22
Introduction to regression models

One of the main problems discussed in Part I was how to compare two
rate parameters, A¢ and Ay, using their ratio A;/Xo. To do this the log
likelihood for the parameters A\g and A; was re-expressed in terms of Ay
and 6, where 8 = A1/Ao. This technique was then extended to deal with
comparisons stratified by a confounding variable by making the assumption
that the parameter @ was constant over strata. In this second part of the
book, the technique will be further extended to deal with the joint effects
of several exposures and to take account of several confounding variables.

A common theme in all these situations is a change from the original
parameters to new parameters which are more relevant to the comparisons
of interest. This change can be described by the equations which express
the old parameters in terms of the new parameters. These equations are
referred to as regression equations, and the statistical model is called a
regression model. To introduce regression models we shall first express
some of the comparisons discussed in Part I in these terms. We use models
for the rate parameter for illustration, but everything applies equally to
models for the odds parameter.

22.1 The comparison of two or more exposure groups

When comparing two rate parameters, A\ and A;, the regression equations
which relate the original parameters to the new ones are

Ao = Ao, A1 = Aob,

where the first of these simply states that the parameter )y is unchanged.

When there are three groups defined by an exposure variable with three
levels, corresponding (for example) to no exposure, moderate exposure, and
heavy exposure, the original parameters are Ag, A1, and )y, and there are
now more ways of choosing new parameters. The most common choice is
to change to

Ao, 61 = A1/ Mo, Gy = X2/ Ao.

With this choice of parameters the moderate and heavy exposure groups
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Table 22.1. A regression model to compare rates by exposure levels

Exposure
Age 0 1
0 A 2%
1A A
2 Y IpYL

are compared to the unexposed group. The regression equations are now

Ao = Ao, AL = Aoby, Az = Agba.

22.2 Stratified comparisons

When the comparison between exposure groups is stratified by a confound-
ing variable such as age the change to new parameters is first made sepa-
rately for each age band; for two exposure groups the Tegression equations
for age band t are
A= AL A=t

The parameter #* is age-specific and to impose the constraint that it is
constant over age bands it is set equal to the constant value 6, in each age
band. The regression equations are now

AL = Al AL = Mg,

This choice of parameters is the same as for the proportional hazards model,
introduced in Chapter 15. The model is written out in full in Table 22.1
for the case of three age bands.

Although our main interest is whether the rate parameter varies with
exposure, within age bands, we might also be interested in investigating
whether it varies with age, within exposure groups. The parameter ¢ does
not help with this second comparison because it has been chosen to compare
the exposure groups. When making the comparison the other way round
the age bands are the groups to be compared and the exposure groups
are the strata. To combine the comparison across these strata requires
the assumption that the rate ratios which compare levels 1 and 2 of age
with level 0 are the same in both exposure groups. This way of choosing
parameters is shown in Table 22.2, where the parameters ¢! and ¢? are the
rate ratios for age, assumed constant within each exposure group. Note
that there are two parameters for age because there are three age bands
being compared.

Putting these two ways of choosing parameters together gives the regres-
sion model shown in Table 22.3. The parameter A\ has now been written
as g, for simplicity and to emphasize that it refers to the (top left-hand)
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Table 22.2. A regression model to compare rates by age bands

Exposure
Age 0 1
A A

Mot Ag!
N

N = O

Table 22.3. A regression model for exposure and age

Exposure
Age 0 1
0 Ac Ach
1 Ach! Ao’
2 Acd®  Acb9?

corner of the table. Both sorts of comparison can now be made in the same
analysis. It is no longer necessary to regard one variable as the exposure,
and the other as a confounder used to define strata; the model treats both
types of variable symmetrically. To emphasize this symmetry the term ez-
planatory variable is often used to describe both exposures and confounders
in regression models. Although this is useful in complex situations where
there are many variables, there are also dangers. Although it makes no
difference to a computer program whether an explanatory variable is an
exposure or confounder it makes a great deal of difference to the person
trying to interpret the results. Perhaps the single most important rea-
son for misinterpreting the results of regression analyses is that regression
models can be used without the user thinking carefully about the status of
different explanatory variables. This will be discussed at greater length in
Chapter 27. k

Exercise 22.1. Table 22.4 shows a set of values for the rate parameters (per
1000 person-years) which satisfy exactly the model shown in Table 22.3. What
are the corresponding values of Ac, 8, ¢*, ¢* ?

