24
Testing hypotheses

The scientific imagination knows no bounds in the creation of theories and
interesting models, but when should such elaboration end? The principle
which is invoked to deal with this problem is Occam’s razor. This principle
holds that we should always adopt the simplest explanation consistent with
the known facts. Only when the explanation becomes inconsistent are we
Justified in greater elaboration. Occam’s razor has much in common with
statistical tests of null hypotheses. Statisticians erect null hypotheses and
seek positive evidence against them before accepting alternative explana-
tions. This philosophical position should not be taken to imply that the
absence of evidence against a null hypothesis establishes the null hypothesis
as being true.

24.1 Tests involving a single parameter

An explanatory variable with two levels requires only one parameter to
make a comparison between them. When the comparison is made using a
rate ratio (or an odds ratio) the null value is 1.0, or zero on the log scale.
The simplest way of testing for a zero null value is to use the Wald test,
based on the profile log likelihood for the parameter being tested. This

involves referring
M-0)*
S

to tables of the chi-squared distribution on one degree of freedom, where
M is the most likely value of the log of the parameter and S is its standard
deviation. These quantities are the ones listed in the computer output
under estimate and standard deviation.

Exercise 24.1. Table 24.1 repeats the results of the regression analysis of the
ischaemic heart disease data. Carry out the Wald test of the hypothesis of no
effect of exposure on IHD incidence.

A log likelihood ratio test based on the profile likelihood for the exposure
parameter can also be used to test the hypothesis in Exercise 24.1. The pro-
file log likelihood ratio for a zero exposure effect is the difference between
two log likelihoods: (a) the log likelihood when the exposure parameter is
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Table 24.1. Program output for the ischaemic heart disease data

Parameter Estimate SD

Corner —~5.4180 0.4420
Exposure(1) 0.8697  0.3080
Age(1) 0.1290 0.4753
Age(2) 0.6920 0.4614

zero and the age parameters take their most likely values given that there
is no exposure effect, and (b) the log likelihood evaluated when all parame-
ters take their most likely values. The former is obtained by fitting a model
which includes age but not exposure, and the latter is obtained by fitting
a model which includes both age and exposure. The difference between
these two log likelihoods gives the profile log likelihood ratio, and the test
is carried out by referring minus twice this value to the chi-squared distri-
bution with one degree of freedom. Some programs report the deviance,
a quantity closely related to the log likelihood which we shall discuss in a
later section of this chapter.

Exercise 24.2. The log likelihoods for the models

log(Rate) = Corner + Age + Exposure
log(Rate) = Corner + Age

for the ischaemic heart disease data, are —247.027 and —251.176. How can you
tell which likelihood was obtained for which model? Carry out the likelihood
ratio test for a zero exposure effect and compare it with the Wald test calculated
in the previous exercise.

The score test for a zero exposure effect is found from a quadratic
approximation which has the same gradient and curvature as the .proﬁle
log likelihood at the null value. Since the log likelihood ratio test is easy
to obtain using a computer program the score test is rarely carried out,
although some programs do offer this option.

24.2 Tests involving several parameters

When a variable has three levels two parameters are required to make
comparisons between the levels. A test that just one of these parameters
takes its null value is rarely of interest. The hypothesis that both take their
null values is usually more relevant, because this corresponds to the variable
having no effect on the response. We shall now consider the extension of
the likelihood ratio test to cover this situation. A convenient example is
provided by the problem of testing the effect of age in the analysis shown
in Table 24.1, although this is a hypothesis of no scientific interest!
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The same general principle as for one parameter is used: the log likeli-
hood for the model

Corner + Age + Exposure

which includes the two age parameters, is subtracted from the log likelihood
for the model

Corner + Exposure,

in which the two age parameters are zero. This gives the log likelihood
ratio for testing the hypothesis that both age parameters take their null
values. Minus twice the log likelihood ratio is referred to the chi-squared
distribution with two degrees of freedom, because two parameters have
been set to their null values. In this case minus twice the log likelihood
ratio is equal to 4.016, and the p-value is 0.134, showing that there is no
significant effect of age on ischaemic heart disease in this study.

Exercise 24.3. Does the fact that there is no significant effect of age on incidence
in this study mean that there is no need to control for age when comparing
exposure groups?

