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Abstract: This paper provides an overview of problems in multivariate modeling of
epidemiologic data, and examines some proposed solutions. Special attention is given to the task
of model selection, which involves selection of the model form, selection of the variables to enter
the model, and selection of the form of these variables in the model. Several conclusions are
drawn, among them: a) model and variable forms should be selected based on regression
diagnostic procedures, in addition to goodness-of-fit tests; b) variable-selection algorithms in
current packaged programs, such as conventional stepwise regression, can easily lead to invalid
estimates and tests of effect; and c) variable selection is better approached by direct estimation of
the degree of confounding produced by each variable than by significance-testing algorithms. As a
general rule, before using a model to estimate effects, one should evaluate the assumptions
implied by the model against both the data and prior information. (Am J Public Health 1989;
79:340-349.)

Introduction

All statistical methods are based on mathematical models for the process generating the data.
Statistical modeling may be defined as using the data to select an explicit mathematical model for
the data-generating process. Model selection and model explicitness distinguish modeling from
more basic statistical methods.

Although modeling can be useful for detecting and summarizing data patterns in a more
efficient manner than simple stratified analyses, these advantages are purchased by a higher risk
of bias. The assumptions used in most modeling procedures are more restrictive than those used
in simple stratified analyses, if one or more of these assumptions are incorrect, the estimates and
tests derived from modeling may be seriously compromised. Vandenbrouckel proposed two
complementary solutions to this problem: a) attempt to fit a complete family of models in order
to see what conclusions seem to follow regardless of the model one selects; and b) validate
modeling results against the results obtained from simple cross-tabulation. The latter suggestion
is relatively straightforward to implement, and was in fact recommended by the forefathers of
current modeling approaches in epidemiology.2 The first suggestion, however, is not quite as
straightforward to implement, because any truly “complete” family of models will be too large to
allow one to fully explore the consequences of using different models in the family. Neither
suggestion gets at the problem of deciding which variables should be controlled (by stratfication
or modeling) when estimating exposure effects.

The present paper provides an overview of the problems that arise in the selection of models
and control variables, and examines some of the proposed solutions. Because current knowledge
is so limited, the present paper is not intended to provide a definitive guide to modeling.
Nevertheless, some conclusions and recommendations can be culled from the literature. One
recommendation is worth stating at the outset: To maximize the validity of model-based
estimates, an investigator should use both the data and prior information to critically evaluate the



epidemiologic assumptions implied by the model and the statistical assumptions required by the
model.

The Problem of Model Selection

Investigators who decide to use a multivariate model to estimate exposure effects face a
bewildering variety of potential models. Consider a situation in which one wishes to estimate the
effect of one exposure factor, and one has data containing seven potential "control” variables
(covariates) with possible confounding or interactive effects. How many different models could
one construct for the process that generated these data?

First, one has a virtually limitless number of model forms to choose from, since there is a
model form corresponding to every way in which one can express the dependent variable (e.g.,
incidence rate) as a mathematical function of the exposure and control variables. Having selected a
model form, one will have to choose a subset from the 27 = 128 possible subsets of the variables
to enter in the model. Having selected, say, four of the seven variables to enter in the model as
control variables, one will have to choose among six possible two-way interactions of the four
control variables, plus four possible two-way interactions of the control variables with the
exposure, for a total of 26 = 1,024 possible combinations of two-way interactions to enter in
the model. For every control variable measured on a continuous scale, one will also have to
choose from the infinitude of forms in which to enter the variable in the model, e.g., it could be
entered: a) as a categorical variable (in which case the number of categories and the appropriate
cutpoints must be chosen); b) as a single continuous variable, possibly after some transformation
(e.g., logarithmic); or c) as several polynomial terms, e.g., x and x? (in which case the number of
variables in the model is increased).

All of the above choices are complicated by the fact that they are confounded, in that what
appear to be the best model and variable forms will be influenced by the choice of variables and
product terms, and vice-versa. Even restriction to a few common forms of models and
transformations will still leave thousands of possible choices. Small wonder, then, that many
investigators adopt an automated approach to model selection: Use the most convenient
computer-packaged model, enter continuous variables "as is" (without considering
transformations), and select variables for the model according to some mechanical algorithm. The
fact that such approaches appear in textbooks, articles, and programs may provide one with a
sense that such approaches are justfiable, if not the best available. Such a sense would, however,
be false;3-9 in fact, little research has been done on the relative performance of different modeling
strategies.

The Problems of Simple Stratified Analysis

Despite its problems, modeling can begin to look attractive when one confronts the
limitations of simple stratified analyses (i.e., examining only stratum-specific and summary
estimates and tests from multiway contingency tables).

First, one must confront the variable-selection problem in stratified analysis no less than in
modeling, since most data sets will yield a sparse stratfication (i.e., a table with very small cells)
if stratfication is based on all or most of the candidates for control. Unfortunately, both

2



stratum-specific and standardized measures8-11 require a fair number of subjects in each cell for
validity (five per cell is generally thought to be a safe minimum); thus use of such methods will
almost always entail severe limits on the number of variables one controls.

Second, in order to ensure sufficient numbers in each cell, one must convert each continuous
variable into a series of categories. One may also have to combine categories of other, discrete
variables. The final categories must be broad enough to ensure sufficient numbers per cell, yet the
use of broad categories increases the danger that confounding by the variable will take place
within the categories. Furthermore, the most basic stratified methods make no use of the natural
ordering of the categories formed from continuous variables. Such categorization problems are
circumvented by entering the continuous variables directly in a model; doing so, however, brings
us back to the problem of selecting the forms for the model and the variable.

