NON OB

GALL x
EST

1.498

DURx GALL

DOSs
0.179

(0.77)

DUR4
0.404

(0.57)
0.254

(0.19)
1.136

0.251
(0.33)
-0.464

(~0.61)
-0.049

DUR3

—0.131

—0.555
(~0.39)

0.283

DUR2
(=0.19)

-0.961
(-1.18)

~0.395

0.470

DURT
(-0.35)

1175
(2.07)
0416

(~0.53)
—0.019

DOS3

—0.024

(~0.05)
—0.835

(-1.03)
0725

C. Dose, duration and other variables
DOs2

EST
2.020

(2.90)
2.024

(2.91)
2.083

5.35°

127.63 6.25¢
127.04 0.59
9.54

118.91

7
8

Table 7.9 (contd)
8
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- more complete adjustment for oestrogen than was possible using the binary variable
8T LST alone. The cocfficients for these variables should be contrasted with those shown
) in Table 7.7. Gall-bladder disease continues to stand out as an important, independent

© risk factor with an estimated relative risk of exp(1.498) = 4.5 compared with the

§8 3.6 found carlier (Model 6, Table 7.7). The interaction of gall-bladder disease with

o = oestrogen use is no longer statistically significant when the dose and duration variables

5o are included in the equation. While the coefficient for non-oestrogen drugs is little

T changed, obesity is now estimated to carry a relative risk of exp(1.059) = 2.9, which

- is significantly different from 1 at the p = 0.02 level. Part of these differences, of
op8hels course, may result because slightly different data sets were used.

MR In conclusion, we can simply reiterate a point which is well illustrated by the pre-
ceding example: all the techniques of multivariate analysis which were once restricted
to unmatched studies are now available for use with matched data as well.

g g; g3g : 7.5 Combining sets of 2 X 2 tables

=TETETE % Besides individual case-control matching, another situation in which the calculations

zeorns8C g based on the exact conditional likelihood may be quite feasible is when information is

23229+ g combined from a set of 2X 2 tables. We noted earlier that the conditional likelihood

A N 2 in this case took the form of a product of non-central hypergeometric distributions

6o s (see § 4.4 for notation):

EL5R88% |3

gogSgog |3 gt nm) N

3 [1Aa myai) ¥i o (1.4)
shedase b T )

coocSgog |£E !

535 As usual, the summations in the denominator range over all possible values u which

5368-%& 53 are consistent with the observed marginals in the i table, namely max(0, ny—mg;)

2seseot |82 =u= min(my; ny;). Calculation of exact tail probabilities (4.6, 4.7) and confidence

7973199 kS intervals (4.8, 4.9) based on this distribution requires that all possible sets of tables

% @ H é which are compatible with the given marginals are evaluated. Their number is

BR88Y8Y |o; \

727971 |3 £ . ﬂ{min(m“,n“)—max(O,nn—m(,i)},

55 g é a 5 g §§ i.e., the product of the number of possible tables at each level, which can, rapidly be-

dNa-oNo | E3 come prohibitively large (Thomas, 1975). On the other hand, evaluation of the log-

~ ® 5; likelihood function and its first and second derivatives requires calculations which
2 a 0w G Pa<a increase only in proportion to the sum
© o @ |255FE ;
N s |3 soos 2 {min(my;,ny;)-max(0,ny;—mo;) }
A R 2 .
2o%ee of the number of possible tables at each level. Hence a conditional likelihood analysis,
o o o 3 5288 similar to those already developed in this chapter for matched designs, is often possible
§§§§§ for problems involving sets of 22 tables, even where the completely exact analysis
e v © T would be unfeasible. Only if the entries in some of the tables are very large will problems
be encountered in the evaluation of the binomial coefficients appearing in (7.4).




