.2.3) 

Thus, the underlying probability density function and survival function, 
respectively, for Y, are 

and 

sy Q) = exp( - d@-~)/~ ' ) .  (12.2.5) 

When a = 1, or, equivalently, a = 1, then, the Weibull distribution 
reduces to an exponential distribution. 

The likelihood function for rightcensored data, following the con- 
struction in Chapter 3, is given by 

n 

where fYCv> and SyQ) are given in (12.2.4) and (12.2.5). Once maxi- 
mum likelihood estimates of the parameters p and a ,  or equivalently, 
h and a are computed (see Practical Note I), estimates of the survival 
function and the cumulative hazard rate are available for the distribution 
of X or Y. 

Estimates of p and a are found numerically, and routines to do so 
are available in most statistical packages. The variance-covariance ma- 
trix of the log linear parameters p and a ,  obtained from the observed 
information matrix, are also available in these packages. The invari- 
ance propew of the maximum likelihood estimator provides that the 
maximum likelihood estimators of A and a are given by 

fi = d-fi/&) and a = I/&. (12.2.6) 

Applying the delta method (see Theoretical Notes), 

v&) = ~ - 2 p / ~ ) ~ d f i ) / 6 2  + f i 2 v d ~ ) / 6 4  (12.2.71 

- 2fi Codfi, 6)/631, 

V d b )  = ~ ~ r ( 6 ) / 6 ~ ,  (12.2.8) 

and 

cov(fi, 6 )  = exp(-fi/6)[Co~@, - fi ~ar(6)/6~1. (12.2.9) 
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EXAMPLE 12.1 Consider the data set described in section 1.9 and studied in Chapters 7 
and 11. It compares the efficacy of autologous (auto) versus allogeneic 
(do)  transplants for acute myelogenous leukemia. The outcome for the 
101 patients was leukemia-free survival. All patients in the sample were 
in their fist complete remission at least one year. 

The Weibull maximum likelihood estimates of the log linear parame- 
ters p and a are Auto = 3.45, &auto = 1.11, LO = 4.25, and &do = 1.94. 
The corresponding maximum likelihood estimates of the parameters 
4 = exp(-p/a) and a = l/a are L,,, = 0.045, kUti = 0.900, 
.ho = 0.112, and = 0.514, respectively. The variance-covariance 
matrix for Auto and I?,,, is 

and the variancecovariance matrix for Lo and ado is 

~pplying (12.2.7)-(12.2.9), the variancecovariance matrix for Lum and 
4uo is 

and the variancecovariance matrix for Lo and &, is 

To test the hypothesis that the exponential model provides as good 
a fit to the data as the Weibull model, we shall test the hypothesis that 
a = 1 (or equivalently that a = 1). Although any of the three types of 
likelihood-based tests can be performed, only the likelihood ratio and 
score tests are invariant under the different parameterizations. We shall 
perform the likelihood ratio tests. For the d o  transplant data, the log 
likelihood for the Weibull model is -72.879 whereas for the exponential 
model it is -81.203. For the auto transplant data, the log likelihood for 
the Weibull model is -68.420 whereas, for the exponential model, it 
is -68.653. The likelihood ratio chi square for the d o  transplant data 
is 2172.879 - (-81.20311 = 16.648 which is highly si@cant when 
compared to a chi-square percentile with one degree of freedom. For 
auto transplants, the likelihood ratio chi square is 0.467, which is not 
sigmficant. This suggests that an exponential distribution may provide 
as good a fit as the Weibull distribution for auto transplants, but it is 
not a viable model for d o  transplants. 
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To incorporate covariates into the Weibull model, we use a linear 
model (12.1.3) for log time, 

where W has the standard extreme value distribution (12.2.2). This 
model leads to a proportional hazards model for X with a Weibull 
baseline hazard, that is, 

with a = l /u ,  h = exp(-Cl/u) and PI = -yl/u, j = 1, .  . .,p: 
Using the accelerated failure-time representation of the Weibull re- 

gression model, the hazard rate for an individual with covariate vector 
Z is given by 

5 

where the baseline hazard, ho(x) is A&-'. The factor exp(e'Z) is 
called an acceleration factor. If the covariate vector is a scalar which is 
the indicator of treatment group (Z = 1 if group 1; Z = 0 if group 21, the 
acceleration factor can be interpreted naturally. Under the accelerated 
failure model, the survival functions between the two groups will have 
the following relationship: 

S(x 1 Z = 1) = s(xee I Z = 01, for all t. 

For an accelerated failure time distribution with covariate Z 

S(x I Z) = So(x exp[B'Z1) for all x 

by (12.1.1). Let % be the median of the baseline distribution. 
Then So( ) = 1/2. Now let Xi  be the median, with Z = z, which 
has $(x 7 z) = So(= exp[BzD = 1/2 by (12.1.1). This implies that 
X;exp[Bzl = XO, or X,: = XO,/exptBzl. So the median of a group with 
Z = z is the baseline median divided by exp[Bzl. This implies that the 
median time in the Z = 1 group is equal to the median time in the 
Z = 0 group divided by ee. Comparing 12.2.11 and 12.2.12, we see that 
8 = p/a or 8 = -y.  The Weibull is the only continuous distribution 
that yields both a proportional hazards and an accelerated failure-time 
model. 