There is some temptation to scan the output for the model which in-
cludes both age and exposure and to try to interpret the separate tests of
the two parameters for age, rather than making a joint test. Using the
Wald test with the results in Table 24.1 shows that the data support both
null values for age when tested separately, but it would be unwise to deduce
from this that there is no effect of age. This is because both age effects are
rather imprecisely estimated, due to the fact that ohly 6 heart attacks were
observed in the first age band. When the corner is located where there is
very little data it is common to see effects for both levels 1 and 2 which are
small compared to their standard deviations, yet a highly significant effect
from level 1 to level 2. The only safe way of testing the effect of age is
to make a test of the joint hypothesis that both age effects take their null
value. The Wald test can be generalized to do this (as can the score test),
but the casiest test to use is the log likelihood ratio test.

24.3 Testing for interaction

The regression model used in the test for an exposure effect imposes the
constraint that the effect of exposure is constant over age bands. Similarly
for the test for age effects. An important question to ask is whether it is
reasonable to impose these constraints, or whether the data better support
different exposure effects in each age band, and different age effects in each
exposure group. When the effects of exposure vary with age there is said
to be interaction between exposure and age. Interaction between exposure
and age automatically implies interaction between age and exposure and
vice versa.
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Table 24.2. Definition of interactions in terms of exposure

Exposure
0 1
0 50 15.0
Age 1 120 42.0
2 30.0 135.0
0 50 50 % 3.0
Age 1 120 12.0 x 3.5
2 30.0 30.0 x 4.5
0 50 5.0x 3.0
Age 1 120 12.0x3.0x 1.167
2 300 300x30x15

To test for interaction it is necessary to choose-new parameters in a
way that allows for separate effects of exposure in the different age bands.
This is done by choosing one parameter to measure the effect of exposure
in the first age band and two to measure the extent to which the effects of
exposure in the other two age bands differ from the effect in the first age
band. The way this is done is best illustrated using numerical values for
the parameters.

A set of illustrative values for the 6 rate parameters are shown at the
top of Table 24.2. The rate ratios for exposure by levels of age are 3.0, 3.5,
and 4.5, shown in the middle part of the table, so these rate parameters
do not obey a multiplicative model. The extent of the departure from the
multiplicative model can be measured by expressing 3.5 and 4.5 as ratios
relative to 3.0, as shown in the third part of the table. These ratios, which
take the values 1.167 and 1.5 in this case, are called interaction parameters.

Table 24.3 shows the same thing in terms of the rate ratios for age by
levels of exposure. These rate ratios are 2.4 and 6.0 when exposure is at
level 0 but 2.8 and 9.0 when exposure is at level 1. The extent to which these
differ, measured as ratios relative to the rate ratios at level 0 of exposure,
are again equal to 1.167 and 1.5. Thus the interaction parameters are
symmetric in exposure and age.

Tables 24.2 and 24.3 are combined in Table 24.4. Using the terminology
of regression models, the 6 original rate parameters are re-expressed in
terms of the corner, the rate ratio for exposure when age is at level 0,
the rate ratio for age when exposure is at level 0, and the two interaction

parameters. This way of re- expressing the original rate parameters has
not resulted in any reduction in the number of parameters; its sole purpose
is to assess the extent of the departures from the multiplicative model. We
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Table 24.3. Definition of interactions in terms of age
Exposure
0 1
0 5.0 15.0
Age 1 12.0 42.0
2 30.0 135.0
0 5.0 15.0
Age 1 50x24 15.0 x 2.8
2 50x6.0 15.0 x 9.0
0 5.0 15.0
Age 1 50x24 15.0%x 2.4 x 1.167
2 50x6.0 150x6.0x 1.5
Table 24.4. Definition of interactions in terms of exposure and age
Exposure
Age 0 1

0 5.0 5.0 x 3.0
1 8.0x24 50x3.0x24x1.167
2 5.0 x 6.0 5.0x3.0x6.0x15

shall write the model with interaction in one or other of the forms

Rate =

Corner x Exposure x Age x Exposure-Age
log(Rate) ==

Corner + Exposure + Age + Exposure-Age.
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Table 24.5. Estimates of parameters in the model with interaction

Parameter Estimate SD

Corner —5.0237  0.500
Exposure(1) —0.0258 0.866
Age(1) ~0.5153  0.671
Age(2) 0.3132 0.612

Age(1)-Exposure(1) 1.2720  1.020
Age(2)-Exposure(1) 0.8719 0.973

Table 24.5 shows the output for the ischaemic heart disease data when
fitting the model which includes the interaction between exposure and age.
The interaction parameters are given names like Age(1)-Exposure(1) and
Age(2)-Exposure(1). In general the number of interaction parameters be-
tween a variable on a levels and one on b levels is (a—1)(b-1).