Third, although there are a variety of basic methods that can be applied to sparse
stratfications (such as Mantel-Haenszel techniques7-9 and "hybrid" standardized measures11),
the validity of these and many other stratfication methods (such as the Woolf and
maximum-likelihood estimators of a common odds ratio7,8) depends on the same assumptions as
certain multivariate models. For example, the Mantel-Haenszel odds ratio is a valid effect
estimate only under the assumption that the underlying stratum-specific odds ratios are constant
across the strata.10,11 The latter is equivalent to the assumption that the joint effect of exposure
and the stratfication variables is given by a logistic model containing one variable representing
exposure status and a series of indicator variables (whose number is one less than the number of
strata) which represent the stratum membership of each subject.12

Finally, stratified analysis methods are based on the same assumptions about sampling
variability (i.e., the distribution of random error) as those used in modeling. These assumptions
are further discussed below. First, however, we will examine the one problem that can be largely
avoided in simple stratified analysis: selection of a mathematical form for the dependence of the
outcome on the study variables.

Selection of Model Form

Nearly everyone finds it convenient to employ "off-the-shelf" model forms, i.e., whatever is
available in packaged computer programs. For case-control data, this almost inevitably leads to
the use of the logistic model for the probability (Pr) that a sample subject is a case, 7, 8, 13, 15
Pr(case|x,zy,...,z,) = 1/[1-+ exp(- a- bx - ¢z, - ... C,ZV)],

where X represents the exposure of interest, and z4,...,z, represent the n variables selected for
control (or functions of them). For cohort data, one often sees the logistic model the exponential
form of the Cox proportional-hazards model, 4, 14 or the exponential regression model for the
person-time rate of disease, 13, 15

Rate(x,zy,...,Z,) = exp(@ + bx + ¢,z + ... + ¢,Zy).

Under each of these models, the approximate relative risk for the effect of exposure level x™"
versus exposure level x', adjusted for z,,...,z,, is exp[b(x" - X)].



In most epidemiologic applications, these three regression models (logistic, Cox, exponential)
are based on similar assumptions, 14, 15 and have similar epidemiologic meanings. The two major
epidemiologic assumptions implied by these models are:

a) Either the incidence odds or the incidence rate of disease increases exponentially with a simple
linear increase in the exposure x or any of the control variables z,,...z,.

b) The joint effects of exposure and the control variables are multiplicative (for example, if a
one-unit increase in x alone multiplies incidence two-fold and a one-unit increase in z; alone
multiplies incidence three-fold, a simultaneous one-unit increase in both x and z; will multiply
incidence by six-fold).

Neither assumption is reasonable in all applications.9 Although much research has been done
examining alternative or more general model forms, 16-19 none of this research has directly
addressed the issue of how much inferences about exposure effects will be distorted if the effects
are estimated from a model whose assumptions are violated (i.e., a misspecified model). This is
somewhat unfortunate, since in epidemiologic applications any model is at best a rough
approximation to the "true" disease pattern. There is however a growing body of research on the
effect of using an incorrect model (e.g., see White20), and several conclusions can be drawn from
this work.

First, the usual standard-error estimates for the coefficient estimates will be biased if one uses
an incorrect model to derive the estimates.20 This implies that model-based confidence intervals
will not cover the true effect measure at the nominal (e.g., 95%) coverage rate if the model is
incorrect.

Second, even if the general model form is correct, the power of a model-based test of
exposure dose-response will be reduced if the form of exposure entered in the model is
incorrect.21 For example, entering exposure untransformed into the model as bx can result in
marked loss of power for the test of b = 0 if in the model the exposure effect is correctly
represented by b(log x).21

Third, in many applications, estimates of effect for extreme and uncommon exposure levels will
be more distorted by model misspecfication than estimates for less extreme, common levels.
Thus, if one uses a logistic model to study x = cigarettes per day and myocardial infarction
incidence, but the true effect of smoking is linear, then one should expect the logistic estimate of
the effect of 50 cigarettes per day (versus no smoking) to be more biased than the logistic
estimate of the effect of 20 cigarettes per day. Reverse situations (in which the estimated effect
for less extreme exposure is more biased) can occur when the extreme observations unduly
influence or "leverage" the estimates, or when the effect of exposure is not monotonic, but at
least the former problem is detectable using regression diagnostics22 (see below). In either case,
model misspecfication can also result in "off-center” confidence intervals, in that the model-based
intervals will tend to fall more frequently off to one side of the true value.



Fourth, simply transforming the variables in the model (e.g., replacing x by log x) or adding
product terms to the model will not always adequately cope with incorrectness of the basic
model form. For example, if the true model is linear in the rate, i.e.,

Rate(X,zy,...,z,) =a+ bx + ¢z, + ... + ¢z,

and x and some of the z are continuous variables (e.g., cigarettes per day, age), no variable
transformations or product terms added to the exponential rate model will allow it to correctly
replicate the true dependency of the rate on exposure and the control variables (unless one uses a
"saturated” model with as many parameters as observed exposure-covariate combinations). Also,
even though transformations and product terms will improve the approximation of the
exponential model to the true (linear) form, the product terms will complicate both fitting the
model and interpretation of the final results.