For the Weibull regression model, estimates must be found numer- 
ically. Routines for estimation, based on (12.2.10), are found in most 
statistical packages. As before, the invariance property of the maxi- 
mum likelihood estimators in the log linear model provides estimates 
of parameters in the alternative formulation (12.2.11). Using the delta 
method, the following is the approximate covariance ma& for these 
estimates based on the estimates and their covariances in the log linear 
model: 
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We shall illustrate this model on the data for times to death from laryn- 
geal cancer. 

EXAMPLE 12.2 A study of 90 males diagnosed with cancer of the larynx is described 
in section 1.8 and analyzed in Chapters 7 and 8. Here, we shall employ 
the accelerated failure-time model using the main effects of age and 
stage for this data. The model is given by 

where Zi, i = 1, . . . , 3  are the indicators of stage 11, 111 and lV disease, 
respectively, and Z4 is the age of the patient. The parameter estimates, 
standard errors, Wald chi squares, and p-values for testing that yi = 0 
are given in Table 12.1. Here, we see that patients with stage lV disease 
do sigtllficantly worse than patients with stage I disease. Note that, as 
opposed to the Cox model where a positive value of the risk coeffi- 
cient reklects poor survival, here, a negative value of the coefficient is 
indicative of decreased survival. 

We apply the transformation in (12.2.11)-(12.2.18) on the ori@ 
time scale and obtain the parameter estimates in Table 12.2. Using 
these estimates and the proportional hazards property of the Weibull 
regression model, we find that the relative risk of death for a Stage 
lV patient compared to a Stage I 'patient is exp(1.745) = 5.73. The 
acceleration factor for Stage lV disease compared to Stage I disease is 
exp(1.54) = 4.68, so that the median lifetime for a Stage I patient is 
estimated to be 4.68 times that of a Stage lV patient. 
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TABLE 12.1 
Analysis of Variance Table for Stage and Age for Laryngeal Cancer Patients, 
Utilizing the Log Linear Model, Assuming the Wdbull Distribution 

Varlable 

Intercept f i  
Scale & 
Zl: Stage 11 (TI) 
Z2: Stage III (T2) 
Z3: Stage IV (T3) 
a: Age (94) 

Standard Wald 
Etror Chi Square p-Value 

0.90 
0.1 1 
0.41 0.13 0.717 
0.32 3.36 0.067 
0.36 18.07 <0.0001 
0.01 1.87 0.172 

TABLE 12.2 
Parameter Estimates for the Effects of Stage and Age on Suroival for Laryngeal 
Cancer Patients, MModeg Time Directly Assuming the Wdbull Dlstnbution 

Varlabk Parameter EFh'mate Standard Error 

Intercept f i  0.002 0.002 
Scale d 1.13 0.14 
Zl: Stage II 0.17 0.46 
Z2: Stage III $2) 0.66 0.36 
5: Stage -IV @3) 1.75 0.42 
Zq: Age (84) 0.02 0.01 

Practical Notes 

1. SAS PROC LIFEREG and the S-Plus routine s&eg provide maxi- 
mum likelihood estimates of an intercept p and scale parameter u 
associated with the extreme value distribution, the error distribution 
for the Weibull model. Our parameters of the underlying Weibull 
distribution are the following functions of these extreme value pa- 
rameters, A = exp(-p/~) and a = l / ~ .  SAS allows for right-, left- 
and intervalcensored data. 

2. When performing an accelerated failure timk regression employing 
the Weibull distribution, SAS and S-Plus provide maximum likeli- 
hood estimates of an intercept p, scale parameter a, and regression 
coefficients y,. The parameters of the underlying Weibull distribu- 
tion, when modeling time directly, are the following functions of 
those parameters: A = exp(-p/u), a = l /u ,  and pi = - yi/u. SAS 
allows for right-, left- and intervalcensored data. 
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Theoretical Notes 
1. The method of statistical differentials or the delta method (Elandt- 

Johnson and Johnson, 1980, pp. 63-72) is based on a Taylor series 
expansion of a continuous function g(.) of the maximum likelihood 
estimators of a vector of parameters. We shall illustrate how this 
works in the two-parameter case. Let JI1 and $2 be the two param- 
eters of interest, and let and $2 be the maximum likelihood esti- 
mators of the parameters. Recall that, for large samples, (h, $2) has 
a bivariate normal distribution with mean (&, &) and a covariance 
matrix estimated by the inverse of the observed Fisher information 
observed. Let O1 = gl(JI1, &) and O2 = J13 be a reparametriza- 
tion of and &. The invariance principle of the maximum likeli- 
hood estimator i n y e s  that the maximum likelihood estimators of O1 
and 02 are &($I, ICe3, k = 1,2. 