Exercise 24.4. Verify from Table 24.5 that the estimated corner parameter in
the model with interaction is now the log of the observed rate for unexposed
subjects in age band 0, and the estimated Exposure(1) parameter is now the
observed rate ratio (exposed/unexposed) in age band 0. (The observed rates are
in Table 22.6.)

24.4 Deviance

The log likelihood for a regression model, evaluated at the most likely
values of the parameters, is a mcasure of goodness-of- fit of the model —
the greater the log likelihood, the better the fit. Since the absolute value
of the log likelihood is not itself of interest there is some advantage in
always reporting a log likelihood ratio, compared to some other model. A
convenient choice is the saturated which includes the maximum possible
number of parameters. The output would then include the log likelihood
ratio between the model being fitted and the saturated model. For use
with tables of chi-squared it is slightly more convenient to report minus
twice the log likelihood ratio, a quantity which is called the deviance for
the model being fitted. Each deviance has degrees of freedom equal to the
difference between the number of parameters in the model and the number
in the saturated model.

The deviance is a measure of badness of fit; the larger the deviance the
worse the fit. Two models are compared by comparing their deviances.
The change in deviance is minus twice the log likelihood ratio for the two
models because the log likelihood for the saturated model occurs in both
deviances and cancels (see Fig. 24.1.) The degrees of freedom for this test
are found by subtracting the degrees of freedom for the two deviances. For

DEVIANCE 243

Log likelihood (x2)

Saturated model

Deviance |Deviance
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Fig. 24.1. Relationship between deviance and log likelihood

example, when fitting the models

log(Rate) = Corner + Age + Exposure
log(Rate) = Corner + Exposure,

to the ischaemic heart disease data the corres i
. ponding values for the two
deviances were 1.673 and 5.689. The difference between these is 4.016 which

is the same as the result obtained earlier in i i
€ sa > the chapter fi
log likelihood ratio. P or minus twice the

Exercise 24.5. How do you know which deviance was obtained for which model?
How many degrees of freedom do the two deviances have?

When the data are entered as frequency records the saturated model
has the same number of parameters as there are frequency records. In
the case of the ischaemic heart disease data there are six records so the
saturated model has 6 parameters. All models with six parameters are
§aturated and have the same log likelihood. The model which includes t{le
3nteraction parameters between age and exposure has six parameters, and
Is saturated, so it follows that the deviance for the model ’

log(Rate) = Corner + Age + Exposure

provides a test of no interaction between age and exposure. It may be
referred directly to a chi-squared distribution with two degrees of freedom

When the data are entered as individual records the saturated model has‘,
the same number of parameters as the number of individual records and the
deviance measures minus twice the difference between the log likelihood for
the fitted model and this saturated model. This is not a test of anything
}1seful. There is no short cut for making a test of no interaction using
individual records: it is necessary to obtain the deviances for the models
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Table 24.6. Cases (controls) for oral cancer study

Alcohol
Tobacco 0 1 2 3
0 10 (38) 7 (27) 4 (12) 5 (8)
1 11 (26) 16 (35) 18 (16) 21 (20)
2 13 (36) 50 (60) 60 (49) 125 (52)
3 9 (8) 16 (19) 27 (14) 91 (27)

Table 24.7. Case/control ratios for the oral cancer data

Alcohol
Tobacco 0 1 2 3
0 0.26 0.26 033 0.63
1 0.42 046 113 1.05
2 0.36 0.83 1.22 240
3 1.12 084 193 3.37

with and without the interaction parameters.