In the most severe instances of the above problems, it is possible for a modeling result to be
entirely dependent on model assumptions, or to be an artifact of some violation of those
assumptions. Suppose, for example, that the true effect of exposure follows a U-shaped
dose-response curve, but one fits a model that allows only monotonic (nonreversing)
dose-response, such as any of the models given above. Then the estimated exposure coefficient
may indicate that no exposure effect exists, even if the exposure effect is strong.

Regression Diagnostics

Clearly, it would be of value to choose the correct model for analysis, or at least the best
approximation among the available candidate models. Unfortunately, all model-selection methods
are subject to error, and no optimal method for selecting the best model form is known. For
example, it is now widely accepted that simple "global™ tests of fit are inadequate for model
selection: such tests often have low power,23 and so need to be supplemented by various
regression diagnostic procedures (such as residual analysis) in order to assure that one has a
reasonable chance of detecting important violations of model assumptions. 22, 24-26

Although the literature on regression diagnostics for the models common in epidemiology is still
fairly technical, there are many simple graphical methods for checking the reasonableness of
model assumptions. One can examine graphs of observed rates (or, in case-control studies,
observed odds ratios) or transformations of these to aid in deciding which models and variable
transformations would be reasonable to employ;9 more sophisticated exploratory graphing can
be done via smoothing techniques,27 although the latter generally incorporate some modeling
assumptions. Once a model is fitted, observed or smoothed values may be plotted against or with
values predicted (fitted) by the model to detect systematic departures of the observations from
the model form;24 for example, a plot of the observed or smoothed values against model-fitted
values should tend to form a straight line if the model form is correct.

Because model assumptions may be violated in a fashion undetectable by formal tests or
diagnostic procedures, model-based results should be subjected to sensitivity analysis, i.e.,
checking whether similar results are obtained when different models or assumptions are used for
analysis. At a minimum, one should validate modeling results by seeing whether similar results
are somehow apparent in the relatively nonparametric setting of simple stratified analysis.1 If
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they are not, the model-based results may well be more misleading than those from stratified
analysis.

Dose-Response Modeling

Dose-response assumptions regarding an ordered variable can easily be checked by converting
to an unordered categorical form (a minimum of five categories if possible), and entering this
categorical form into the model as a series of unordered indicator variables.8, 9 One can then plot
the fitted coefficients of the indicators against the central values of their corresponding categories.
This plot should approximate a straight line if the original variable can be entered directly into the
model, without transformation. The shape of the plot may also suggest an appropriate form in
which to enter the variable; for example, a J-shaped plot, if biologically plausible (as, e.g., with
alcohol use and heart disease), would suggest that the variable be entered using a quadratic as well
as linear term. Walter, et al,61 present an alternative approach for categorical dose-response
analysis.

The preceding approaches are subject to sample-size limitations (see below). In particular,
there must be a sufficient number of subjects in each category to produce valid estimates of the
outcome or effect measure for that category (which at best would imply no less than five cases
expected per category for person-time rate data, plus five noncases expected per category for
count data). On the other hand, one should avoid forming exposure categories so broad that there
could be important variations in exposure effect within the categories, or covariate categories so
broad that there could be important confounding by the covariate within the categories. In
particular, it is usually desirable to assign definite boundaries to end categories, even if this means
that some outlying observations are omitted from the analysis. For example, "76-80 years" might
be suitable for the highest age category, but use of "76+ years™ would run the risk of producing
distortion if the category included many subjects over 80.

The preceding problems of category construction need not arise in the final analysis,
provided that one restores categorized variables to their continuous form after exploratory
dose-response analysis; such restoration can also be recommended on efficiency grounds.21 The
problems also are avoided if one uses smoothing27 instead of categorization for dose-response
analysis.

Almost inevitably, several different forms of a doseresponse curve will appear compatible with
the data. In some cases there may be extensive external (prior) information indicating what sort of
curve to expect. Prominent examples occur in modeling rates of epithelial tumors, such as
bronchial carcinoma; for many such tumors, epidemiologic data and biological theory indicate that
within birth cohorts the smoking-specific age-incidence curves should be well approximated by
certain "log-log” curves.28 There are, however, several limitations on the utility of prior
information, especially in case-control analyses. For example, previous findings may not apply
to the particular population being studied, or within levels of the variables chosen for control;
case-control matching on a variable can greatly distort the dose-response curve for the variable
(usually obliterating the dose response); and, when dealing with age-incidence curves, one must
distinguish cohort from cross-sectional curves, the latter being what one would observe in typical
case-control studies (the two types of curves may have very different shapes if distributions of
other, uncontrolled risk factors vary across birth cohorts or calendar time8).



A special problem in multivariate modeling is the potential for one or a few observations to
have exaggerated influence on the final results. For example, it is possible for the data from one
subject or category to entirely determine whether a particular model fits well, or whether a
particular variable appears to have an effect. Although similar problems can occur in basic
analyses (for example, the mean of a set of observations can be strongly influenced by a single
outlier), they may be less obvious in multivariate analysis: Influential observations need not have
an unusual value for any single variable, nor need they exhibit large residuals.22,24 As a result, an
extensive technical literature on detecting and measuring influence has developed,22 and an
increasing number of programs incorporate influence measures. When these are not available, one
can search scatterplots and multiway cross tabulations for subjects with unusual combinations of
variable values. The influence of a subject identified in this search can then be assessed by
refitting the model after excluding that subject from the data set.