Exercise 22.2. When the model in Table 22.3 is fitted to data it imposes the
constraint that the rate ratio for exposure is the same in all age bands, and
equally, that each of the two rate ratios for age is constant over both levels of
exposure. Is the constraint on the rate ratios for age a new constraint, or does’it
automatically follow whenever the rate ratio for exposure is the same iﬂﬁlgzge
bands?
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Table 22.4. Paramcter values (per 1000) which obey the constraints

Exposure
Age 0 1
0 50 15.0
1 12.0 36.0
2 30.0 90.0

Table 22.5. A regression model using names for paramcters

Exposure
Age 0 1
0 Corner Corner x Exposure(1)
1 Corner x Age(l) Corner x Age(1) x Exposure(1)
2 Corner x Age(2) Corner x Age(2) x Exposure(l)

22.3 Naming conventions

Using Greek letters for parameters is convenient when developing the the-
ory but less so when applying the methods in practice. With many ex-
planatory variables there will be many parameters and it is easy to forget
which letter refers to which parameter. For this rcason we shall now move
to using names for parameters instead of Greek letters.

The first of the parameters in Table 22.3, Ac, is called the Corner. The
6 parameter, which is the effect of exposure controlled for age, is referred
to as Exposure(1); when the exposure variable has three levels there are
two effects and these are referred to as Exposure(1) and Exposure(2), and
so on. When the exposure variable is given a more specific name such
as Alcohol then the effects are referred to as Alcohol(1) and Alcohol(2).
The ¢ parameters, which are the effects of age controlled for exposure, are
referred to as Age(1) and Age(2). The model in Table 22.3 is written using
names in Table 22.5.

Because writing out models in full is rather cumbersome, particularly
when using names for parameters, we shall use a simple abbreviated form
instead. The entries in Tables 22.3 and 22.5 refer to the right-hand sides of
the regression equations; the left-hand sides are the original rate parameters
which are omitted. Such a set of regression equations is abbreviated to

Rate = Corner x Exposure x Age.
It is important to remember that this abbreviation is not itself an equation

(even though it looks like onel); it represents a set of equations and is
shorthand for tables like Table 22.5. The regression model is sometimes
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" Table 22.6. FEnergy intake and IHD incidence rates per 1000 person-

years
Unexposed Exposed
(> 2750 keals) (< 2750 kcals) Rate
Age Cases P-yrs Rate Cases P-yrs Rate ratio
40-49 4 607.9  6.58 2 311.9 6.41  0.97
50-59 5 12721 3.93 12 878.1 13.67 3.48
60-69 8 888.9  9.00 14 667.5 2097 233

Table 22.7. Estimated values of the parameters for the IHD data

Parameter Estimate
Corner 0.00444
Exposure(1) x2.39
Age(1) x1.14
Age(2) x2.00

abbreviated even further and referred to simply as a multiplicative model
for exposure and age.

22.4 Estimating the parameters in a regression model

Table 22.6 shows the data from the study of ischaemic heart disease and
energy intake. There are two explanatory variables, age with three levels
and exposure with two. The two levels of exposure refer to energy intakes
above and below 2750 kcals per day.

Although the rate ratio for exposure is rather lower in the first age band
than in the other two age bands, it is based on only 6 cases, and a summary
based on the assumption of a common rate ratio seems reasonable. In the
new terminology this means fitting the regression model

Rate = Corner x Exposure x Age.

The most likely values of the parameters in this model, obtained from a
computer program, are shown in Table 22.7. Note that the most likely value
of the Exposure(1) parameter is the same, to two decimal places, as the
Mantel-Haenszel estimate of the common rate ratio, given in Chapter 15.

Exercise 22.3. Use the most likely values of the parameters in the regression
model, shown in Table 22.7, to predict the rates for the six cells in Table 22.6.