LOGISTIC REGRESSION FOR MATCHED SEIS 269

Usual!y cases and controls will have been grouped into strata (tables) on the basis
of cqvarlables which are thought either to confound or to modify the cffect of ex X);u»m
on disease. Suppose that a vector z; of such covariables is associated with the i;"‘ tz;ble
Then there are several hypotheses about the odds ratios y+; which are of interest: '

Ho: ;=1

Hi: v =9y = exp(B)
Ha: v = exp(B+3yy,2)
H;: No restrictions on [T

In Chapt.er 4 we concentrated on the estimation of ¥ under H,, tests of the null
hyppthesm H,, and tests for constancy in the relative risk (H,) against global alter-
natives (Hs). We have remarked on several occasions that these latter may be in-
sen51_t1've to _pgrticular patterns of interaction and that a preferred strategy is to model
specific variations in the relative risk associated with the covariables using H,. In
§6.12 gqveral such models were fitted to the Oxford Childhood Survey data lzl.Sin
unconditional logistic regression in which a separate a parameter was estimated fo%
each'straFum. As we saw in § 7.2, however, it is possible seriously to overestimate the
relatlv? risk with this procedure if the data are thin. Hence it will often be preferable
to use instead the conditional likelihood, which may be written

G ) explas + )

= (W) () e (0GB T

(7.5)

A listing of. a computer programme for fitting models of the form H, to sets of
2 X2 tables using the conditional likelihood is given in Appendix VI. This programme
may be usgd as an alternative to that of Thomas (1975) for finding the exaft MLE
of the relative risk in H;, provided of course that exact tests and confidence intervals
are not a.lso desired. Zelen (1971) develops exact tests for the constancy of the odds
ratio against al.ternatives of the form H, with a single covariable, and also against the
glol?al alternative H;. We presented in (4.31) the score statistic based on (7.5) for
testing H, against H, with a single covariable. .

.If the data 1:n each table are truly extensive it may be burdensome to evaluate the
binomial coefficients in (7.5). In this case an asymptotic procedure is available. Rather
than. use the exact conditional means and variances of the table entries a undc::r hypo-
the§1zed values for the odds ratios y;, which are required by the iterat;ve likelihood
fitting procedure, one can use instead the asymptotic means and variances defined b
(4.11.) anq (4.13). This substitution yields likelihood equations and an informatior)ll
matrix which are identical to those obtained by applying a two-stage maximization
Qrocedure to the unconditional likelihood function whereby one first solves the equa-
tions fo.r the a coefficients in terms of 8 and 7 (Richards, 1961). The estimates B aﬁd y
50 ol‘)tamed,-as well as their standard errors and covariances, are thus identical to thosz
obtained using unconditional logistic regression (Breslow, 1976). The advantage is
that the unconditional model is fitted without explicit estimation of all the nuisgance
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parameters. This is a serious consideration if there are many tables, since the required
number of parameters may exhaust the capacity of the available computer. Nevertheless,
no matter how they are calculated, the unconditional estimates may be subject to bias
in such circumstances and the conditional analysis is preferred whenever it is compu-
tationally feasible.

To illustrate the use of the conditional likelihood with a set of 2 X 2 tables we found
new estimates of the parameters 3 and v,, representing the log relative risk of obstetric
radiation and its linear decrease with calendar time, which we estimated earlier from the
Oxford Childhood Cancer Survey Data using unconditional logistic regression (6.12).
We recall that several estimates for these parameters were made depending on the
degree of polynomial adjustment for the stratifying variables age and calendar year.
In fact, for the last line in Table 6.17 where the confounding effects of age and year
were completely saturated, we avoided explicit estimation of separate a parameters for
each of the 120 2 x 2 tables by using the technique just discussed.

The parameter estimates and standard errors calculated directly from the conditional
likelihood (7.5) were

B =0.5165+0.0564

and
71 =-0.0385+0.0144 .

It is of considerable theoretical interest that these quantities are closer to those ob-
tained from the unconditional fifth degree polynomial model than to those obtained
with the saturated model (see last two lines, Table 6.17). This suggests that the con-
founding effects of age and year are suitably accounted for by the polynomial regres-
sion, and that inclusion of additional nuisance parameters in the equation serves only
to increase bias of the type considered in § 7.1. However, because of the exceptionally
large sample (over 5 000 cases and controls) the inflation of the relative risk estimates
due to the excess of nuisance parameters was not terribly serious.