24.5 Models with two exposures

Because regression models treat all explanatory variables in the same way,
models for studies with two exposures look very similar to models for s.tud-
ies with one exposure and one confounder. However, there are some differ-
ences in the way different hypotheses are interpreted. ‘

Table 24.6 repeats the study of oral cancer introduced in Chapter 16,
in which the numbers of cases and controls are tabulated by two exposures,
alcohol consumption (on four levels) and tobacco consumption (also on four
levels). For alcohol the levels are 0, 0.1-0.3, 0.4-1.5, and 1.6+ ounces per
day (coded as 0, 1, 2, and 3). For tobacco the levels are 0, 1-19, 20-39, and
40+ cigarettes per day (also coded as 0, 1, 2, and 3?. A summary table of
case/control ratios by alcohol and tobacco is shown in Table 24.7. Bfecguse
the frequencies in the table are small, there is a lot of random variation,
but there is an overall tendency for the ratios to increase both fr0¥n 1§ft to
right along rows, and from top to bottom down columns. ’I"hlS indicates
that both variables have an effect on cancer incidence; there is an effect of
tobacco when alcohol intake is held constant, and vice versa.

An important question is whether the two exposures act independently
of one another. In other words, are the effects of tobacco the same at all
levels of alcohol, and are the effects of alcohol the same at all levels of
tobacco? This question is answered by testing for no interaction between
alcohol and tobacco, but it must be emphasized that the test depends on
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how the effect parameters are defined. When they are defined as ratios
the interaction parameters are also ratios and measure departures from a
model in which the two exposures combine multiplicatively. By choosing to
measure effects as ratios we have thercfore chosen to interpret independent
action as meaning that the two exposures act multiplicatively. In Chap-
ter 28 we show how the effects can be defined as differences, in which case
the interaction parameters are also differences and measure departures from
a model in which the two exposures combine additively. In this case we
have chosen to interpret independent action as meaning the two exposures
act additively.

If there is a significant interaction then it will be necessary to report
the effects of alcohol separately as odds ratios for each level of tobacco
consumption, and the effects of tobacco separately as odds ratios for each
level of aleohol. On the other hand, if there is no significant interaction
then the two exposures may be assumed to act independently and we can
estimate the effects of alcohol controlled for tobacco and the effects of
tobacco controlled for alcohol. Note that even when the two exposures
act independently it is still necessary to control each for the other. This
is because people’s drinking and smoking habits are not independent so
ignoring one when studying the other could lead to biased estimates.

The test for no interaction is carried out by comparing the fit of the
multiplicative model

log(Odds) = Corner + Alcohol + Tobacco,
with that of the model which includes the intcracti(;n parameters,
log(Odds) = Corner + Alcohol + Tobacco + Alcohol - Tobacco.
Since the second of these models is saturated the test can be based directly
on the deviance for the multiplicative model. Provided the data support

the hypothesis of no interaction it is then possible to test for an effect of
alcohol, controlled for tobacco, by comparing the models

It

log(Odds)
log(Odds)

Corner + Alcohol + Tobacco
Corner + Tobacco.

Similarly the test for an effect of tobacco is made by comparing the models

log(Odds) = Corner + Alcohol 4+ Tobacco
log(Odds) Corner + Alcohol.

In each of these tests the smaller of the two models being compared is
obtained from the larger by setting some parameters to zero. The smaller
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1. Corner

2. Corner + Alcohol 3. Corner + Tobacco

4. Corner + Alcohol + Tobacco

5. Corner + Alcohol + Tobacco + Alcohol - Tobacco

Fig. 24.2. Nesting of models.

model is then said to be nested in the larger model. Comparisons between
models where neither is nested in the other are not allowed since they do not
correspond to a hypothesis in which some parameter values are set equal to
zero. Fig. 24.2 shows the five possible models which could be fitted to the
alcohol and tobacco data. The arrows indicate nesting so any two models
joined by an arrow correspond to a hypothesis which can be tejsted. For
example, a comparison of models 4 and 5 is a test of no interaction, anfi a
comparison of models 4 and 2 is a test of no effect of tobacco (controlling
for alcohol). In model 1 both alcohol and tobacco parameters are set to
zero so it is nested in all of the other models.

Exercise 24.6. For the models set out in Fig. 24.2, the deviances are (1) 132‘.561,
(2) 37.951, (3) 61.880, and (4) 6.689. What are the degrees of freedom .assomated
with each of these deviances? Carry out the four tests corresponding to the
arrows in the figure. What is the interpretation of these tests?