Computer programs differ in the precise details of how the output is
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Table 22.8. Estimated parameters and SDs on a log scale

Parameter Estimate (M) SD (5)

Corner —5.4180 0.4420
Exposure(1) 0.8697 0.3080
Age(1) 0.1290 0.4753
Age(2) 0.6920 0.4614

labelled. In particular you may see the word variable where we have used
parameter, and the word coefficient where we have used estimate. We have
used the term corner for the parameter which measures the level of response
in the first age band of the unexposed group but several other terms are
in widespread use, for example constant, intercept, grand mean, and (most
cryptically of all) the number 1. We have numbered strata and exposure
categories starting from zero, but some programs start numbering from
one.

22.5 Gaussian approximations on the log scale

Gaussian approximations to the likelihood are used to obtain approximate
confidence intervals for the parameter values. For the simple multiplicative
models discussed so far the approximation is always made on the log scale,
and in many programs the output is also in terms of logarithms. Table 22.8
shows the output on a log scale for the ischaemic heart data; the second
column shows the most likely values (M) of the logarithms of the param-
eters and exponentials of these give the values on the original scale. For
example,

exp(0.8697) = 2.39,

which is the rate ratio for exposure. The third column shows the standard
deviations (.S) of the estimates, obtained from Gaussian approximations to
the profile log likelihoods for each parameter. The standard deviation of
the effect of exposure, on the log scale, is 0.3080, so the error factor for a
90% confidence interval for this parameter is exp(1.645 x 0.3080) = 1.66,
and the limits are from 2.39/1.66 = 1.44 to 2.39 x 1.66 = 3.96.

Exercise 22.4. Use Table 22.8 to calculate the 90% confidence limits for the
first effect of age.

When the regression model is fitted on a log scale it is written in the
form

log(Rate) = Corner + Exposure + Age.
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Table 22.9. A more complete description of the age effects

Parameter Estimate SD
Age(l) 0.1290 0.4753
Age(2) 0.6920 0.4614

Age(2) — Age(l) 05630 0.3229

Table 22.10. An abbreviated table for the age effects

Parameter Estimate SD
Age(1) 0.1290 0.4753
Age(2) 0.6920 0.4614 0.3229

Strictly speaking, the parameters on the right-hand side of this expression
should be written as log(Corner) etc., but in practice the log on the left-
hand side is enough to signal the fact that the parameter estimates will be
on a log scale.

For variables with more than two categories, comparisons other than
those with the first category are sometimes of interest. Taking the variable
age in the ischaemic heart disease data as an example, the effect of changing
from level 1 to level 2 of age is the difference between the two age effects,
nammely 0.6920 — 0.1290 = 0.5630. Because the two age effects are based
on some common data the standard deviation of their difference cannot be
obtained from the simple formula !

VvV 0.47532 + 0.46142 = 0.6624,

which was used in Chapter 13. To obtain the correct standard deviation
we usually need to resort to a trick, such as recoding age so that the corner
parameter refers to the second age band rather than the first. Table 22.9
shows how a fuller analysis of age effects could be reported; an option to
obtain output in this form would be a useful feature not currently available
in most computer programs.

An abbreviated way of conveying the same information is shown in Ta-
ble 22.10. This provides the standard deviations for all three comparisons
but leaves the user to do the subtraction to find the effect of changing from
level 1 to level 2. The method extends naturally for factors with more than
three levels; for example, a four-level factor would need a triangular array
of 6 standard deviations for the six possible pairwise comparisons.
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22.6 Additive models

When comparing two groups, in the first section of this chapter, the two
parameters \q and \; were replaced by A9 and 8 = A;/Ag. This change
of parameters made it possible to estimate the rate ratio 8 along with its
standard deviation. The parameters could equally well have been changed
to Ag and 6 = A1 — g, thus making it possible to estimate the rate difference
instead of the rate ratio.

The choice between the rate ratio and the rate difference is usually an
empirical one, depending on which of the two is more closely constant over
strata. In the early years of epidemiology, when age was often the only
explanatory variable apart from exposure, methods of analysis were all
based (implicitly) on multiplicative models. This is because most rates vary
so much with age that the rate ratio is almost always more closely constant
over age bands than the rate difference. More recently, particularly when
investigating the joint effects of several exposures, epidemiologists have
shown a greater interest in rate differences. -

To impose the constraint that the rate difference is constant over age
strata, the regression model

Rate = Corner + Exposure + Age

is fitted. This is called an additive model for exposure and age. Note that
it is the rate and not the log rate which now appears on the left-hand
side. The same likelihood techniques are used as with the additive model
as with the multiplicative model, but because the estimated values of the
parameters in the additive model must be restricted so that they predict
positive rates, it is much harder to write foolproof programs to fit these
models. We shall return to additive models in Chapter 28.

