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Table 3.3 Survival times of 36 patients classified ac-
cording to age group and whether or not they have had
a nephrectomy.

No nephrectomy Nephrectomy
<60 60-70 >70 <60 60-70 >70
9 15 12 104*  108* 10
6 8 9 26 9
21 17 56 14 18
35 115 6
52 52
68 5*
T 18
84 36
8 9
38
72
36
48
26
108
5

and that due to nephrectomy status is denoted by vk, k = 1,2. The terms «;
and v, may then be included in proportional hazards models for h;(t), the
hazard function for the ith individual in the study. Five possible models are
as follows:

Model (1):  hi(t) = ho(t);

Model (2):  hi(t) = exp{a; }ho(t);

Model (3):  ha(t) = exp{va}ho(t);

Model (4):  hi(t) = exp{ey + vi}ho(t);

Model (5):  hi(t) = exp{ay + vk + (av)jx tho(t)-

Under Model (1), the hazard of death does not depend on either of the two
factors and is the same for all 36 individuals in the study. In Models (2) and
(3), the hazard depends on either the age group or on whether a nephrectomy
was performed, but not on both. In Model (4), the hazard depends on both
factors, where the impact of nephrectomy on the hazard is independent of the
age group of the patient. Model (5) includes an interaction between age group
and nephrectomy, so that under this model the effect of a nephrectomy on the
hazard of death depends on the age group of the patient.
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To tit the term o, two indicator variables A, and Az are defined with values
shown in the following table.

Age group Ay Ay

<60 0 0
60-70 1 0
>70 0 1

The term v is fitted by defining a variable N which takes the value zero
when no nephrectomy has been performed and unity when it has. With this
choice of indicator variables, the baseline hazard function will correspond to
an individual in the youngest age group who has not had a nephrectomy.

Models that contain the term o are then fitted by including the variables
Ay, Az in the model, while the term vy is fitted by including N. The interaction
is fitted by including the products Ao N = A x N and A3N = Az x N in the
model. The explanatory variables fitted, and the values of —~2log L for each of
the five models under consideration, are shown in Table 3.4. Some computer
software for modelling survival data enables factors to be included in a model
without the user having to define appropriate indicator variables. The values
of —2log L in Table 3.4 could then have been obtained directly using such
software.

Table 3.4 Values of —2log L on fitting five models to
the data in Table 3.5.

Terms in model  Variables in model —2log L
null model none 177.667
; As, As 172.172
Vi N 170.247
o + v Az, As, N 165.508

a; + v+ (al/)]‘k A, A3, N, A2N, AsN 162.479

The first step in comparing these different models is to determine if there is
an interaction between nephrectomy status and age group. To do this, Model
(4) is compared with Model (5). The reduction in the value of —2log L on
including the interaction term in the model that contains the main effects of
age group and nephrectomy status is 165.508 — 162.479 = 3.029 on 2 d.f. This
is not significant (P = 0.220) and so we conclude that there is no interaction
between age group and whether or not a nephrectomy has been performed.

We now determine whether the hazard function is related to neither, one
or both of the factors age group and nephrectomy status. The change in the
Yalue of —2log L on including the term «; in the model that contains vy
is 170.247 — 165.508 = 4.739 on 2 d.f. This is significant at the 10% level
(P = 0.094) and so there is some evidence that a; is needed in a model
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that contains v,. The change in —2logf/ when vy is added to the model that
contains o is 172.172 — 165.508 = 6.664 on 1 d.f., which is significant at the
1% level (P = 0.010). Putting these two results together, the term o; may
add something to the model that includes vk, and vy is certainly needed in the
model that contains «;. This means that both terms are required, and that
the hazard function depends on both the patient’s age group and on whether
or not a nephrectomy has been carried out.

