
M&M Ch 4.1, 4.2, 4.5  Probability

Probability Probability Scales
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ODDS = PROBABILITY / (1 – PROBABILITY)
PROBABILITY = ODDS / (ODDS + 1)

PROBABILITY

Meaning Long Run Proportion
Estimate of (Un)certainty
Amount prepared to bet

Use Describe likely behaviour of data
Communicate (un)certainty
Measure how far data are from
   some hypothesized model

How Arrived At

Subjectively

Intuition, Informal calculation, consensus

Empirically

Experience (actuarial, ...)

Pure Thought

Elementary Statistical Principles

If necessary, breaking Complex

outcomes into simpler ones

Advanced Statistical Theory

calculus e.g. Gauss' Law of Errors
References
• WMS5, Chapter 2 • Moore & McCabe Chapter 4    •Colton, Ch 3
• Freedman et al. Chapters 13,14,15     •Armitage and Berry, Ch 2
• Kong A, Barnett O, Mosteller F, and Youtz C. "How Medical Professionals
Evaluate Expressions of Probability" NEJM 315: 740-744, 1986 ... on reserve

• Death and Taxes • Rain tomorrow • Cancer in your lifetime  • Win
lottery in single try • Win lottery twice • Get back 11/20 pilot
questionnaires • Treat 14 patients get 0 successes • Duplicate
Birthdays  • Canada will use $US before the year 2010

•  OJ murdered  his wife
•  DNA matched
•  OJ murdered wife | DNA matched

 " | " is shorthand for "given that.."

• 50 year old has colon ca
• 50 year old with +ve haemoccult test has colon ca
• child is Group A Strep B positive
• 8 yr old with fever & v. inflamed nodes is Gp A Strep B positive
• There is life on Mars
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M&M Ch 4.1, 4.2, 4.5  Probability

How to calculate probabilities

Probability Calculations

"I figure there's a 40% chance of showers, and a
10% chance we know what we're talking about"

Wall Street Journal

Basic Rules

A
B

A
B

A and B

Probabilities add to 1

Prob(event) =
 1 - Prob(complement)

   

ADDITION  FOR "EITHER A OR B"

If mutually exclusive
"PARALLEL"   P(A or B) = P(A) + P(B)

If overlapping
  P(A or B) = P(A) + P(B) - P(A and B)

A

Not A
Not B

B

B
Not B

   MULTIPLICATION  FOR "A  AND B" OR "A THEN B"

If independent
"SERIAL" P(A and B) = P(A) • P(B)

If dependent
P(A and B) = P(A) • P(B | A)

Conditional Probability P(B | A) = Probability of B "given A" or "conditional on A"

More Complex:
• Break up into elements
• Look for already worked-out calculations
• Beware of intuition, especially with "after the fact" calculations for non-

standard situations
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M&M Ch 4.1, 4.2, 4.5  Probability

Examples of Conditional Probabilities...
PERSONS 

Smoke?
Develop 
Lung Ca.?

YES

NO

YES

YES

NO

NO

YES

YES

NO
NO

NO

YES

PERSONS 

Smoke?
Develop 
Lung Ca.?

GENDER: 2 BIRTHS
1st 2nd

M

M

F

0.5

0 .5

0 .5

0 .5

F
M

0.5

0 .5

F

0 .25

0 .25

0 .25

0 .25

GENDER: 2  from  5 M & 5 F

5 /10

20/90
4 /9

5 /10

5 /9
25/90

4 /9

5 /9
25/90

20/90

1st 2nd

M

M

F

F
M

F
Testing Dx Tests.. .

Disease Test

+

+

–

–
+

–

Dx Tests In Practice. . .

+

+

–

-
+

–

DiseaseTestSMOKERS: 1 M & 1 F 
M F

YES

NO

SMOKERS: Husband & Wife

H W
YES

YES

NO

NO

YES

YES

NO
NO

NO

YES

O. J.  SIMPSON 

Murdered 
wife?

YES

NO

YES

YES

NO

NO

YES

YES

NO

NO

NO

YES

DNA 
Match?

O. J.  SIMPSON 
Murdered 
wife?

DNA 
Match?
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M&M Ch 4.1, 4.2, 4.5  Probability

Reverse Probabilities:         Probability[ data | Hypothesis ] ≠ Probability[ Hypothesis | data ]

U.S. National Academy of Sciences under fire
over plans for new study of DNA statistics:

During the trial, a forensic scientist gave the first probability in reply

to a question about the second.  Mansfield convinced the appeals

court that the error was repeated by the judge in his summing up,

and that this slip -- widely recognized as a danger in any trial

requiring the explanation of statistical arguments to a lay jury --

justified a retrial.