To apply the delta method, for k = 1,2, we expand gk(&, $2) in 
a first-order Taylor series about the true values of and $2, that is, 

where the partial derivatives are evaluated at the true values of the 
parameters. Thus, 

If we let = *, then, for large samples, 

Log Logistic Distribution 

An alternative model to the Weibull distribution is the log logistic distri- 
bution. This distribution has a hazard rate which is hurnpshaped, that 
is, it increases initially and, then, decreases. It has a survival function 
and hazard rate that has a closed form expression, as contrasted with 
the log normal distribution which also has a humpshaped hazard rate. 
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Utilizing the notation which models time directly, as in Chapter 2, the 
univariate swival function and the cumulative hazard rate for X, when 
X follows the log logistic distribution, are given by 

and 

Taking the log transform of time, the univariate survival function for 
Y=lnXis 

1 
S Y ~  = (12.3.3) 

This log linear model with no covariates is, from (12.1.1), 

where W is the standard logistic distribution with probabiity density 
function, 

and survival function, 

Thus, the underlying probability density function and survival function, 
respectively, for Y, are given by 

and 

Thus, one can see that the parameters of the underlying log logistic 
distribution for the random variable X in (12.3.1) and for the distribution 
of the log transformed variable Y in (12.3.3) are the following functions 
of the log linear parameters in (12.3.8): 

a = l / u  and A = exp(-p/u), (12.3.9) 

the same functions as for the Weibull model (see (12.2.6)).'Thus, given 
estimates of p and a, estimates of A and a and fieir covariance matrix 
are given by (12.2.6)-(12.2.9). Estimates of p and u are available in 
most statistical packages. 

EXAMPLE 12. I (continued): We shall continue the example on univariate estimation 
for the autologous (auto) versus allogeneic (allo) transplants for acute 
myelogenous leukemia. 

12.3 Log Logistic Distribution 4 0 3  

The log logistic maximum likelihood estimates of the log linear pa- 
rameters p and u are Auto = 2.944, = 0.854, = 3.443, 
and = 1.584, and the corresponding maximum likelihood esti- 
mates of the parameLen A = exp(-plu) and a = l / u  are Lute = 
0.032, = 1.171, bo = 0.114, and ku0 = 0.631, respectively. T h e  
variance-covariance matrix for Auto and 6a.,,to is 

and the variancecovariance matrix for bo and is 

0.2266 0.0581 

Inserting the maximum likelihood estimates ( f i ,  6 )  and their estimated 
variances into (12.2.7)-(12.2.9), the variance-covariance matrix for LUt0 
and &* is 

3.010 X lo-* 
-2.681 X 3.518 X 10- 

and the variancecovariance matrix for Lo and b0 is 
1.951 X lo-' 

One of three equivalent models can be used to model the effects of 
covariates on survival with the log logistic distribution. The first is the 
linear model for log time with 

~ = l n X = p + y ~ Z + u l q  (12.3.10) 

where W has the standard logistic distribution (12.3.5). The second 
representation is obtained by replacing A in (12.3.3) by exp(flfm. Here, 
the conditional survival function for the time to the event is given by 

1 
SX(X I Zl = (12.3.11) 1 + A exp(Bfz>fl ' 

As for the Weibull distribution, the parameters are related by 

f l  = -Y/u, (12.3.12) 

and 

Based on maximum likelihood estimates for p, y, u ,  and their covari- 
ance matrix, estimates for A, fl, a, and their covariance are obtained 
from Eqs. (12.2.13)-(12.2.18). To interpret the factor exp(fltZ) for the 
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log logistic model, note that the odds of survival beyond time t for the 
logistic model is given by 

So, the factor exp(-P'Z) is an estimate of how much the baseline odds 
of survival at any time changes when an individual has covariate Z. 
Note that exp(/3'D is the relative odds of dying for an individual with 
covariate Z compared to an individual with the baseline characteristics. 

The third representation of a log logistic regression is as an accel- 
erated failure-time model (12.1.1) with a log logistic baseline survival 
function. The log logistic model is the only parametric model with both 
a proportional odds and an accelerated failure-time representation. 

- -  

EXAMPLE 12.2 (continued): Continuing the study of laryngeal cancer, we shall em- 
ploy the log logistic model using the main effects of age and stage. The 
parameter estimates, standard errors, Wald chi squares and p-values for 
testing y, = 0, are given in Table 12.3. Here we see that Stage 11 is 
not si@cantly different from Stage I, Stages 111 and IV are sigmficantly 
different from Stage I, adjusted for age, and, as in earlier analyses, age is 
not a si@cant predictor of death in these patients, adjusted for stage. 

The estimates obtained by converting the parameters in the log linear 
model to those in the proportional odds model and calculating their 
standard e m  using (12.2.13)-(12.2.18), are listed in Table 12.4. From 
Table 12.4, we see that the relative odds of survival for a Stage III patient 
compared to a Stage I patient are exp(-1.127) = 0.32 and for a Stage 
IV patient are exp(- 2.469) = 0.085, that is, Stage IV patients have 0.085 
times lesser odds of surviving than Stage I patients (or 1/0.085 = 11.81 
times greater odds of dying). Using the accelerated failure-time model 
for the log logistic model, we see that the acceleration factor for Stage 111 

TABLE 12.3 
Analysb of Variance Tabk for Stage and Age for Lulyngeal Cancer Patiats, 
Utilizing tbe Log Linear Model, Assuming the Log Logistic Distribution 

Parameter 

Intercept & 
9 

Scale 6 
Zl: Stage JI (?I) 