Before leaving this example, let us consider other possible results from the
comparison of the five models, and how they would affect the conclusion as
to which model is the most appropriate. If the term corresponding to age
group, a;, was needed in a model in addition to the term corresponding to
nephrectomy status, vk, and yet v was not needed in the presence of o, the
model containing just c;, Model (2), is probably the most suitable. To make
sure that a; was needed at all, Model (2) would be further compared with
Model (1), the null model. Similarly, if the term corresponding to nephrectomy
status, vy, was needed in addition to the term corresponding to age group, a;j,
but a; was not required in the presence of vi, Model (3) would probably be
satisfactory. However, the significance of v would be checked by comparing
Model (3) with Model (1). If neither of the terms corresponding to age group
and nephrectomy status were needed in the presence of the other, a maximum
of one variable would be required. To determine which of the two is necessary,
Model (2) would be compared with Model (1) and Model (3) with Model (1).
If both results were significant, on statistical grounds, the model that leads
to the biggest reduction in the value of —2log L from that for the null model
would be adopted. If neither Model (2) nor Model (3) was superior to Model
(1), we would conclude that neither age group nor nephrectomy status had
an effect on the hazard function.

There are two further steps in the modelling approach to the analysis of
survival data. First, we will need to critically examine the fit of a model
to the observed data in order to ensure that the fitted proportional hazards
model is indeed appropriate. Second, we will need to interpret the model,
in order to quantify the effect that the explanatory variables have on the
hazard function. Interpretation of parameters in a fitted model is considered
in Section 3.7, while methods for assessing the adequacy of a fitted model will
be considered in Chapter 4. But first, some general comments are made on
possible strategies for model selection.

3.6 Strategy for model selection

An initial step in the model selection process is to identify a set of explanatory
variables that have the potential for being included in the linear component
of a proportional hazards model. This set will contain those variates and
factors that have been recorded for each individual, but additionally terms
corresponding to interactions between factors or between variates and factors
may also be required.
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Once a set of potential explanatory variables has been isolated, the combi-
nation of variables that are to be used in modelling the hazard f’unction has
to be determined. In practice, a hazard function will not depend on a unique
combination of variables. Instead, there are likely to be a number of equally
good models, rather than a single “best” model. For this reason, it is desirable
to consider a wide range of possible models. ,

An .important principle in statistical modelling is that when a term corre-
sponding to the interaction between two factors is to be included in a model
the corresponding lower-order terms should also be included. This rule i;
known as the hierarchic principle, and means that interactions should not be
fitted unless the corresponding main effects are present. Models that are not
hierarchic are difficult to interpret.

The model selection strategy depends to some extent on the purpose of
the study. In some applications, information on a number of variables will
have been obtained, and the aim might be to determine which of them has
an effect on the hazard function, as in Example 1.3 on multiple myeloma
In other situations, there may be one or more variables of primary interest.
such as terms corresponding to a treatment effect. The aim of the modelling,
process is then to evaluate the effect of such variables on the hazard function
as in Example 1.4 on prostatic cancer. Since the other variables that have beeI;
recorded might also be expected to influence the magnitude of the treatment
effect, these variables will need to be taken account of in the modelling process.

3.6.1 Variable selection procedures

We ﬁrst consider the situation where all explanatory variables are on an equal
footing, and the aim is to identify subsets of variables upon which the haz-
fmrd function depends. When the number of potential explanatory variables
including interactions, non-linear terms and so on, is not too large, it might7
bfa feasible to fit all possible combinations of terms, paying due reg;;rd to the
hierarchic principle. Alternative nested models can be compared by examining
the change in the value of —2log L on adding terms into a model or deleting
terms from a model.

Qomparisons between a number of possible models, which need not neces-
sarily be nested, can also be made on the basis of the statistic

AIC = —2log L + ag,

in which ¢ is the number of unknown S-parameters in the model and « is
a predetermined constant. This statistic is known as Akaike’s information
criterion; the smaller the value of this statistic, the better the model. The
motivation behind this statistic is that if the only difference betweex'l two
models is that one includes unnecessary covariates, the values of AIC for the
.two models will not be very different. Indeed, the value of AIC will tend to
increase when unnecessary terms are added to the model.