22.7 Using computer programs

There is a certain amount of specialized terminology connected with com-
puter programs which we shall introduce briefly in this section.

VARIABLES AND RECORDS

The information collected in a study is best viewed as a rectangular table
in which the columns refer to the different kinds of information collected for
each subject, and the rows to the different subjects. In computer language
the columns are called variables and the rows are called records. Variables
such as age and observation time are called gquantitative because they mea-
sure some quantity. Variables such as exposure group are called categorical
because they record the category into which a subject falls. The different
categories are called the levels of the variable. Another name for a categor-
ical variable is factor. Categorical variables with only two categories (or
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levels) are also known as binary variables.

DERIVED VARIABLES

The raw data which is collected in a study may not be in exactly the right
form for analysis. For example, in a follow-up study the observation time
will usually be recorded as date of entry to the study and date of exit. The
computer can be instructed to derive the observation time from these two
dates by subtraction. Another example is where the grouped values of a
quantitative variable are required in an analysis; it is then convenient to
derive a new categorical variable which records the group into which each
subject falls.

VARIABLE NAMES

In order to give instructions to a computer program each of the variables
needs a name. These can usually be at least eight characters long and it is
a good idea to make full use of this and to choose names which will mean
something to you (and someone else) in a year’s time.

SUMMARY TABLES

It is always important when using computer programs to keep in close touch
with the data you are analyzing. The simplest way of doing this is to start
by looking at tables which show the estimated rate or odds parameters for
different combinations of the values of the explanatory variables. When
there are two explanatory variables the table is called two-way, and so on.
Three-way tables are presented as a series of two-way tables. When an
explanatory variable is quantitative it will usually be necessary to group
the values of the variable before using it to define a table. Only after
inspecting various summary tables to get some feel for the main results
should you use regression models to explore the data more fully.

FREQUENCY OR INDIVIDUAL RECORDS

Computer programs are generally able to accept either individual records
or frequency records based on groups of subjects. For example, in the is-
chaemic heart disease study, we could usec the data records for each subject,
or frequency records showing the number of subjects in each combination of
age band and exposure group. Entering a frequency record for 25 subjects
has exactly the same effect as entering 25 identical individual records.
When an explanatory variable is quantitative its values must be grouped
before frequency records can be formed, while the actual values can be used
with individual records. Frequency records can be stored more compactly
than individual records, and log likelihood calculations are correspondingly
faster, but using frequency records requires two computer programs — one
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to compute the frequency records and one to carry out the regression anal-
ysis — and communication between these programs may be inconvenient.
For case-control studies the number of subjects is usually relatively small
and the data are usually entered as individual records. For cohort studies
there may be tens of thousands of individual records, possibly further sub-
divided between time-bands, so the data are usually entered as frequency
records.

MISSING VALUES

Most studies contain records which have some missing values, and it is
essential to have some way of indicating this to the computer program.
The most convenient code for a missing value is the character *, but when
a program insists on a numeric code it is best to choose some large number
like 9999. When there are many variables in a study the analyses are usually
on some subset of the variables, and the program will automatically include
those records with complete data on the subset being used.

Solutions to the exercises

22,1 A = 5.0 per 1000, 8 = 3.0, ¢* = 2.4, ¢* = 6.0.

22.2 It is not a new constraint. Table 22.1 shows that when the rate
ratio for exposure is constant over age bands then the rate ratios for age
will automatically be constant over exposure groups.

22.3 The predicted rates for the six combinations of age and exposure
are

Age Unexposed Exposed
40 - 49 4.44 10.61
50 — 59 5.06 12.10
60 — 69 8.88 21.22

22.4 The effect of age level 1 is exp(0.1290) = 1.14. The 90% confidence
interval for this effect is

x
1.14 =+ exp(1.645 x 0.4753)

which is from 0.52 to 2.49.