Distributional Assumptions

The models given above (formulas 1-3) specify only the dependence of the expected outcome
(risk or rate) on the independent variables in a model. Such models are often termed structural
models,79 since such models specify the (fixed) structural features of the sampled populations
which are of central epidemiologic interest. Until recently, discussions of model selection in
epidemiologic analysis focused exclusively on specfication of the best structural model form in a
restricted class of candidate forms. Specfication of the structural form is not, however, sufficient
to fit epidemiologic models (such as formulas 1-3) by the usual methods (e.g., maximum
likelihood).

It is usually left to the computer package to specify the other necessary component for
model fitting, namely the sampling model for the repeated-sampling distribution of the
observations about their expectations (i.e., the model for the random or unexplained component
of variation in observations). Models for probabilities or expected proportions (such as formula |
above) are almost always fit by assuming a binomial distribution for the number of cases
observed at each exposure-covariate combination, while models for rates—such as (2) and (3)
above—are almost always fit by assuming a Poisson distribution for this number. The same
sampling models are used to derive tests and confidence intervals from simple stratified analyses.

Most sampling models are based on the assumptions that individual response probabilities
are homogeneous within exposure and covariate levels, and responses are independent across
individuals. If these assumptions are violated, the usual sampling models will no longer hold. For
example, if in a closed cohort the outcome of one subject affects the outcome of another subject
(as with contagious diseases), the distribution of cases will not in general be binomial. If the
assumed sampling model is in fact incorrect, the standard errors of both stratified estimates and
model-based estimates may be seriously underestimated, and a structural model may appear to
fit poorly (according to goodness-of-fit statistics) even if it is perfectly correct.

To circumvent such problems, methods have been developed that employ more general
sampling models than the usual binomial and Poisson models. Examples include models for
over-dispersion (i.e., excess variation) of discrete data24,30; such models can be fit using the
GLIM package,30, 31 and some special cases are preprogrammed in the EGRET package.32

.



There is also an enormous literature on modeling of contagious diseases (for a recent example see
Haber, et al33).

Selection of Variables

Even if one ignores (for the moment) the problem of selecting a model form, one still faces the
task of selecting the variables to enter in the model. This task includes not only choosing which
primary variables to enter, but also which product terms to enter.

Any variable-selecting strategy should begin by screening out recorded variables that would
be inappropriate candidates for control. For example, in a study of the effect of an exposure on
disease, it is widely recognized that variables influenced by the exposure or disease are
inappropriate for control, since control of such variables may lead to considerable bias.6-9
(Special methods for control of confounding by intermediate variables have only recently been
developed.34) It is thus essential to exclude such variables from the pool of candidates for
control.

After this preliminary screening, there still may be more candidate variables than
observations, in which case one cannot fit a model containing all the candidate variables. Even if
one can enter all or most of the candidate variables in a model, the estimate of exposure effect
derived from the resulting model may be highly unstable or biased; this is especially likely to
occur if the set of variables entered in the model has a high multiple correlation with the study
exposure. It thus can be valuable to select for control only a limited subset of the candidate
variables. In doing so, however, one will confront the following dilemma: No matter what
selection procedure is used, the validity of the estimates and tests obtained from the final model
depends on the assumption that the omitted variables are not in fact confounders (conditional on
control of the included variables); but, in practice, there will always be uncertainty regarding the
validity of this assumption (were there no uncertainty, no variable-selection algorithms would be
needed).

In a sense, variable selection parallels screening for disease: a variable-selection algorithm is a
screening device, and a good algorithm will be highly sensitive for detecting confounders and
highly specific for screening out nonconfounders. Nevertheless, the performance of an algorithm
must be evaluated primarily in terms of the validity of the estimates and tests of effect that it
yields, rather than in terms of sensitivity and specificity.

Two major types of selection algorithms are in use in health research: conventional stepwise
regression, and charge-in-estimate methods. The following sections describe these methods, and
focus on the shortcomings of conventional stepwise regression as a confounder screening tool.

Conventional Stepwise Regression

The most commonly implemented "canned" variable-selection routines are stepwise
regression algorithms.35,36 These proceed as follows. One first divides all candidate variables
into two classes: forced-in variables, which are entered into the initial model and not subject to
deletion from the model; and the remaining nonforced variables, which are subject to selection and



deletion by a stepwise algorithm. One chooses an initial model, and then subjects it to sequential
modfication by repeated application of a selection-deletion cycle, such as the following:

Selection: Among all candidate variables not in the current model, find the one that would have
the most sign)ificant coefficient if entered in the model; if its coefficient would be
"statistically sign)ificant” (e.g., p < 0.05), enter it into the model.

Deletion: Among all variables in the current model, find the one with the least sign)ificant
coefficient; if its coefficient is not statistically sign)ificant, delete it from the model.

The algorithm continues until either no further model changes occur over one complete cycle, or a
preset number of variable selections and deletions occur. Forward-selection algorithms start with
an initial model that includes only forced-in variables, and execute only the selection step.
Backward-deletion (or backward-elimination) algorithms start with an initial model that includes
all potential control variables, and execute only the deletion step (note, however, that a model
with all potential control variables may be numerically impossible to fit).