Values of a between 2 and 6 are generally used in computing the value of
the statistic. The choice o = 3 is roughly equivalent to using a 5% significance
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level in judging the difference between the values of —2log L for two nested
models that differ by between one and three parameters. This value of « is
recommended for general use.

Of course, some terms may be identified as alternatives to those in a par-
ticular model, leading to subsets that are equally suitable. The decision on
which of these subsets is the most appropriate should not then rest on sta-
tistical grounds alone. When there are no subject matter grounds for model
choice, the model chosen for initial consideration from a set of alternatives
might be the one for which the value of —2 logﬂ or AIC is a minimum. It
will then be important to confirm that the model does fit the data using the
methods for model checking described in Chapter 4.

In some applications, information might be recorded on a number of vari-
ables, all of which relate to the same general feature. For example, the variables
height, weight, body mass index (weight /height®), head circumference, arm
length, and so on, are all concerned with the size of an individual. In view
of inter-relationships between these variables, a model for the survival times
of these individuals may not need to include each of them. It would then be
appropriate to determine which variables from this group should be included
in the model, although it may not matter exactly which variables are chosen.

When the number of variables is relatively large, it can be computation-
ally expensive to fit all possible models. In particular, if there is a pool of p
potential explanatory variables, there are 27 possible combinations of terms,
so that if p > 10, there are more than a thousand possible combinations of
explanatory variables. In this situation, automatic routines for variable selec-
tion that are available in many software packages might seem an attractive
prospect. These routines are based on forward selection, backward elimination
or a combination of the two known as the stepwise procedure.

In forward selection, variables are added to the model one at a time. At
each stage in the process, the variable added is the one that gives the largest
decrease in the value of —2log L on its inclusion. The process ends when the
next candidate for inclusion in the model does not reduce the value of —2log L
by more than a prespecified amount. This is known as the stopping rule. This
rule is often couched in terms of the significance level of the difference in the
values of —2log L when a variable is added to a model, so that the selection
process ends when the next term for inclusion ceases to be significant at a
pre-assigned level.

In backward elimination, a model that contains the largest number of vari-
ables under consideration is first fitted. Variables are then excluded one at a
time. At each stage, the variable omitted is the one that increases the value
of —2log L by the smallest amount on its exclusion. The process ends when
the next candidate for deletion increases the value of —2log L by more than
a prespecified amount.

The stepwise procedure operates in the same way as forward selection.
However, a variable that has been included in the model can be considered
for exclusion at a later stage. Thus after adding a variable to the model, the
procedure then checks whether any previously included variable can now be
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deleted. These decisions are again made on the basis of prespecified stopping
rules.

These automatic routines have a number of disadvantages. Typically, they
lead to the identification of one particular subset, rather than a set of equally
good ones. The subsets found by these routines often depend on the variable
selection process that has been used, that is, whether it is forward selection
backward elimination or the stepwise procedure, and generally tend not to také;
any account of the hierarchic principle. They also depend on the stopping rule
that is used to determine whether a term should be included in or excluded
from a model. For all these reasons, these automatic routines have a limited
role in model selection, and should certainly not be used uncritically.

Instead of using automatic variable selection procedures, the following gen-
eral strategy for model selection is recommended.

1. The first step is to fit models that contain each of the variables one at a
time. The values of —~21log L for these models are then compared with that
for the null model to determine which variables on their own significantly
reduce the value of this statistic.

2. The variables that appear to be important from Step 1 are then fit-
ted together. In the presence of certain variables, others may cease to be
important. Consequgntly, those variables that do not significantly increase
the value of —2log L when they are omitted from the model can now be
discarded. We therefore compute the change in the value of —2log L when
each variable on its own is omitted from the set. Only those that lead to a
significant increase in the value of —2log L are retained in the model. Once
a variable has been dropped, the effect of omitting each of the remaining
variables in turn should be examined.