Confusion leads to retrial in UK.
[NATURE p 101-102 Jan 13, 1994 ]

... He also argued that one of the prosecution's
expert witnesses, as well as the judge, had
confused two different sorts of probability.

In their judgement, the three appeal judges, headed by the Lord

Chief Justice, Lord Farquharson, explicitly stated that their decision

"should not be taken to indicate that DNA profiling is an unsafe

source of evidence".

One is the probability that DNA from an

individual selected at random from the

population would match that of the semen

taken from the rape victim, a calculation

generally based solely on the frequency of

different alleles in the population.

Nevertheless, with DNA techniques being increasingly used in
court cases, some forensic scientists are worried that flaws in the
presentation of their statistical significance could, as in the Deen
case, undermine what might otherwise be a convincing
demonstration of a suspect's guilt.

The other is the separate probability that a

match between a suspect's DNA and that

taken from the scene of a crime could have
arisen simply by chance 1 -- in other words that

the suspect is innocent despite the apparent

match. This probability depends on the other

factors that led to the suspect being identified

as such in the first place.

Some now argue, for example, that quantified statistical
probabilities should be replaced, wherever possible, by a more
descriptive presentation of the conclusions of their analysis. "The
whole issue of statistics and DNA profiling has got rather out of
hand," says one.

Others, however, say that the Deen case has been important in
revealing the dangers inherent in the 'prosecutor's fallacy'. They
argue that this suggests the need for more sophisticated
calculation and careful presentation of statistical probabilities.

"The way that the prosecution's case has been presented in trials
involving DNA-based identification has often been very
unsatisfactory," says David Balding, lecturer in probability and
statistics at Queen Mary and Westfield College in London.
"Warnings about the prosecutor's fallacy should be made much
more explicit.  After this decision, people are going to have to be
more careful."

1 Underlining is mine (JH). The wording of the singly-
underlined phrase is imprecise; the doubly-underlined
wording  is much better ..  if you read 'despite' as "given
that" or "conditional on the fact of" JH
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M&M Ch 4.1, 4.2, 4.5  Probability

Reverse Probabilities:         Probability[ data | Hypothesis ] ≠ Probability[ Hypothesis | data ]

Apparently, Donnelly suggested to the Lord Chief Justice and

his fellow judges that they imagine themselves playing a game

of poker with the Archbishop of Canterbury. If the Archbishop

were to deal himself a royal flush on the first hand, one might

suspect him of cheating.  Assuming that he is an honest card

player (and shuffled eleven times) the chance of this happening

is about 1 in 70,000.

"The prosecutor's fallacy"
Who's the DNA fingerprinting pointing at?

New Scientist, 29 Jan. 1994, 51-52. David Pringle

Pringle describes the successful appeal of a rape case where

the primary evidence was DNA fingerprinting. In this case the

statistician Peter Donnelly opened a new area of debate. He

remarked that But if the judges were asked whether the Archbishop were

honest, given that he had just dealt a royal flush, they would be

likely to place the chance a bit higher than 1 in 70,000 *.
forensic evidence answers the question

"What is the probability that the defendant's DNA

profile matches that of the crime sample,

assuming that the defendant is innocent?"

The error in mixing up these two probabilities

is called the "the prosecutor's fallacy",

and it is suggested that newspapers regularly

make this error.
while the jury must try to answer the question

"What is the probability that the defendant is

innocent, assuming that the DNA profiles of the

defendant and the crime sample match?"

Apparently, Donnelly's testimony convinced the three judges

that the case before them involved an example of this and they

ordered a retrial

from Vol 3.02 of Chance News
(JH) Donnelly's words make the contrast of the two
types of probability much  "crisper". The fuzziness of
the wording on the previous page is sadly typical of
the way statistical concepts often become muddied
as they are passed on.

*  (JH) This is a very nice example of the advantages of
Bayesian over Frequentist inference .. it lets one take
one's prior knowledge (the fact that he is the
Archbishop) into account.
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M&M Ch 4.3, 4.4

Random Variables ; Probability Distributions ; Expectation and Variance of a Random Variable

Random Variables & Probability Distributions Expectation (Mean) & Variance of Random Variable

What they are: • If Y takes on the DISCRETE values

y0 with probability p0
y1 with probability p1
. . . . . . . . .
yk with probability pk

   Random      Possible Corresponding
   Variable  Outcomes   Probabilities

E.g. (abbreviated)

the blood group of  n = 1   A P(  A)
randomly selected person   B P(  B)

AB P(AB)
  O P(  O)