Many variants of the basic stepwise algorithms just outlined are possible. There is, however,
absolutely no reason to expect that any conventional selection strategy (such as stepwise or
all-possible-subsets regression35 38) will select the best possible subset of variables or product
terms to control. In fact, many theoretical reasons have been put forth for expecting conventional
algorithms to do poorly in confounder selection.3-9 37 For example, if conventional signficance
levels are used, it is likely that some important confounders and product terms will not end up in
the final model;23,38 in other words, as conventionally implemented the methods have poor
sensitivity. In addition, both the sensitivity and specificity of the methods are impaired by the
fact that they ignore covariate-exposure associates (which can be as crucial as covariate-disease
associations in determining bias). Use of collapsibility tests39-41 to select control variables
addresses only the last objection, and so in theory would only be a little better for variable
selection than the usual stepwise algorithms.

More generally, in deciding whether to control a variable it is not at all clear that the null
hypothesis (of no covariate effect or of no confounding) is the appropriate hypothesis to test.
Logically, one can justify failing to control a variable only if one can reject the alternative
hypothesis that the covariate is an important confounder.42 Thus, if one wishes to conduct a
statistical test of a confounder, a logically sound approach would employ equivalence testing in
place of significance testing (see ref. 43 for an introduction to the concept of equivalence testing).

No matter what algorithm is adopted, it is essential that exposure be forced in the model for,
if it is not, the probability of inappropriately selecting nonconfounders and omitting confounders
will be greatly increased.3,8,37

Change-in-Estimate Methods

Perhaps the most commonly proposed alternative to conventional algorithms is to select
variables (and product terms) using a "change-in-estimate” method, in which variables are
selected based on relative or absolute changes in the estimated exposure effect.3-9 Such a method
logically requires that the exposure variable be present in every fitted model.



As with conventional stepwise algorithms, the "chang-in-estimate” approach can be
implemented in a stepwise fashion,8 in which for example the cycle becomes

Selection: Among all candidate variables not in the current model, find the one which if entered
would result in the largest change in the estimated exposure effect; if this change
exceeds a certain amount (e.g., a 10 per cent change in the risk ratio), enter the variable
in the model.

Deletion: Among all variables in the current model, find the one for which its deletion from the
model would result in the smallest change in the estimated exposure effect; if this
change is less than a certain amount, delete the variable from the model.

Again, many variants are possible. For example, selection may be based on changes in the
confidence limits for the exposure effect, rather than changes in the point estimate,44 this
approach will more adequately account for collinearity of the study exposure with the candidate
variables than will a change-in-point-estimate approach.37,44

Prior Information and Variable Selection

Automatic variable selection algorithms (such as those given above) do not take advantage of
prior information concerning effects of factors not forced into the model. For this reason, many
authors recommend that prior information take precedence in determining order of entry, with
extensive forcing of a priori important variables into the model3-6 37 (e.g., age would invariably
be forced in when analyzing a cohort study of lung cancer). Several authors further note that
when one has reliable prior information concerning the magnitude of a control-variable coefficient,
it can be worthwhile to use this information in the construction of the final coefficient estimate
for that variable.37 44-46 Nevertheless, such use carries the risk of increasing error if the prior
information is in fact incorrect.37-44

Evaluations of the Methods

Informal theoretical arguments have tended to favor the change-in-estimate approach over
signficance-testing approaches such as conventional stepwise selection and all possible-subsets
regression.3-9 Furthermore, it is not difficult to find real examples in which "canned" stepwise
and other signficance-testing approaches give palpably absurd results, but the change-in-estimate
approach does not;6 in contrast, no examples of a reverse situation (real data for which ordinary
stepwise estimates appear superior) have been published.

Although there have been very few simulation or mathematical studies of variable-selection
criteria for epidemiologic situations, those studies that have been done have tended to support
earlier criticisms of signficance testing approaches. For example, Robins44 has given some formal
justfications for previous intuitive arguments against significance-tests for confounder selection;
he found that such tests can indeed lead to confidence intervals for the exposure effect that are
invalid (i.e., cover the true exposure coefficient at less than the nominal rate) in typical
nonrandomized studies. Some of these findings are illustrated in the nontechnical discussion by
Robins and Greenland.38 Other authors have found that variable selection based on signficance
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tests can lead to nonnormality of coefficient estimators;47,48 a consequence of such
nonnormality is that tests and intervals computed from the estimated coefficient and its standard
error will not be valid.

Using a simulation study of case-control data, Mickey and Greenland38 compared
signficance-testing algorithms with a change-in-point-estimate algorithm. Their study was limited
to one binary exposure and one interval-scaled candidate variable (potential confounder); 48
situations were simulated, with 1900 trials per situation. They found that when conventional 5
per cent signficance levels were used in signficance-testing algorithms, important confounders
were underselected; consequently, when confounding was present, the algorithms produced
models that yielded biased estimates of exposure effect and invalid confidence intervals. The
extent of confidence-interval invalidity (under-coverage) produced by signficance-testing
algorithms was severe in some cases, and was directly proportional to the strength of the
candidate variable as a confounder; the "double-testing” algorithm of Fleiss49 did especially
poorly. These results support earlier arguments3-9 37 that conventional significance-testing
algorithms (such as stepwise regression) underselect confounders and so yield invalid point and
interval estimates. Other simulation findings23 indicate that product terms will be underselected
by signficance-testing algorithms.

Mickey and Greenland38 also found that much of the bias in the signficance-testing
algorithms could be prevented by increasing the nominal signficance level of the tests beyond 20
per cent (as recommended by Dales and Ury5). Nevertheless, among the variable-selection
algorithms examined, the 10 per cent change-in-estimate method produced the most valid point
and interval estimates.

