## The sign test

[first 2 paragraphs from A\&B, §13.2 ; parts in sans serif font from JH. See also M\&M Ch 5/7]
Suppose the observations in a sample of size $n$ are $x_{1}, x_{2}, \ldots, x_{n}$, and that of these $r$ are positive and $s$ negative. Some values of $x$ may be exactly zero, and these would not be counted with either the positives or the negatives. The sum $r+s$ may therefore be less than $n$, and will be denoted by $n$ '. On the null hypothesis positive and negative values of $x$ are equally likely.

Both $r$ and $s$ therefore follow a binomial distribution with parameters $n$ ' and $\pi=1 / 2$. Excessively high or low values of $r$ (or equivalently, of s) can be tested exactly from tables of the binomial distribution....

We can use the $\pi=0.5$ column in Table C of M\&M and by ourselves add up the tail area from $r$ onwards (and multiply by 2 for a 2 -sided test). Or we can use the Table entitled "SIGN TEST" which I have prepared on a spreadsheet and included overleaf. The table shows the sum of the probabilities in one tail, so all one needs to do is multiply the entry by 2 for a two tailed $p$-value.
For large enough samples, the Gaussian approximation to the binomial can be used... with $\pi=1 / 2$, the distribution of $r$ is symmetric and has $\mu=n^{\prime} \bullet \pi$ and $S D=\sqrt{n^{\prime} \pi[1-\pi]}$

Example(jh): In our example in §7.1, we worked out the case of $r=8$ "positives" among n'=10 non-zero differences.

By Table C, the probabilities of 8,9 or 10 positive out of 10 , when $\pi=0.5$, are
$\mathrm{P}-1$ tail $=0.0439+0.0098+0.0010=0.0547$, so
P-2tail $=2 \times 0.0547=\underline{0.1094}$.
[Excel function: BINOMDIST(number_s, trials, probability_s, cumulative)
Using the homegrown SIGN TEST Table, we locate the row marked $n=10$. The table is set up to handle the number of responses in the less frequent class, here the 2 'negatives' rather than the 8 positives. Since the Sign test is symmetric in $r$ and $s$, we are therefore interested in the tail consisting of the cumulation of $\mathbf{0 , 1} \mathbf{1}$ and 2. The entry in the column marked ' 2 ' gives us this cumulation... 0.055 (note everything in table is per 1000), the same as when the $P-1$ tail $=0.0439+0.0098+0.0010=\underline{0.0547}$ above is rounded to 3 dp .

If we were to use the Gaussian distribution as an approximation, we would first calculate

$$
\mu[r]=n^{\prime} \cdot \pi=10(0.5)=5, \quad \text { and } \quad S D[r]=\sqrt{n^{\prime} \times \pi \times\{1-\pi\}} \quad=\sqrt{10 \times 0.5 \times 0.5}=1.58
$$

Thus, $r=8$ relative to this $\mu$ and $S D$ is

$$
z=(8-5) / 1.58=1.90 \text { without the continuity correction }
$$

and

$$
z=\{|8-5|-0.5\} / 1.58=1.58 \text { with the continuity correction }
$$

So

$$
\mathrm{P}-1 \text { tail }=\mathrm{P}(Z>1.58)=0.057
$$

remarkably close to the 'exact' calculation above.
Note that if one takes the formula

$$
z=(r-r / 2) / \sqrt{n \times 0.5 \times 0.5}
$$

and squares both sides, and uses the fact that $r+s=n$, one gets

$$
z^{2}=\frac{\{r-s\}^{2}}{r+s} \text { or } z^{2}=\frac{\{|r-s|-1\}^{2}}{r+s}
$$

which 'saves on square roots' but must be referred to the chi-squared distribution with 1 degree of freedom.
See link to test of proportions for paired data (McNemar Test) in Chapter 9.

SIGN TEST
Cumulative Binomial for $\pi=0.5$; each entry to be read with a decimal point preceding it.
The 1-tail P value for a sign test is the cumulative probability corresponding to the number in the less frequent class Double the table entry to get the 2 -tailed P -value.

Example: A sign test with sample size $\mathrm{n}=15$ gives 11 positive observations and 4 negative observations. Thus, the number in the less frequent class is 4 . Thus $\mathrm{P}=0.059$ (1-tailed) or 0.118 (2-tailed).
number in less frequent class