1 .00

  then the expected value of Y  (written "E(Y)" ) is

y0•p0 + y1•p1 + y2•p2  +  . . .+ yk•pk  or  ∑
i=1

i=K

 y i • pi

How many of n = 20 randomly   0 P(0)
selected persons will return   1 P(1)
questionnaire in pilot study   2 P(2)

 . . .   . . .
20 P(20)

1 .00

Compare the formula for E(Y) with that for xbar: -

• E(Y) is  a mean that uses expected (i.e. unobservable or
theoretical or long run) relative frequencies (p's)

• ybar uses observed relative frequencies ( f /  n )'s.
Mean cholesterol        <100 P(      <100)
level in n=30 randomly 100-101 P(100-101)
selected persons . . . . . . • If Y takes on the CONTINUOUS values y - 

y
2   to  y + 

y
2   with

probability  p= f(y)• y,

then E(Y) =   ∫ymin
ymax y • f(y)• y

249-250 P(249-250)
      >250 P(      >250)

1 .00

the value of the test-     <  -2.0 .028
statistic if 2 populations    -2 to -1 .136
sampled  from    -1 to  0 .341
had the same mean     0  to  1 .341

    1  to  2 .136
       > 2.0 .028

Variance of a Random Variable

Var(Y) = 2  = E[ ( Y - µ )2  ] =  ∑
i=1

i=K

 [ y i -  µ ] 2  • pi

i.e.  the Expected Squared Deviation from µ
1.000

• we use probabilities or fractions as relative frequencies
  (like a histogram with an infinite number of entries) Just as there was a computational shortcut for calculating 2,

we can write

Var(Y) = 2  = E [ Y2  ] -  µ2
"ave(square) - squared ave"

• typically, the random quantity is obtained from an aggregate
of elements  e.g.  sum, mean , proportion, regression slope

Other References •Colton, Ch 3

Other References     •Colton, Ch 3
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M&M Ch 4.3, 4.4

Random Variables ; Probability Distributions ; Expectation and Variance of a Random Variable

Relevance of Expectation of a Random Variable e.g. Life Expectancy at birth (Québec 1990 mortality data)

"Y" = Length of life = age at death. Assume for sake of illustration
that deaths in a decade are all at midpoint of interval (calculations done one
year  rather than one decade at a time would be more exact)

1 ACTS AS A MEAN FOR A VARIABLE THAT HAS A
(CONCEPTUAL) REPETITION OR AN INFINITE N

decade

mid-
point

age

Males:
proportion
(p) dying in
this decade age × p

Females:
proportion
(p) dying in
this decade age × p

2 THE EXPECTED VALUE OF A RANDOM VARIABLE X
WILL USUALLY BE IN TERMS OF POPULATION
PARAMETERS

A STATISTIC WITH EXPECTED VALUE    IS AN
"UNBIASED ESTIMATOR" OF   0-10 5 0.010   0.050 0.008   0.040

10-20 15 0.006   0.089 0.002   0.030
e.g.1 Y = Proportion of YES' in sample

E(Y)   = π  = PROPORTION of YES' in POPln

20-30 25 0.012   0.295 0.004   0.099
30-40 35 0.016   0.544 0.007   0.242
40-50 45 0.030   1.335 0.017   0.749

THEN π̂ =  Y 50-60 55 0.074   4.079 0.040   2.223
60-70 65 0.180 11.697 0.096   6.233

(Y is an unbiased estimator of π )
70-80 75 0.301 22.610 0.214 16.049
80-90 85 0.279 23.680 0.358 30.442

e.g.2 Likewise, if we use divisor of n - 1,
90-100 95 0.093   8.822 0.254 24.136
All ( ) 1.000 73.2 1.000 80.2

E(s2) = σ2 ,    so... Expectation of Life at Birth (average longevity)

Males: 73.2 years Females: 80.2 years
 σ̂2= s2 is an unbiased estimator of σ2

Variance[longevity]  = average[square] – squared average

Males: Ave[square] = 52•0.010 + 152•0.006 + ...952•0.093
        = 5619.38 , so

Var[longevity] = 5619.38 – 73.22 = 261.14 or

SD[longevity] = 261.14   = 16.2

[Think of it as the SD when the 'n'  is 1 000 or 1 000 000 ]

Note: Since distribution of longevity not Gaussian, SDdeviation not helpful
in describing limits of individual variation (%-iles would be better)

{ σ̂2
 stands for  "estimate of "  σ2 

}

If we use divisor of n

E(s2 with divisor of n) = 
n-1
n

  σ2 (too small on average)
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M&M Ch 4.3, 4.4

Random Variables ; Probability Distributions ; Expectation and Variance of a Random Variable

If waiting for one of 3 unevenly spaced elevators
(all equally likely to arrive next),

where (?) do you stand? what criterion does it imply?
? = mean position minimizes average squared deviation.
? = median minimizes the average absolute deviation*.