7.6 Effect of ignoring the matching

Prior to ‘the advent of methods for the multivariate analysis of case-control studies,
in particular those based on the conditional likelihood (7.2), it was common practice
to ignore the matching in the analysis. In simple problems one often found that taking
_explicit account of the matched pairs or sets did not seriously alter the estimate of
relative risk. With the Los Angeles study of endometrial cancer, for example, there
were only slight differences between the unmatched (Table 7.5) and matched (Table
7.6) estimates for each risk variable considered individually. However, the agreement
is not always as good, and there has been considerable confusion regarding the con-
ditions under which incorporation of the matching in the analysis is necessary.

A sufficient and widely-quoted condition for the ‘poolability’ of data across matched
sets or strata is that the stratification variables are either: (i) conditionally independent
of disease status given the risk factors; or (ii) conditionally independent of the risk
factors given disease status. If either of these conditions is satisfied, both pooled and
matched analyses provide (asymptotically) unbiased estimates of the relative risk for
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a dichotomous exposure (Bishop, Fienberg & Holland, 1975). [Whittemore (1978) has
shown that, contrary to popular belief, both types of analyses may sometimes yield
equivalent results even if conditions (i) and (ii) are both violated.] In matched
studies condition (i) is more relevant since the matching variables are guaranteed to
be uncorrelated with disease in the sample as a whole. Of course this does not ensure
that they have the same distributions among cases and controls conditionally, within
categories defined by the risk factors. Therefore an unmatched analysis may give
biased results.

One result of using an unmatched analysis with data collected in a matched design, -

however, is that the direction of the bias tends towards conservatism. Relative risk
estimates from the pooled data tend on average to be closer to unity than those cal-
culated from the matched sets. This phenomenon was noted in § 3.4 when pooling data
from two 2 x 2 tables, where the ratio of cases to controls in each table was constant.
Seigel and Greenhouse (1973) show that the same thing happens if matched pairs are
formed at random from among the cases and controls within each of two strata, and
the data are then pooled for analysis. Armitage (1975) gives a slightly more general
formulation. He supposes that there are | matched sets with exposure probabilities
pui = 1—qy; for the cases and pg; = 1—qo; for the controls, and that the odds ratio
¥ = prfoi/(Poidsi) Is constant across all sets. It follows that the estimate of relative
risk calculated as the cross-products ratio from the 2x 2 table formed by pooling all
the data tends towards the value

P12 9o
2Po2qu;

) 2q10%2qo;

v 2qoithi 2 qy; (7.6)
where &; = poi/qo;. For y>1 the bias term multiplying v in (7.6) is less than one,
unless the exposure probabilities po; are constant across sets (in which case there is no
bias). Similarly, for y <1, the bias term exceeds unity. Thus, failure to account for the
matching in the analysis can (and often does) result in conservatively biased estimates
of the relative risk.

A related question is to consider the cost, in terms of a loss of efficiency in the
analysis, of using a ’W‘am'm@m; to
avoid bias. Suppose that the exposure probabilities pe; in the above model are all
equal to the constant po, so that both matched andunmatched analysestend to estimate
correctly the true odds ratio . According to (4.18), the large sample variance of the
pooled estimate of log y is

1 + Ly 14 1Y Pi9itpode

Ilpp q % Go Ip191Poo

Standard calculations show that the large sample variance of the estimate of log v
based on the matched pairs in this situation is

P1ge + q1Po
Ip191poge -
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Consequently, using the ratio of variances to measure the relative precision of the two
estimates, the efficiency of the matched pairs analysis when pairing at random is

Py +podo 7.7
eff = P10+ poq1 (7.7)