It thus appears that the evidence to date tends to favor the change-in-estimate approach over
signficance-testing approaches (such as conventional stepwise regression). It also appears that
the major cause of the inferior performance of signficance-testing approaches is the low power
(insensitivity) of the tests for detecting true confounders. This inferiority will be most
pronounced in small samples, and can be mitigated by markedly increasing the signficance levels
of the tests.

It seems likely that algorithms better than any in current use could be developed. For
example, a potential source of difficulty for change-in-point-estimate methods is that they take
no account of random variability in the coefficient estimates being compared, whereas
signficance-testing algorithms may depend on such variability in an inappropriate fashion.
Empirical Bayes estimation50 of the compared coefficients would introduce some consideration
of random variability into a change-in-estimate algorithm, as would use of confidence-limit
changes instead of point-estimate changes.

General Cautions in the Use of Algorithms

As noted earlier, it is essential to keep exposure forced in the model in order to avoid bias in
the selection of confounders.3 X 37 Also, no matter how good its performance under
repeated-sampling (long-run) evaluations, any algorithm may make what are obviously terrible
choices in particular data sets;37 44 as a result, the user should monitor the results of each
selection and deletion step. As a final caution, note that if (as in all the procedures discussed thus
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far) one uses the data to guide model and variable selection, the standard error of the resulting
effect estimate is not correctly estimated by simply taking the standard error computed from the
final model (as is always done).37, 44, 46,47 The error introduced by using the standard error
from the final model to compute tests and confidence limits has not been thoroughly studied,
although it appeared small in the special cases considered by Mickey and Greenland.38

Product Terms

Special distinction needs to be drawn between product terms involving exposure (such as
X1Z,) and not involving exposure (such as z,z,). In theory, at least, the criterion for entering
product terms not involving exposure should be no different than for any basic covariate: terms
which produce an important change in the estimated exposure effect when entered should be
entered. Nevertheless, the need for such terms indicates that the chosen model form may be a
poor one for adequate control of confounding by the basic covariates.

The entry of product terms involving exposure will often dramatically alter the exposure
coefficient, simply because the meaning of that coefficient is changed when product terms are
entered. As a consequence, the change in the exposure coefficient b should not be used to decide
whether a product term involving exposure should be entered in the model. To illustrate, consider
a logistic model with one covariate z: Without product terms, the odds ratio from exposure level
X" versus exposure level x' is exp[b(x" - x)]; if the product term xz is entered and has coefficient
Cyz, this odds ratio becomes

exp[(b + szz)(X" - XI)]a

which is a function of z. Note that if an arbitrary number, say 20, was added to z, the value of b
in the model without product terms would not change but the value of b in the second model
(with xz) would be changed by -20c,, to compensate for the constant increase in the values of z.
Such examples show that when a product term involving the exposure and a covariate is entered,
the exposure coefficient b can change simply because it no longer represents the exposure effect
at nonzero values of the covariate. Note also that the exposure effect may vary dramatically
across z (so that the xz term is essential), but if z has a zero mean the exposure coefficient b may
change very little upon entering the product term.

In most situations, if one includes the product ("interaction™) of two variables in a model, one
should also include the single terms ("main effects") for each variable X this rule is sometimes
called the hierarchy principle.29 Models containing a product xz but not both components x and
z depend on the coding of x and z for proper interpretation, and are usually implausible or
nonsensical in subject-matter terms. For example, if x and z are binary indicators of the presence
of two conditions (I = present, 0 = absent), a model with xz but neither x nor z entered implies
that x and z have an effect only in one another's presence.

The decision to enter a product term involving exposure in the model may be based in part on
the magnitude of the variation in effect (effect modfication) that is apparent when the term is in
the model. In the preceding example, if z" and z' represent high and low observed values of z, the
magnitude of variation in the effect of exposure level x" versus exposure level x' can be measured
by the ratio of the odds ratios:
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exp[(b + ¢.z")(X" - X)] / exp[(b + ¢, Z)(X" - X)] = exp[Cxz(z" - Z)( (X" - X)]

If x and z are binary (zero-one) indicator variables, the last expression simplifies to exp(Cy,).
Nevertheless, while one may wish to include all product terms that correspond to large variation
in the chosen effect measure, some consideration of statistical error is essential: such product
terms form an integral component of effect estimates, and thus errors in their coefficient
estimates will directly contribute to errors in the estimated effects. In particular, one must
determine whether such effect variation as exists can be accurately estimated from the available
data.

Here, signficance testing is useful. A small p value for the product-term coefficient indicates
that at least the direction of variation in effect (e.g., increasing or decreasing with z) will be
correctly estimated if the term is entered. On the other hand, a large p value indicates that such
variation as exists cannot be estimated with any assurance that the apparent direction of variation
is correct. Furthermore, if the coefficient of the product term cannot be accurately estimated, a
more accurate estimate of the average effect of exposure may result from omitting the term. Thus
there is some justfication for omitting from the model product terms involving exposure with
"nonsignificant™ p values, as long as one recognizes that this omission is more out of statistical
necessity than actual lack of effect variation, and that the criterion for signficance may be best set
much higher than 0.05. In particular, one should not conclude from a large p value that no
variation is present, since a large p value may also result if important variation is present but
there is insufficient power to detect it. On the other hand, one must be aware that the need for
such product terms indicates that the model form may be a poor one for representing exposure
effects.

There has been considerable research on the effects of measurement error on effect estimates.
Most of this literature is highly technical, but since measurement error is usually a major source
of bias in estimates, the analyst should be aware of its potential effects.