0 1 5 <--elevators 0 1 5 <--elevators

average
squared
distance

average
distance

??

0 1 5 2.00 0 1 25.00 8.67

    ?      ?

0.5 0.5 4.5 1.83 0.25 0.25 20.25 6.92

? ?

1 0 4 1.67 1 0 16.00 5.67

     ?     ?

1.5 0.5 3.5 1.83 2.25 0.25 12.25 4.92

? ?

2 1 3 2.00 4 1 9 .00 4 .67

    ?     ?

2.5 1.5 2.5 2.17 6.25 2.25 6.25 4.92

? ?

3 2 2 2.33 9 4 4.00 5.67

    ?     ?

3.5 2.5 1.5 2.50 12.25 6.25 2.25 6.92

? ?

4 3 1 2.67 16 9 1.00 8.67

    ?     ?

4.5 3.5 0.5 2.83 20.25 12.25 0.25 10.92

? ?

5 4 0 3.00 25 16 0.00 13.67
* see elsewhere on 607 and 697 course pages

page 8



M&M Ch 4.3, 4.4

Random Variables ; Probability Distributions ; Expectation and Variance of a Random Variable

e.g. Expectation  & Variance of Random Digits 0 - 9 Expectation, Variance & SD of a Binary [ 0 / 1 ] "Bernoulli" RV

y Prob y × prob y2 y2 × prob Y = 0 with probability p(0) =1 - π
Y = 1 with probability p(1) =  π0 0.1 0.0 0 0.0
In other words...1 0.1 0.1 1 0.1

2 0.1 0.2 4 0.4 A proportion π of the individual elements in the population
are "positive" (Y = 1); the remaining fraction or proportion
1- π  are "negative" (Y=0)

. . . . .

. . . . .

E(Y) = 0 × p(0)      +  1 × p(1)
7 0.1 0.7 49 4.9
8 0.1 0.8 64 6.4

= 0 × ( 1 - π ) +  1 × π9 0.1 0.9 81 8.1

1.0 4.5 28.5
=              π

VAR(Y) = E(Y
2
) – { E(Y) }

2Var[Y] = E[Y2] - {E[Y]}2 ≈ 28.5 - 4.52 = 8.25
[Variance = ave. square minus squared ave.]

= 0
2
 × p(0)   + 1

2
 ×  p(1) –      π2SD[Y] = Var[Y] = 2.9

Relative
frequency

0.1

0 1 2 5 6 7 8 93 4

= 0                 + 1   ×    π  –      π2

=                              π  –      π2

  ie VAR(YBernoulli) = π(1 - π) =  prop. neg. ×  prop pos.

  SD(YBernoulli) = VAR(?) =  π(1 - π)

This "Bernoulli" Random Variable is a key one in Epidemiology -- it
is the 'kernel' or 'atom' in the molecules called Binomial Random
Variables. The unit variance π[1–π] and its square root show up
whenever we deal with 0/1 data.
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M&M Ch 4.3, 4.4

Expectation and Variance of a Linear Combination of Random Variables (R.V's)

Expectation, Variance, and SD of a SUM of 2 (or more)
UNCORRELATED Random Variables

Example of Variance and SD of a SUM

Planeloads of n=100 persons, randomly chosen from a
population withR.V. Mean ("Expectation") Variance ("Var")

Y1
µ1 σ1

2  = 70 Kg = 8 Kg so  = 64 Kg

Yi: weight of i-th passenger in sample
Y2

µ2 σ2
2

Y1 + ?2 µ1 + µ2 σ1
2 + σ2

2

E[Combined weight of 100 passengers]

 Remember... SD's DON'T ADD;  VARIANCES DO!!   =  E[Yi] =  70 = 100 ? 70 = 7000Kg

In general... (using E as shorthand for Expected Value)
Var[Combined weight of 100 passengers]

E[ Yi ] = E[Yi] .. whether correlated or not
= Var[Yi] =   64 = 6400 Kg2

Var[ Yi ] = Var[Yi]   ..  if uncorrelated

SD[Combined weight of 100 passengers]

= 6400 = 80 Kg

= n • SD[weight of individuals]

 
Var[ Yi ] =  Var[ Yi ] +  Covar[Yi, Yj] .. otherwise

Even more generally... if use weights wi
E[ w i Yi ] = w i E[ Yi ]