5 :  Stage III (?2) 

Z3: Stage IV ( 9 3 )  
Z4: Age (94) 

Parameter 
M m t e  

3.10 
0.72 

-0.13 
-0.81 
-1.n 
-0.015 

Standard Wald 
~r rors  &Square p-Value 
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TABLE 12.4 
Analysis of Variance Table for Stage And Age For Laryngeal Cancer Patients, 
Utilizing the Proportional O d d  Model and the Log Logistic Distribution 

Parameter Standard 
Parameter Estimate Ewom 

Intercept f i  0.013 0.018 
Scale d 1.398 0.168 
ZI: Stage II (fill 0.176 0.581 
5 :  Stage ILI (82) 1.127 0.498 
%: Stage K (fi3) 2.469 0.632 
z4: Age (a) 0.021 0.019 

disease compared to Stage I disease is exp[-(-81)l = 2.25 and for 
Stage IV disease is exp[-(-1.77)l = 5.87. This suggests that the median 
Life for Stage I patients is about 5.87 times that of Stage IV patients. 

Practica 1 Notes 

1. SAS PROC LIFEREG and S-Plus routine survreg provide maximum 
likelihood estimates of intercept p, and scale parameter a ,  associ- 
ated with the logistic distribution. The parameters of the underlying 
log logistic distribution are the following functions of these extreme 
value parameters: h = exp(-p/u) and a = l/u. SAS allows for 
right-, left- and intervalcensored data. 

2. When performing an accelerated failure time regression employing 
the log logistic distribution, SAS and S-Plus provide maximum like- 
lihood estimates of intercept p, scale parameter a ,  and regression 
coefficients y,. The parameters of the underlying log logistic distri- 
bution, when modeling time directly, are the following functions of 
those parameters: h = exp(-p/u), a = l/u, and = - y,/u. SAS 
allows for right-, left- and intervalcensored data. 

Other Parametric Models 

In section 12.2, we examined the use of the Weibull distribution as a 
model for survival data, and, in section 12.3, we examined the use of the 
log logistic model. In this section, we shall look at alternative parametric 
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models for the survival function, focusing on the regression problem 
with obvious extensions to the problem of univariate estimation. 

The first model to be considered is the log normal distribution. Here, 
given a set of covariates Z = (Zl, . . . , Zp)', the logarithm of the time to 
the event follows the usual normal regression model, that is, 

where W has a standard normal distribution. The general shape of the 
hazard rate for this model is quite similar to that of the log logistic 
distribution, and, in most instances, regression models based on the log 
normal distribution are very close to regression models based on the 
log logistic model. 

For the log normal distribution the survival function of the time to 
event T is given by 

where @{) is the standard normal cumulative distribution function. 
A second model of interest is the generalized gamma distribution. 

This model is very useful in selecting between alternative parametric 
models because it includes the Weibull, exponential, and the log nor- 
mal models as limiting cases. For this model, Y = logX follows the 
linear model (12.4.1) with W having the following probability density 
function: 

- [el te~p(ew)/e~l(l'" ap t -  exp(8w)/021, -m < < oo. f(w) = r(i /ez) 
(12.4.2) 

When 8 equals 1, this model reduces to the Weibull regression model, 
and, when 8 is 0, the model reduces to the log normal distribution. 
When 8 = 1 and u = 1 in (12.4.11, then, (12.4.1) reduces to the 
exponential regression model. 

The generalized gamma model is most commonly used as a tool for 
picking an appropriate parametric model for survival data but, rarely, 
as the final pametric model. Wald or likelihood ratio tests of the 
hypotheses that 8 = 1 or 8 = 0 provide a means of checking the 
assumption of a Weibull or log normal regression model, respectively. 

With the exception of the Weibull and log normal distribution, it is 
dficult to use a formal statistical test to discriminate between parametric 
models because the models are not nested in a larger model which 
includes all the regression models discussed in this chapter. One way 
of selecting an appropriate parametric model is to base the decision 
on minimum Akaikie information criterion (AIC). For the parametric 
models discussed, the AIC is given by 

AIC = -2 * log (Likelihood) + 2(p + k), (12.4.3) 

where k = 1 for the ,exponential model, k = 2 for the Weibull, log 
logistic, and log normal models and k = 3 for the generalized gamma 
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model. We shall illustrate this on two examples considered in this chap- 
ter. 

EXAMPLE 12.1 (continued): We shall reexamine the parametric models for the auto 
and all0 transplant survival data. We will fit the exponential, Weibull, log 
logistic, log normal models, and generalized gamma models separately 
to the data on all0 and auto transplants. The log likelihood and the 
AIC for each model are reported in Table 12.5. (Note that here p = 0.) 
Also included in this table are the estimates of 8 from the generalized 
gamma model, their standard errors and the p-values of the Wald tests 
of Ho : 8 = 0 and Ho : 8 = 1. These are tests of the appropriateness of 
the log normal and Weibull models, respectively. 