Errors of measurement in a variable are nondifferential if they are not associated with the true
value of any variables in the problem; otherwise the errors are differential. The errors in two
variables are said to be independent if the errors in one variable are not associated with the errors
in the other; otherwise the errors are said to be dependent. One important result is that if the
errors in the outcome variable and a covariate are independent and nondifferential, the bias in the
covariate coefficient estimate produced by these errors will be "towards the null,” i.e. toward
zero.5' If the covariate represents an exposure of interest, this means that the errors will
contribute towards underestimation of the exposure

effect. If the covariate represents a confounder, the errors will result in an underestimation of the
confounding effect of the covariate; as a consequence, entering the covariate in the model will not
remove all the confounding by the covariate.

The effects of dependent or differential errors are much less predictable, and there are some
exceptions to the aforementioned observations about independent nondifferential errors. In any
case, it may be possible to correct for the effects of measurement error if sufficient background
information on the error is available.8, 51
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Interpretation of Modeling Results

Biological processes are not identifiable from epidemiologic data. This means that for any
statistical model for epidemiologic data, numerous biological models will predict the data should
follow that statistical model (e.g., see references 52 or 53). Thus multivariate modeling of
epidemiologic data cannot offer any qualitative improvement in our ability to test particular
theories of biological action. Indeed, one could reasonably argue that no advances in chronic-
disease epidemiology have involved multivariate modeling as an indispensable component.

One could further argue that multivariate modeling has increased the prevalence of statistical
fallacies in biological inference. An example is the naive belief that product terms in a model
correspond to or reflect biological interactions, such as synergy or antagonism. This fallacy has
been discussed at length;8,9 it seems to stem in part from the fact that product terms are often
referred to in the statistical literature as "interaction terms” (as in "tests for interaction™). Under
certain restrictive assumptions there is a special correspondence between the need for product
terms in an additive incidence model and the existence of certain types of biological
interactions.54 In general, however, there is no simple relationship between product terms and
biological interactions, or for that matter between statistical model forms and biological
models.53

Such interpretational problems need not arise if the primary objective of modeling is to
provide an efficient means of estimating epidemiologically meaningful measures (such as
exposure-induced changes in average risk or life expectancy). This objective will, however, be
better served if one reports the final modeling results in terms of familiar epidemiologic measures
(e.g., model-fitted risks, risk differences or risk ratios), rather than in terms of the parameter
estimates from the fitted model. To illustrate, suppose one fits a logistic model to estimate
dependence of myocardial infarction risk on coffee use while controlling for several covariates,
and that the final fitted coefficient for coffee use (measured in cups per day) is 0.098, with an
estimated standard error of 0.050. One could then report this coefficient and standard error as the
modeling result (perhaps along with the coefficient p value). Nevertheless, one could additionally
provide a more intelligible presentation of the same results by transforming these statistics. If,
for example, one was interested in an approximate relative-risk estimate, one could present the
fitted odds ratio for the effect of five cups per day, exp[(0.098)5] = 1.6, and its corresponding 95
per cent confidence interval, exp[(0.098 + 1.96[0.050])5] = (1.0, 2.7).

The preceding example was particularly simple, in that it required only an exponential transform
of a single coefficient. More complex methods will be required in other situations. Such methods
have been illustrated for a number of special cases, including estimation of standardized incidence
from logistic models for cohort data,55 and estimation of exposure-specific incidence from
case-control data.56

Sample-Size Requirements

As discussed earlier, model-based estimates may be rendered invalid by violations of model
assumptions (specification error). However, even if all the assumptions are correct, bias can arise
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from inadequacies of sample size; | will refer to this problem as finite-sample bias. Such bias is
also a threat to simple stratified analyses.

The fitting procedures used for most models of incidence and prevalence (including those
discussed earlier) are largesample or asymptotic procedures. Examples include maximum
likelihood (ML), Mantel-Haenszel (MH), and weighted least squares (WLS or inverse-variance
weighted) methods for obtaining summary measures and for fitting risk or rate models. 7-9,
12-20, 24,57,58 The estimates from models fitted by such methods are not unbiased in typical
applications, but for large enough samples their bias will be negligible.59 Unfortunately, it is
difficult to specify exactly what "large enough™ is, since this is highly dependent on the model
and procedure under discussion. There have been many mathematical and simulation studies of a
few special cases; only a cursory overview of major points can be given here.

For modeling purposes, the most critical point is that the degree of finite-sample bias present
in modeling results tends to be directly proportional to the number of variables entered in the
model. (This is obvious in the context of modeling purely categorical factors, in which every
added variable reduces average cell size by a factor of two or more.) Consequently, attempts to
control confounding by simply entering all possible confounders in a model can in some
situations lead to more bias than they remove. Viewed another way, the threat of finite-sample
bias further emphasizes the importance of valid confounder-selection methods. Categorical
Factors

If only categorical factors are employed, it appears that the finite-sample bias of point
estimates obtained from ML and WLS methods will be negligible if all the cells in the
cross-classfication of all the variables in the model, including the outcome, are "large"; this means
that one would require about five observations per cell before applying WLS procedures, and
somewhat less for ML procedures.29 While this "large-cell” criterion is appropriate for simple
standardization methods,8-11 it may be too conservative for modeling (especially when using
ML estimation). A less conservative criterion, applicable to log-linear and logistic modeling of
categorical factors, requires only that the marginal totals composing the sufficient statistics of the
model (the "configurations” of the model29) be large. Unfortunately, this criterion does not
readily extend to non-multiplicative models.