When y = |, i.e., p; = po, the matched pairs estimate is thus seen to be fully efficient.
Otherwise eff < 1, reflecting the loss in information due to the random pairing. Never-
theless Figure 7.1 shows that the loss, which tends to be worse for intermediate values

Fig. 7.1 Loss in efficiency with a matched-pair design of using a matched statistical
analysis, when the matching was unnecessary to avoid bias. Different curves
correspond to different proportions exposed in the control population.
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of pg, is not terribly important unless the odds ratios being estimated are rather
extreme. Pike, Hill and Smith (1979) reach similar conclusions on the basis of studies
of the power of the chi-square test of the null hypothesis computed from the matched
versus unmatched data.

While no additional theoretical studies have yet been made, it is likely that these

same general conclusions regarding the bias and cthuency of matched versus un-

matched analyses apply also to the estimation of multiple relative risk functions. Two
numerical_examples will serve to illustrate the basic pomts The first contrasts the
fitting of both conditional and unconditional logistic regression analyses to data from
an IARC sponsored study of oesophageal cancer occurring among Singapore Chinese
(de Jong et al., 1974). The analysis was based on 80 male cases and on 320 matched
cOntrols Whose ages were within five years of the corresponding case. Two controls for
each case were drawn from the same hospital ward as the case, while two others were
selected from an orthopaedic unit. However, as there were no important differences

in exposure histories between the two control groups, they were not separated in the
analysis.

Tablej.10 Qoefficients (+ standard errors) of variables in the multiple relative risk
function, estimated using linear logistic regression analyses appropriate for both

g:tched and unmatched samples. IARC study of oesophageal cancer among Singapore
inese?

Variables in equation® Matched analysis

Unmatched analysis
Coefficient + S.E.

Coefticient + §.E.

A. Interaction term excluded
X, Constant
x, Dialect
X, Samsu

—3.2062 + 0.3650
1.4145+ 0.3301
0.5352 +0.2766

1.2570+0.3273
0.5064 + 0.2936
x; Cigarettes 0.0122 +0.0099 0.0121 +£0.0095
Xs Beverage temperature 0.7846+0.1640 0.7556 +0.1493
Goodness-of-fit statistic (G) 197.43 336.23

B. Interaction term included

Xo Constant -3.2123 +0.3661

x; Dialect 1.2559 + 0.3280 1.4200 £ 0.3312
X3 ngsu 0.5072 +0.2941 0.5303 +0.2774
x; Cigarettes 0.0123 +0.0099 0.0124 + 0.0096
x; Beverage temperature 0.7872 £0.1726 0.7447 £ 0.1563
Xs = X4 X (age-60) -0.0009 +£0.0179 0.0034 + 0.0147
Goodness-of-fit statistic (G) 197.43 336.18

*de Jong et al. (1974)
® Coding of risk variables:

1 Hokkien/Teochew

Xy =
0 Cantonese/other

x3 = No. of cigarettes/day average

Xy = 1 Drinkers (Samsu)

X4 = No. of beverages (0-3) drunk “burni ”
0 Abstainers ) 99 (0-3) drunk burning hot
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Information was obtained regarding dict, alcohol and tobacco usage, and on various
social factors including dialect group. which indicates the patient’s ancestral origin
within China. Only four variables arc considered here: dialect group, cigarettes,
samsu {(a distilled liquor made from a mixture of grams) and beverage temperature
(the number of beverages among tea, coffce and barley wine that the patient reported
drinking at “burning hot” temperatures). The coding of these variables has been
simplificd from that used in the original analysis, and an interaction term between
beveruge temperature and age (a matching variable) was introduced to see if the log
relative risk for beverage temperature changed linearly with age.