TABLE 12.5 
Results of Fitting Parametric Models to the Transphnt Data 

A110 Auto 
Tramlants Transblunts 

Exponential Log likelihood 
AIC 

Weibull Log likelihood 
AIC 

Log logistic Log likelihood 
AIC 

Log normal Log likelihood 
AIC 

Generalized gamma Log likelihood 
AIC 
6 
SE@I 
pvalue for H, : 9 = 0 
pvalue for H, : 9 = 1 

From this table, we see that the log normal distribution provides the 
best fit to this data, and the log logistic distribution is a close second. 
The generalized gamma model, which has the smallest log likelihood, 
does not have a smaller AIC than these two models and the simpler 
models are preferred. The exponential distribution for Allo transplants 
has a much poorer fit than the Weibull model, and there is no evidence 
of an improved fit for auto transplants, using the Weibull rather than 
the exponential. A likelihood ratio chi-square test, with one degree of 
freedom, for testing the hypothesis that the Weibull shape parameter is 
equal to one has a value of 16.648 (p < 0.0001) for all0 transplants and 
a value of 0.468 for auto transplants. 
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Using a log normal regression model with a single covariate Z1 equal 
to 1 if the patient received an auto transplant, we have the following 
regression model: 

- -  

Standard Wald 
Parameter Estimate Error Chi Square p-Value 

Intercept: @ 3.177 0.355 80.036 <0.0001 
m e  of Transplant: ~1 0.054 0.463 0.0133 0.9080 
Scale: u 2.084 0.230 - - 

Here, we see that there is no evidence of any difference in survival 
between the two types of transplants. 

U(AMPLE 12.2 (continued): We shall now compare the fit of the exponential, Weibull, 
log normal, log logistic and generalized gamma models for the data on 
laryngeal cancer. Recall that, here, we have four covariates: 

Z,: 1 if Stage I1 cancer, 0 otherwise, 
Zz: 1 if Stage JII cancer, 0 otherwise, 
Z3: 1 if Stage IV cancer; 0 otherwise, and 
Z4: Patient's age at diagnosis. 

We fit the log linear model 

4 

Y = ~ X = ~ + C ~ ~ Z ~ + U W ,  
k=1 

TABLE 12.6 
ParameMc Mod& for the Laryngeal Cancer Study 

Erponentiul WeibuN 
em'mate SE em'mate SE 

P 3.755 0.990 3.539 0.904 
a1 -0.146 0.460 -0.148 0.408 
a2 -0.648 0.355 -0.587 0.320 
%3 -1.635 0.399 -1.544 0.363 
W -0.020 0.014 -0.017 0.013 
u 1.000 0.M)O 0.885 0.108 
e 
LogL -108.50 -108.03 
AIC 227.00 228.05 

Genqalized 
L q  Logistic Log Normal Gamma 

Esn'nuate SE WImate SE Estimate SE 
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where W has the appropriate distribution for each of the models. Note 
that the value of a is fixed at 1 for the exponential distribution. Table 
12.6 provides the estimates of the model parameters and their standard 
errors, the maximized likelihoods, and the AIC criterion for all five 
models. 

In this table, we see that all three models fit equally well. The expo- 
nential model has the smallest AIC and, in that sense, is the best fitting 
model. For this model, 

Y = 3.755 - O.I46Z, - 0.64821 - 1 .635Z3 - o.020Z4 + It? 
The negative values of the coefficients of Zl, Zz, and Z3 in the log linear 
model suggest that individuals with stages LI, 111, and IV cancer have 
shorter lifetimes than individuals with Stage I disease. 

Practica / Note 
1. SAS PROC LIPEREG has routines for fitting the generalized gamma 

and log normal distributions to right-, left- and intervalcensored 
data. The .%Plus routine survreg fits the log normal model. 

Diagnostic Methods for Parametric Models 

In the last three sections, we have presented a variety of models for 
univariate survival data and several parametric models that can be used 
.to study the effects of covariates on survival. In this section, we shall 
focus on graphical checks of the appropriateness of these models. As 
discussed in Chapter 11, we favor graphical checks of the approptiate- 
ness rather then formal statistical tests of lack of fit because these tests 
tend either to have low power for small-sample sizes or they always 
reject a given model for large samples. The graphical checks discussed 
here serve as a means of rejecting clearly inappropriate models, not to 
"proven that a particular parametric model is correct. In fact, in many 
applications, several parametric models may provide reasonable fits to 
the data and provide quite similar estimates of key quantities. 

We shall first examine the problem of checking for the adequacy of a 
given model in the univariate setting. The key tool is to find a function 
of the cumulative hazard rate which is linear in some function of time. 
The basic plot is made by estimating the cumulative hazard rate by the 
Nelson-Aalen estimator (see section 4.2). To illustrate this technique, 
consider a check of the appropriateness of the log logistic distribution. 
Here, the cumulative hazard rate is H(x) = h(l + M). This implies 
that, for the log logistic model, 
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so, a plot of In(exp[~(x)] - 1) versus In x should be approximately lin- 
ear. The slope of the line gives a crude_estimate of a and the y intercept 
gives a crude estimate of In A. Here, H is the Nelson-Aalen estimator. 
Note that, for the log logistic distribution, the quantity In(expW(xl1- 1) 
is precisely the log odds favoring survival. 