3. Variables that were not important on their own, and so were not under
consideration in Step 2, may become important in the presence of others.
These variables are therefore added to the model from Step 2, one at a
time, and any that reduce —2log L significantly are retained in the model.

This process may result in terms in the model determined at Step 2 ceasing
to be significant.

4._A final 'chejck is made to ensure that no term in the model can be omitted
Wlthout significantly increasing the value of —2log L, and that no term not
included significantly reduces —2log L.

When using this selection procedure, rigid application of a particular signif-
icance level should be avoided. In order to guide decisions on whether to
include or omit a term, the significance level should not be too small: a level
of around 10% is recommended. ’

In some applications, a small number of interactions and other higher-order
tferm.s, such as powers of certain variates, may need to be considered for inclu-
sion in a model. Such terms would be added to the model identified in Step 3
above, after ensuring that any terms necessitated by the hierarchic principle
have already been included in the model. If any higher-order term leads to a
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significant reduction in the value of —2log L, that term would be included in

the model. ' . | ‘
The procedure outlined above is now illustrated in an example.

iwal of multiple myeloma patients .
gﬁ:ﬁil:l}iii iif”zﬁ: datfa on tlzlje survival times of multiple myelox?u;) 1patlzntes
in Example 3.2 suggested that not all of the seven ez{planatory merlal fls,zar% S,
Sez, Bun, Ca, Hb, Pcells, and Protein, are nefeded in a propor}‘imna ébles
model. We now determine the most approl.)rl.ate sub'sets of t desg tvarlations;
In this example, transformations of the orl'gmal variables an hlrtx :}rlace ons
between them will not be considered. We will .further. assume t1 Z erﬁlar
no medical grounds for including particular variables in a mf)de .d : sux_nen ii
of the values of —2log L for all models that are to be considered is giv

Table 3.5.

Table 3.5 Values of —2log L for
models fitted to the data from Ezam-

ple 1.5.
Variables in model —-2log L
none 215.940
Age 215.817
Sex 215.906
Bun 207.453
Ca 215.494
Hb 211.068
Pcells 215.875
Protein 213.890
Hb + Bun 202.938
Hb + Protein 209.829
Bun + Protein 203.641
Bun 4+ Hb + Protein 200.503
Hb + Bun + Age 202.669
Hb + Bun + Sex 202.553
Hb + Bun + Ca 202.937
Hb 4+ Bun + Pcells 202.773

The first step is to fit the null model and models tl.lat contain 1eauzlh ?i :22
seven explanatory variables on their own. Of these varlables., Bur;r ea ; fo e
largest reduction in —2log L, reducing the. value of the stautlstlc1 c;jm— ; (.)04)
to 207.453. This reduction of 8.487 is significant a%t the 1% 1e.ve g) t'- .On )
when compared with percentage p((i)(iir'lts (}i'b t?e tc}}lu—i(\:llllllau;elz:)ldc;;sitsrl4 1817120nWhiCh

uction in —2log L on adding o the 872,
;is.fz;l’gl Zirger}gﬁcant at the 5% level (P = 0.027). The qnly other Varxalzilec‘ilil;tl
on its own has some explanatory power is Protein, which leads to a j:ltllllou "
in —2log L that is nearly significant at the 15% level (P = 0.152). g

STRATEGY FOR MODEL SELECTION 85

this ’-value is relatively high, we will for the moment keep Protein under
consideration for inclusion in the model.

The next step is to fit the model that contains Bun, Hb and Protein, which
leads to a value of —2log L of 200.503. The effect of omitting each of the
three variables in turn from this model is shown in Table 3.5. In particular,
when Bun is omitted, the increase in —210g[3 is 9.326, when Hb is omitted
the increase is 3.138, and whep Protein is omitted it is 2.435. Each of these
changes in the value of —21log I can be compared with percentage points of a
chi-squared distribution on 1 d.f. Since Protein does not appear to be needed
in the model, in the presence of Hb and Bun, this variable will not be further
considered for inclusion.