Table 7.10 presents the estimated regression coeffieients and standard errors obtained
by fitting the unconditional logistic model with a single stratum parameter a to @
pooled data. Shown for comparison are the same quantities estimated from the condi-
tional likelihood. With the exception of that for dialect group, the standard errors of
the matched analysis are slightly larger than those for the unmatched. Small changes are
evident in the regression coefficients themselves, so that this is evidently a situation
in which the matching variables either have little relationship to the exposures con-
ditional on disease status or else have little relationship to disease status conditional
on exposure. As a partial confirmation of the latter interpretation, Table 7.11 shows
that cases and controls have roughly equivalent average ages even within the levels of
each risk factor. This analysis is incomplete, since it involves only averages and ignores
possible higher order interactions of age with risk factor combinations. Nevertheless,
it is consistent with the notion that the matching variables are conditionally independent
of disease status given the exposures, and thus that the requirements for ‘poolability’of
matched data are satisfied.

Table 7.11 Average ages + standard errors for cases and controls within levels of each risk factor:
IARC study of oesophageal cancer among Singapore Chinese®

Risk factor Level Cases Controls Totals
n Mean + S.E. n Mean + S.E n Mean + S E.
Dialect group~ Hokkien/Teochew 66 61.3+1.0 160 60.6+0.8 226 60.8x06
Cantonese/other 14 65.4+2.6 160 63.0+0.7 174 632106
Samsu Drinkers 40 63.6 1.2 109 62.4+08 149 62.7%07
Abstainers 40 60.5+1.4 211 61.5+06 251 61.4+06
Cigarettes None 8 63.6 +5.4 55 628+13 63 629+13
1-10 per day 14 659+1.9 81 63.7+10 95 64.0x0.9
11-20 per day 35 61.7+1.0 115 62.2+08 150 62.1x0.7
21+ per day 23 59.6 +1.8 69 582x10 92 585%09
Beverage 0 41 60.8+1.4 261 61.5+0.6 302 61405
temperature 1 13 62.2+2.1 31 628+16 44 626x13
(no. “burning 2 18 653+19 25 63.6+19 43 64313
hot”) 3 8 60.5+2.8 3 663+32 11 62.1+23
Totals All 80 62.0+£0.9 320 61.8%05 400 61.9+04

" de Jong et al. (1974)
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Iran/IARC

Table 7.12 Coefficients (= standard errors) of variables in the multiple relative risk function, using a variety of analyses:

case-control study of oesophageal cancer in the Caspian littoral of Iran®

Type of analysis

Stratified into

Variables in equation

4 Regions, 4 Regions 4 Age groups Unmatched

7 Regions,

Fully matched

4 Age groups

4 Age groups

~0.745 £ 0.201 —0.684 £ 0.180 -0.682 £0.179

—0.808 £0.212 —0.782 £0.206

~0.614 £ 0.222

-1.125+0.254
-0.815+ 0.250

Social class

-0.592 +0.218 -0.326 £0.191 -0.307 £0.190

-0.602+0.219

Ownership of garden
Consumption of raw

-0.459+0.203 -0.439+0.199 —0.432+0.198 -0.429+0.188 -0.440+0.187

-0.552 +0.220

green vegetables

Consumption of

—0.539+0.196 -0.548 £ 0.192 -0.562 +0.192 -0.466 £0.182 —0.449 = 0.181

-0.640+0.217

cucumbers
Goodness-of-fit (G)

776.54 777.60 780.80 787.04 789.56

375.38°

* Cook-Mozaftari et al. (1979)

® Based on the conditional model and hence not comparable to the others
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In general one must anticipate that the degree to which the matching variables are
incorporated in the analysis will affect the estimates of relative risk. An example which
better illustrates this phenomenon is provided by the joint Iran/IARC study of oesoph-
ageal cancer on the Caspian littoral (Cook-Mozaffari et al., 1979). In that part of the
world both cancer incidence and many environmental variables show marked geo-
graphical variation. Cases and controls were therefore individually matched according
to village of residence, as well as for age. Just as in the preceding example, the data
were analysed using both the conditional fully matched analysis based on (7.2) and
the unconditional analysis based on (6.10) in which the entire sample was considered
as a single stratum. Intermediate between these two extremes, additional analyses were
performed which incorporated various levels of stratification by age and by geographical
area, the latter grouping the villages into regions with roughly homogeneous incidence.