For the other models discussed in this chapter, the following plots 
are made to check the fit of the models: 

Model Cumulative Hazard F&a& Plot 

Exponential: Ax a versus x (12.5.2) 
Weibull: W ha versus h x  (12.5.3) 
Log normal: - h{l - @ h ( x )  - p)l/u} @-'[l-exp(-&] v e r s u s l  (12.5.4) 

Figure 12.1 Exponential hazardplot for the a110 (solki lint.) and auto (dashed 
line) transplantgroups. 
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Note that the slope of the line for the Weibull hazard plot gives a 
crude estimate of a and, if the slope of the line is 1, then, the expo- 
nential is a reasonable model. 

EXAMPLE 12.1 (continued): To check the adequacy of the exponential, Weibull, log 
logistic, and log normal models for the data on auto and allo transplants, 
four hazard plots are presented in Figures 12.1-12.4. If the curves do 
not appear linear for each figure, this is evidence that the parametric 
model does not provide an adequate fit to the data. From Figure 12.1, 
the exponential plot, we see that the curves for the d o  transplant group 
appear to be nonlinear, suggesting that the exponential is not a good 
model for this set of data. The curve is roughly linear for the auto 
transplant data, except in the tail where the estimate of H is highly 
variable, suggesting that the exponential may be a reasonable model. 
The curves for the other three models (Figures 12.2-12.4) are roughly 
linear, suggesting these may be appropriate models for either groups.. 

Figure 12.2 Weibull hazard plot for the a110 (solid line) and auto (dashed 
line) transplant groups. 
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Figure 12.3 L Q ~  l o g W  hazardplot for the a110 (solid line) and auto (dashed 
line) hwnsphnt groups. 

When comparing two groups, an alternative to the proportional haz- 
ards model is the accelerated failure-time model. A quantikquantik 
or q q  plot is made to check if this provides an adequate fit to the data. 
The plot is based on the fact that, for the accelerated failure-time model, 

where So and Sl are the survival fundons in the two groups and 8 is 
the acceleration factor. Let top and tip be the pth percentiles of groups 
0 and 1, respectively, that is 

Using the relationship (12.5.21, we must have So(top) = 1 -p = Sl(hp) = 
So(8hp) for all t. If the accelerated failure time model holds, top = Ot,p. 
To check this assumption we compute the Kaplan-Meier estimators of 
the two groups and estimate the percentiles tip, top, for various values 
of p. If we plot the estimated percentile in group 0 versus the estimated 
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Figure 12.4 Log normal hazardplot for the a110 (solid line) and auto (ahbed 
line) transphntgwps. 

percentile in group 1 (i.e., plot the points tip, hp for various values of p), 
the graph should be a straight line through the origin, if the accelerated 
failure time model holds. If the curve is linear, a crude estimate of the 
acceleration factor q is given by the slope of the line. 

EXAMPLE 12.1 (continued): We shall graphically check the adequacy of the acceler- 
ated failure-time model for comparing allo and auto transplants. Here, 
we fit the Kaplan-Meier estimator separately to each group and com- 
pute the percentiles for each group for p = 0.05,0.10, . . ., 0.35. These 
percentiles are in the range where the percentile could be estimated 
for both groups. Figure 12.5 shows the q q  plot for auto transplants 
(Group 1) versus all0 transplants (Group 0). The figure appears to be 
approximately linear with a slope of about 0.6, which is a crude estimate 
of the acceleration factor 8. 
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Ertimated Puantile for Auto Group 

Figure 12.5 q q  plot to check the adequucy of the accelerated failure time 
model for comparing Allo and Auto transplants. 

For the parametric regression problem, analogs of the residual plots 
described in Chapter 11 can be made with a redefinition of the various 
residuals to incorporate the parametric form of the baseline hazard rates. 
The first such residual is the CoxSnell residual that provides a check 
of the overall fit of the model. The CoxSnell residual, tj, is defined by 
rj = H(T/ I Zj), where H is the fitted model. If the model fits the data 
then the rl's should have a standard (A = 1) exponential distribution, 
so that a hazard plot of tj versus the Nelson-Aalen estimator of the 
cumulative hazard of the tj's should be a straight line with slope 1. For 
the four models considered in this chapter, the Cox-Snell residuals are 

Exponential r, = k ti ex&'Zi}, 

Weibull k exP(fitZ3$, 

1 
Log logistic " [I + i exp@zi)$ I 9 
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and 

Log normal 

Examination of model fit with the Cox-Snell residuals is equivalent 
to that done using the so-called standardized residuals based on the log 
linear model representation. Here, we define the standardized residuals 
by analogy to those used in normal theory regression as 

If the Weibull model holds, then, these residuals should be a censored 
sample from the standard extreme value distribution (12.2.2); if the log 
logistic distribution holds, these are a censored sample from a standard 
logistic distribution (12.3.1); and if the log normal distribution holds, 
these are a censored sample from a standard normal distribution. The 
hazard plot techniques discussed earlier can be used to check if the 
standardized residuals have the desired distribution. However, the haz- 
ard plots obtained are exactly those obtained by the exponential hazard 
plot for the Cox-Snell residuals. 