Var[ w i Yi ] = w i
2 Var[ Yi ]+  w iw j

 Covar[Yi, Yj] Example of Variance and SD of a Difference

Thus  if Y1 and Y2 are uncorrelated

Var[ Y1 ± Y2 ] = Var[Y1] + Var[Y2]

NOTE:  Var[Difference]= SUM of Variances

Difference, Hm – Hf  , in heights, Hm and Hf , of a randomly
selected male and a randomly selected female from
populations with

 m = 175 cm m= 6.1 cm  f = 162 cm f = 5.8 cm

[parameter values taken from  1972 Busselton (Australia) Study
-- see course 678 web page]
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M&M Ch 4.3, 4.4

Sampling variability of two common statistics - sample mean (ybar) and sample proportion p̂

• "ybar" (mean of n sample values)

• "p-hat" (sample proportion -- mean of n 0's and 1's )

ybar  =  
Y1 + Y2 + ... + Yn 

n

=  1n  (Y1 + Y2 + ... + Yn )

So... Var(ybar) =  1
n2  Var [ Sum of n Y's ]calculated from the "Y" values in a simple

random sample of size n from a 'universe'

where ...

mean(Y) =  E(Y) =  ,

Variance(Y) = 2  (so SD(?) =   )

=   1
n2 var [ Yi ]   =  1

n2  n 2

=   
2

n

the variance of the means of (all possible
simple random) samples of n values is n
times smaller than the variance of all of the
individual values in the 'universe' of Y's.

We can express the variability using the

standard deviation (square root of the

variance) of the statistic, once we represent

the statistic as a mean of n independent

identically distributed random variables

the SD of the means of (all
possible simple random) samples
of n values is n times smaller then
the SD of individual values.

Y1, Y2, ... , Yn,

Same rule for p ... a proportion
(numerator/n) is the mean of n
binary (0/1) RV's  Y1, Y2, ... , Yn ,
with

2  = var [ Y1 ] =  ( 1 - )

each with mean  , variance 2 , (i.e., SD   )

(Some statisticians think of the n observed
values in the sample as n 'realizations' of the
single random variable Y)
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M&M Ch 4.3, 4.4

"Cancellation of extremes" and reduction of uncertainty: how insurance companies stay solvent

Possible Earnings from single insurance policy  and
from pool of n insurance policies:

Note: This example is from Q5.22 page 358 of
1st Edition of Moore and McCabe. Q4.48 in
2nd edition and Q4.52 p 341 in 3rd edition
have $100,000 policy and $250 premium per
year, but principle is same.

Earnings from a single policy (n=1)

Y=Earnings    Prob   Y × Prob    Y2 × Prob
–$19,900    0.00183  –$36.417    724,698.3
–$19,800    0.00186  –$36.828    729,194.4
–$19,700    0.00189  –$37.233    733,490.1
–$19,600    0.00191  –$37.436    733,745.6
–$19,500    0.00193  –$37.635    733,882.5
    $500    0.99058  $495.290    247,645.0
            1.00000  $309.741  3,902,655.9

10 40 400
-2000

-1000

0

1000

*

n

Earnings from pool of n policies

Expected (i.e. average) Earnings per policy
=  Earnings  Probability = $309.74

Variance(Earnings) = ave(Earnings2)
– (ave Earnings)2

                = 3,902,655.9 – 309.742

                = 3,806,717 ($2)

SD(Earnings) = Var(Earnings) = $1,951

Earnings per policy from a pool of n policies
Statistics for earnings from pooled policies based on several

simulations per pool size

n:   1   10   40  400

MINIMUM -29,900 -1,540 -1,022   96
Notice that the SD[mean of n policies] in the
simulations is quite close to that predicted
theoretically, namely

<----  $1,951/ n

MAXIMUM     500    500    500  500

MEAN     309    268    318  320

STD DEV   1,951    645    309   92
$1951

n    $1,951   $617    $308    $98
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Variation in the mean word length in samples of sizes n=4( ) and n=16(•) , and in the differences of two means (G - E)
[ each  and  • represents a sample from a student in course 607 in a previous year ]

 ---- GERMAN ----
M

ea
n

_G
er

m
an

 (
G

)

0

4

8

12

16 SD SD
of means of means
based on based on

 ( ) n=4 (•) n=16

1.97 0.97

 ---- ENGLISH ----

M
ea

n
_E

n
gl

is
h

 (
E

)

0

4

8

12

16 SD SD
of means of means
based on based on

 ( ) n=4 (•) n=16

1.33 0.81

GERMAN – ENGLISH

M
ea

n
_G

 –
 M

ea
n

_E

- 6

- 2

2

6

10 SD SD
of  means of  means
based on based on

 ( ) n=4 (•) n=16

2.40 1.30
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