Table 7.12 presents the results for males for four risk variables which appeared to
be the best indicators of socioeconomic and dietary status. Substantial bias of the regres-
sion coefficients towards the origin, indicating a lesser effect on risk, is evident with
the coarsely stratified and unmatched analyses. This confirms the theoretical results
regarding the direction Gf the bias which were noted above to hold for the univariate
situation. While the standard errors of the estimates—inereas ter account is
taken of the matching, the changes dre not great and seem a small price to pay for
avoiding bias.

In summary, both theoretical and numerical studies confirm that the pooling of
matched or stratified samples for analysis will result in relative risk estimates which
are conservatively biased in comparison with those which would be obtained using the
appropriate matched anaﬂﬁs./ln some situations, where the matching was not essential
to avoid bias, the pooled and matched estimates may scarcely differ at all. Even then,
however, the additional information gained from the pooled data, as reflected in the

variances of the estimates, is not great. Conse uently, now that appropriate and flexible

methods are available for doing so, the matching should be accounted for in the analysis
whenever if his been incorporated in the design.

While the availability of methods for multivariate analysis of matched samples cer-
tainly makes such designs more attractive, it does not follow that they should always
be used. Close pair matching may result in a number of cases being lost from the study
for want of ‘an appropriate match. It may also impose severe administrative costs which
could be avoided with a less restrictive design. Increasing use is being made of “popula-
tion controls” obtained as an age-stratified random sample of the population from
which the cases were diagnosed. Many epidemiologists believe that this is the best way
to avoid the selection bias inherent in other choices of the control population. The
confounding effects of other factors which are causally related to disease may be
accounted for by post-hoc stratification of the sample, or by modelling them in the
analysis. Such designs and analyses accomplish many of the aims intended by the use
of matching, and constitute a practical alternative which may be preferred in many
situations.
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LIST OF SYMBOLS — CHAPTER 7 (in order of appearance)

By log relative risk associated with unit change in k™ risk variable
X; vector of risk variables for j™ study subject; x; = (x;, ..., Xijk)
n; number of cases

no number of controls

n total number of study subjects

denotes a partition of the integers from 1 to n into two groups, one of

size n; and the other of size ny = n-ny; e.g., if n;’= 2 and ny = 3 a pos-

sible partitionisl; =3, L, =4, 5, =1, 1, =2, s =50rl = (3,4,1,2,5)

a; logit of disease probability for an individual with a standard (x = 0) set
of risk variables in the i™ stratum

pri(y = 1/x) disease probability in the i stratum for an individual with value x for

the risk variable

Y odds ratio

B log relative risk (binary exposure)

Ngo number of matched pairs with neither case nor control exposed

No1 number of matched pairs with case unexposed and control exposed

Nyg number of matched pairs with case exposed and control unexposed

Ni1 number of matched pairs with both case and control exposed

u in discordant matched pairs with a binary exposure variable, denotes the
fitted number of exposed cases under the unconditional model

4 - conditional probability that in a discordant matched pair it is the case
which is exposed

M number of controls per case (fixed)

M; number of controls per case in the i™ matched set

I number of matched sets

Kijk value of k™ exposure variable (k = 1, ..., K) for case (j = 0) or j*®
control (j = 1, ..., M,) in the i matched set

X (Xij1» - - -» Xix) exposure vector for j* subject in i set

G goodness-of-fit statistic based on the (conditional) log likelihood

3; number of exposed cases in i of I 2 x 2 tables

ny; number of cases in i'" table

o, number of controls in i table

i (expected) odds ratio associated with i™ of T2 x 2 tables

Z value of I™ covariable for i" 2 x 2 table



Pii
Qi
Poi
Qoi
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vector of covariable values for i*" table

vector of interaction parameters in logistic model for a series of 2 x2
tables

exposure probability for cases in the i*" stratum

l-py

exposure probability for controls in the it stratum

L—po;

Poi/Goi