EXAMPLE 12.2 (continued): In Figures 12.612.9, the cumulative hazard plots for the 
Cox-Snell residuals are shown for the exponential, Weibull, log logistic 
and log normal regression models for the laryngeal cancer data. We see 
from these plots that all four models give reasonable fits to the data, 
the best being the log normal and log logistic models. 

In Chapter 11, the martingale and deviance residuals were defmed for 
Cox regression models. For a parametric model, the martingale residual 
is defined by MI = 61 - tj and the deviance residual by 

As for the Cox model, the martingale residual is an estimate of the ex- 
cess number of deaths seen in the data, but not predicted by the model. 
In the parametric case, note that the derivation of Mj as a martingale 
does not hold but, because the residuals are similar in form to those for 
the Cox model, the name carries through. The deviance residuals are 
an attempt to make the martingale residuals more symmetric about 0. If 
the model is correct, then, the deviance residuals should look like ran- 
dom noise. Plots of either the martingale or deviance residuals against 
time, observation number, or acceleration factor provides a check of 
the model's adequacy. The discussion of how to use these residuals 
in Chapter 11 carries over to the parametric case. We shall illustrate 



41 6 Chapter 12 Inference for Parametric Regression Models 

Figure 12.6 Cox-Snell d u a l s  to mess thefit of the exponentiul regression 
modelfvr the laryngeal cancer data set 

the use of the deviance residuals in the following continuation of Ex- 
ample 12.2. 

UYAMPLE 12.2 (continued): We shall examine the fit of the log logistic regression 
model to the laryngeal cancer data using the-deviance residuals. Fig- 
ure 12.10 is a plot of the deviance residuals versus time on study. Here, 
we see that the deviance residuals are quite large for small times and 
that they decrease with time. This suggests that the model underesti- 
mates the chance of dying for small t and overestimates this chance for 
large t. However, there are only a few outliers early, which may cause 
concern about the model. The deviance residual plots for the other 
three models are quite similar. 
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Practical Note 

Theoretical Notes 

Figure 12.7 C ~ ; S n e l l  r d u a l s  to mm thefit ofthe Weibull regression model 
for the laryngeal cancer data set 

1. Martingale and deviance residuals for these parametric models are 
available in S-Plus. 

1. Further work on graphical checks for the parametric regression mod- 
els can be found in Weissfeld and Schneider (1990) and Escobar and 
Meeker (1992). 

2. It is possible to define a score residual for the various parametric 
models similar to that presented in section 12.6. To illustrate how 
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Figure 12.8 Cox-SneII residuuls to ussm thefit of the log logistic regression 
modeI for the laryngeal cancer data set 

this is done, consider the Weibull regression problem with a single 
covariate Z. The contribution of an individual with covariate Zl to 
the likelihood is given by 

The score residual for A is given by 

for a, 

dh4 = +% + ~ , l n ~ - ~ e r ~ ( / 3 ~ ~ ) ~ h T , ,  
aa a 
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Figure 12.9 Cox-SneII residuuls to assess thefit of the log normal regression 
modeI for the laryngeal cancer data set 

and for p, 

These residuals can be used, as in section 11.6, to examine the 
influence of a given observation on the estimates. See Collett (1994) 
for additional detail. These residuals are available in S-Plus. 

1 2.6 Exercises 

12.1 In section 1.1 1, a study of the effects of ploidy on survival for patients 
with cancer of the tongue was described. In the study patients were 
classified as having either an aneuploid or diploid DNA profile. The 
data is presented in Table 1.6. 
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Time 

Figure 12.10 Deviance residuulsftom the log logistic regression model for 
latyngeal cancer patients 

(a) For both the aneuploid and diploid groups fit a Weibull model to 
the data. Find the maximum likelihood estimates of A and a, and 
their standard errors. 

(b) For both groups, test the hypothesis that the shape parameter, a, is 
equal to 1 by both the Wald and likelihood ratio tests. 

(c) Find the maximum likelihood estimates of the median survival for 
both groups. Use the delta method to find an estimate of the stan- 
dard error of your estimates. 

(dl Fit a Weibull regression model to this data with a single covariate, 
Z, that is equal to 1 if the patient had an aneuploid DNA profile 
and 0 otherwise. Test the hypothesis of no effect of ploidy on 
survival using the likelihood ratio test and the Wald test. Find a 
point estimate and 95% confidence interval for the relative risk of 
death for an aneuploid tumor as compared to a diploid tumor. Also 
fmd a point estimate and a 95% confidence for the acceleration 
factor. Provide an interpretation of this factor. 
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In section 1.4 the times to first exit-site infection (in months) of patients 
withrenal insufficiency were reported. In the study 43 patients had a 
surgically placed catheter (Group 1) and 76 patients had a percutaneous 
placement of their catheter (Group 0). 
(a) For both groups fit a Weibull model to the data. Find the maximum 

likelihood estimates of A and a, and their standard errors. 
(b) For both groups test the hypothesis that the shape parameter, a, is 

equal to 1 using the likelihood ratio test and the Wald test. 
(c) Find the maximum likelihood estimates and 95% confidence inter- 

vals for the two survival functions at 5 months after placement of 
the catheter. Compare these estimates to those obtained using the 
product-limit estimator. 