In many epidemiologic studies the cross-classfied data will be sparse, in that most of the cells
will be very small; for example, in a matched-pair study, stratification on the matching factors
will yield strata with only zero or one observation per cell.7~9 Methods for fitting models to
such sparse data have been developed, the most common being conditional maximum likelihood
(CML)7,8 and Mantel-Haenszel methods.57,58 The estimates derived from such methods will
have negligible finite-sample bias if either all the cell numbers are large or if the number of
informative strata are large (where "informative strata” can be roughly interpreted as those in
which there is some variation in both the exposure

variable and the outcome variable). Like the earlier criteria this criterion may be conservative, but
more accurate criteria have yet to be developed.
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Sparse-data methods should not be confused with smallsample (exact) methods: the validity
of sparse-data methods still requires that the total number of subjects be large, whereas the
validity of exact methods does not depend on sample size.

If some of the variables are continuous and entered in the model as such (e.g., if x is cigarettes
per day and entered as bx, instead of a series of category indicators), the above criteria are no
longer relevant, and the total sample-size requirement will be reduced. In fact, as long as the
number of parameters in the model is small relative to the total number of cases (and, for
probability models such as the logistic model, the total number of noncases), effects may be
validly estimated using incidence models (such as models 13 above), even if there is only one
person at each observed exposure-covariate combination.24

Unfortunately, the reduction in sample-size requirement for continuous-covariate models is
purchased by additional dose-response assumptions (e.g., that bx gives the correct form of dose
response), and thus by additional risk of bias due to model misspecification. Furthermore,
exactly what number of parameters is "small" depends not only on the sample size, but also on
the model form and the joint distribution of exposure and covariates in the observed data. As a
consequence, practical sample-size criteria for continuous-data models have yet to be developed.

Sample-Size Requirements for Tests and Intervals

The simplest and most common method of computing tests and confidence intervals from
model results is the Wald method, in which for example the test statistic for the null hypothesis b
= 0 (no exposure effect) is computed from the estimate b of b and estimated standard error s of b
as b/s, and the 95 per cent confidence interval is computed from b _ 1.96s. For multiplicative
models (such as the logistic), the Wald method appears adequate under the same large-sample
conditions discussed above for point estimates. For other models, however, the sample-size
required for the Wald method to be valid may be impractically large. In particular, ordinary Wald
tests and intervals for parameters in additive relative-risk models can be grossly invalid, even at
very large sample sizes.19,23

Moolgavkar and Venzonl9 recommend that, for nonmultiplicative models, one employ
likelinood-ratio tests and profile-likelihood confidence intervals in place of the usual Wald
procedures. Such likelihood-based procedures appear to be valid for both multiplicative and
additive models under the "large-sample™ conditions discussed above. Unfortunately,
profile-likelihood intervals cannot be conveniently computed with ordinary packaged programs.

Practical methods for computing exact tests and confidence intervals for logistic model
parameters have recently been developed 60 and are available in the EGRET package.32
Although present versions of the program have rather severe upper limits on sample size, future
developments in computing should allow these limits to be raised to the point that they surpass
the minimum sample sizes necessary for valid use of asymptotic procedures. (This is already the
case for analyses involving only three binary covariates.)

Conclusions
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Both stratified and modeling analyses have limitations: validity of both stratified and
modeling results depends on distributional assumptions which, on occasion, may be violated,;
both stratified and modeling analyses will have to confront the problem of control-variable
selection; and both types of analyses will ultimately be limited by the size and quality of the
data set, for neither approach can compensate for methodological shortcomings of the study
(such as misclassification, selection bias, or lack of power to address the questions of interest).

The chief advantages of modeling are that it allows one to control more potential confounders
than one could in simple stratified analysis, and it allows one to more precisely estimate variation
in the effect of exposure across levels of other factors (effect modfication). These advantages
come at the price of stronger assumptions about effects of exposure and covariates on outcome
measures. This need for stronger assumptions implies that proper use of modeling will be more
laborious than stratified analyses, since the assumptions should be carefully checked. More
effort will also be required to correctly interpret and intelligibly present modeling results.

One can view the problems discussed here as consequences of a more general problem of
causal inference in epidemiology: Because confounding is a complex and unknown function of
many covariates, there is rarely enough information in nonexperimental data to allow one to
construct an acceptably accurate estimate of exposure's effect from the data alone.3' One can
obtain an effect estimate of acceptable precision only by making certain assumptions (e.g., that
the effects of all the continuous covariates follow a linear dose-response curve); if, however,
these additional assumptions are incorrect, then the estimate based on the assumptions will be
biased to an unknown degree.37 A particular consequence of this dilemma is that one should not
expect a model-based estimate to incorporate lower total error than a simple stratified estimate
which is adjusted for the same covariates, unless some of the additional implications of the model
(e.g., linearity of dose response) are approximately correct. This caution applies even if the
model is only used to construct a risk score for stratification (e.g., as in reference 3).

Vandenbroucke' proposed a set of sensible guidelines for employing stratified and modeling
methods in a complementary fashion. These can be summarized as stating that one should first
perform a series of stratified and modeling analyses involving the same variables, in order to
validate model choices and results against the stratified data; only then should one embark on
modeling exercises that cannot be directly validated against parallel stratified analyses. To these
guidelines, I would add that one should always check the assumptions underlying any model or
estimation method used to derive summary statistics.
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