24.6 Goodness-of-fit tests

A question which is often asked is whether a model provides an adequate
fit to the data. Because the absolute value of the log likelihood has no
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meaning this question can only be answered by comparing the model with
other more complicated models and asking whether the extra complication
is justified. The saturated model represents the most complicated model
which could be used and the deviance automatically provides a comparison
of the model currently being fisted with the saturated model. For this
reason the deviance for a model is often put forward as a test of goodness
of fit (really badness-of-fit) of the model. There are several cautions which
need to be borne in mind when interpreting the deviance in this way.

L. Comparisons with the saturated model are meaningless when the data
are entered as individual records.

2. Comparisons with the saturated model which are on many degrees of
freedom will lack power to discriminate; in this case it will be better
to make comparisons with models which are less complicated than
the saturated model.

3. The deviance is only approximately distributed as chi-squared and
this approximation gets worse as the degrees of freedom increase.

24.7 Collinearity

In a study in which tobacco and alcohol consumption were very highly
associated it would be very difficult to make an estimate of the effects
of alcohol controlled for tobacco (or of the effects of tobacco controlled
for alcohol). This is because controlling for tobacco involves fixing the
level of tobacco consumption and then estimating the effects of alcohol
from subjects whose tobacco consumption is at this level. If alcohol and
tobacco are highly associated then nearly all subjects at a fixed tobacco
level will have the same level of alcohol consumption and it will therefore
be difficult to estimate the effects of alcohol. In extreme cases fixing the
level of tobacco might fix the level of aleohol completely, in which case it
would be impossible to estimate the effects of alcohol. In such a case the
two variables are said to be collinear. This situation is not uncommon,
particularly when working with derived variables.

Solutions to the exercises

24.1 In the Wald test (0.8697/0.3080)2 = 7.97 is referred to the chi-
squared distribution with one degree of freedom, giving a p-value of 0.005.

24.2 The larger likelihood, —247.027, corresponds to the first model be-
cause this has more parameters than the second. The log likelihood ratio
for the two models is —~251.176 — (—247.027) = —4.149. Minus twice this
1s 8.298 which is quite close to the Wald chi-squared value obtained in the
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previous exercise. Referring 8.30 to the chi-squared distribution with one
degree of freedom gives p = 0.004.

24.3 No. When taking account of confounding variables it is best to
play safe and to control for them regardless of whether their effects are
significant or not. Very little is lost by doing this.

24.4 The Corner, Exposure(1), Age(1) and Age(2) parameters are

log(6.580/1000) = —5.0237
log(6.412/6.580) = ~-0.0258
log(3.931/6.580) = —0.5153
log(9.00/6.58) =  0.3132.

24.5 The smaller deviance corresponds to the larger model since this will
be a better fit. The degrees of freedom are 2 and 4 respectively.

24.6 The number of parameters in models 1 to 5 are 1, 4, 4, 7, and
16, respectively. The number of parameters in the saturated model is 16,
so the degrees of freedom for the deviances are 16 — 1 = 15, 16 — 4 = 12,
16—4 = 12,16 -7 = 9, and 16 — 16 = 0 respectively. Note that model 5 has
16 parameters so it is saturated. The table below shows the comparisons
of models in terms of the change in deviance.

Comparison Change in deviance Change in df
(1) vs (2) 132.56 — 37.95 = 94.61 15-12=3
(1) vs (3) 132.56 — 61.88 = 70.68 15-12=3

(2) vs (4) 37.95-6.69=3126 12-9=3
(3) vs (4) 61.88 —6.60 =5519  12-9=3
(4) vs (5) 6.69—0= 6.69 9-0=9

The last of these comparisons shows that there is no significant interaction.
This means that the next two comparisons (working up from the bottom)
make sense. The change in deviance from model 3 to model 4 shows that
there is a significant effect of alcohol after controlling for tobacco; similarly
the change in deviance from model 2 to model 4 shows that there is a
significant effect of tobacco after controlling for alcohol. All of the models
can be compared with model 1, but these comparisons have little interest.
For example, a comparison of model 1 with model 2 is a test of the alcohol
effects (ignoring tobacco) while a comparison of model 1 with model 4 is
a joint test of the alcohol effects (controlling for tobacco) and the tobacco
effects (controlling for alcohol).