(dl Fit a Weibull regression model to this data with a single covariate, Z ,  
that indicates group membership. Test the hypothesis of no effect 
of catheter placement on the time to exit site infection. Find point 
estimates and 95% confidence intervals for the relative risk and the 
acceleration factor for exit site infections. Provide an interpretation 
of these quantities. 

In section 1.10, times to death or relapse (in days) are given for 23 non- 
Hodglun's lymphoma (NHL) patients, 11 receiving an allogeneic (AUo) 
transplant from an HLA-matched sibling donor and 12 patients receiv- 
ing an autologous (Auto) transplant. Also, data is given in Table 1.5 
on 20 Hodgkin's lymphoma (HOD) patients, 5 receiving an allogeneic 
(AUo) transplant from an HLA-matched sibling donor and 15 patients 
receiving an autologous (Auto) transplant. Because there is a potential 
for different efficacy of the two types of transplants for the two types 
of lymphoma, a model with a main effect for type of transplant, a main 
effect for disease type and an interactive term is of interest (coding 
similar to 8.lb). 
(a) Using a Weibull regression model, analyze this data by performing 

a likelihood ratio global test of no effect of transplant type and 
disease state on survival. Construct an ANOVA table to summarize 
estimates of the risk coefficients and the results of the one degree 
of freedom tests for each covariate in the model. 

. . (b) Test the hypothesis of no disease-transplant type interaction using 
a likelihood ratio test. 

(c) Find point estimates and 95% confidence intervals for the relative 
risk of death for an NHL Auto transplant patient as compared to an 
NHL AUo transplant patient. 

(d) Test the hypothesis that the death rates are the same for HOD AUo 
transplants and NHL AUo patients. Repeat this test for Auto patients. 

(el Test the hypothesis that the death rates for Auto transplant and 
AUo transplant patients are the same against the alternative they are 
different for at least one disease group by a 2 degree of freedom test 
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of H, : h(t I NHL AUo) = h(t I NHL Auto) and h(t I HOD AUo) = 
h(t I HOD Auto). 

(f) Compare your results to those found in Exercise 3 of Chapter 8 by 
using the semiparametric proportional hazards model. 

12.4 Repeat Exercise 2 using the log logistic model. In part b use the Wald 
test and in part d provide point and interval estimates of the acceleration 
factor and the relative odds. Compare your results to those found in 
Exercise 2. 

12.5 Repeat Exercise 1 using the log logistic model. In part b use the Wdd 
test and in part d provide point and interval estimates of the acceleration 
factor and the relative odds. Compare your results to those found in 
that exercise. 

12.6 Repeat Exercise 3 using the log logistic model. Compare your results to 
those found in that exercise. Estimate relative odds rather than relative 
risks in part c. 

12.7 Using the ploidy data in Exercise 1, estimate the parameters and the 
variance-covariance matrix for the following models for each of the two 
groups. 

(a) A log normal model. 

(b) A normal model. 

(c) A generalized gamma model. 

(d) Using the results of part c, test the hypothesis that 0 = 0. Interpret 
your result in terms of model selection. 

(e) Using the results of part c, test the hypothesis that 0 = 1. Interpret 
your result in terms of model selection. 

(f) Based on your results in this exercise and in Exercises 1 and 5, 
which parametric model best fits the data for each of the two ploidy 
groups? 

12.8 Using the information in Exercise 2, determine the best fitting parametric 
regression model to determine the effects of catheter placement on the 
time to first exit site infection by fitting the exponential, log normal, 
and generalized gamma models. 

12.9 For both the aneuploid and diploid groups in Exercise 1, make an 
appropriate hazard plot to determine if the following models fit the 
data: 

(a) exponential, 

(b) Weibull, 

(c) log normal, and 

(d) log logistic. 
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12.10 For both catheter placement groups in Exercise 2, make an appropriate 
hazard plot to determine if the following models fit the data: 
(a) exponential, 
(b) Weibull, 
(c) log normal, and 
(d) log logistic. 

12.11 Check the adequacy of the accelerated failure time model for describing 
the effects of ploidy on survival in Exercise 1 by making a quantile- 
quantile plot. Provide a crude estimate of the acceleration factor and 
compare it to the estimate you found in Exercise 1. 

12.12 Check the adequacy of the accelerated failure time model for describing 
the effects of catheter placement on the time to first exit site infection in 
Exercise 2 by making a quantilequantile plot. Provide a crude estimate 
of the acceleration factor and compare it to the estimate you found in 
Exercise 2. 

12.13 In Exercise 1, you fit a Weibull regression model to explain the effect 
of ploidy on survival. 
(a) Examine the fit of this model by making the appropriate plot of the 

Cox-Snell residuals. 
(b) Examine the fit of this model by making the appropriate plot of the 

deviance residuals residuals. 
(c) Repeat a and b for the log logistic regression model. 

12.14 In Exercise 3 a Weibull regression model was fit to the survival times 
of patients given a bone marrow transplant. The model included a 
covariate for type of transplant, type of disease as well as an interaction 
term. 
(a) Examine the fit of this model by making the appropriate plot of the 

Cox-Snell residuals. 
(b) Examine the fit of this model by making the appropriate plot of the 

deviance residuals residuals. 
(c) Repeat a and b for the log logistic regression model. 