If either Hb or Bun is excluded from the model that contains both of these
variables, the increase in —2log L is 4.515 and 8.130, respectively. Both of
these increases are significant at the 5% level, and so neither Hb nor Bun can
be excluded from the model without significantly increasing the value of the
—2log L statistic.

Finally, we look to see if any of variables Age, Sez, Ca and Pcells should be
included in the model that contains Bun and Hb. Table 3.5 shows that when
any of these four variables is added, the reduction in —2 log L is less than 0.5,
and so none of them need to be included in the model. We therefore conclude
that the most satisfactory model is that containing Bun and Hb.

We now turn to studies where there are variables of primary importance,
such as a treatment effect. Here, we proceed in the following manner.

1. The important prognostic variables are first selected, ignoring the treat-
ment effect. Models with all possible combinations of the variables can be
fitted when their number is not too large. Alternatively, the variable se-

lection process might follow similar lines to those described previously in
Steps 1 to 4.

2. The treatment effect is then included in the model. In this way, any
differences between the two groups that arise as a result of differences
between the distributions of the prognostic variables in each treatment
group, are not attributed to the treatment,

3. If the possibility of interactions between the treatment and other ex-
planatory variables has not been discounted, these must be considered be-
fore the treatment effect can be interpreted.

It will often be interesting to fit a model that contains the treatment ef-
fect alone. This enables the effect that the prognostic variables have on the
magnitude of the treatment effect to be evaluated.

In this discussion on strategies for model selection, the use of statistical
criteria to guide the selection process has been emphasised. In addition, due
account must be taken of the application area. In particular, on subject area
grounds, it may be inappropriate to include particular combinations of vari-
ables. On the other hand, there might be some variables that it is not sensible
to omit from the model, even if they appear not to be needed in modelling a
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particular data set. Indeed, there is always a need for non-statistical consid-
erations in model building.

Ezample 8.6 Comparison of two treatments for prostatic cancer

In the data from Example 1.4 on the survival times of 38 prostatic cancer
patients, there are four prognostic variables that might have an effect on
the survival times. These are the age of the patient in years (Age), serum
haemoglobin level (Shb), tumour size (Size) and Gleason index (Index). All
possible combinations of these variates are fitted in a proportional hazards
model and the values of —2log L computed. These values are shown in Ta-
ble 3.6, together with the values of Akaike’s information criterion, computed

with a = 3.

Table 3.6 Values of ~210gﬁ and AIC for models
fitted to the data from Ezample 1.4.

Variables in model —2log L AIC

none 36.349 36.349
Age 36.269 39.269
Shb 36.196 39.196
Size 29.042 32.042
Index 29.127 32.127
Age + Shb 36.151 42.151
Age + Size 28.854 34.854
Age + Index 28.760 34.760
Shb + Size 29.019 35.019
Shb + Index 27.981 33.981
Size + Index 23.533 29.533
Age + Shb + Size 28.852 37.852
Age + Shb + Index 27.893 36.893
Age + Size + Index 23.269 32.269
Shb + Size + Inder 23.508 32.508

Age + Shb + Size + Index 23.231 35.231

The two most important explanatory variables when considered separately
are Size and Indez. From the change in the value of —2log L on omitting either
of them from a model that contains both, we deduce that both variables are
needed in a proportional hazards model. The value of —2log [ is only reduced
by a very small amount when Age and Shb are added to the model that
contains Size and Indez. We therefore conclude that only Size and Inder are
important prognostic variables.

From the values of Akaike’s information criterion in Table 3.6, the model
with Size and Index leads to the smallest value of the statistic, confirming
that this is the most suitable model of those tried. Notice also that there are
o lmn mhinatione of exnlanatory variables that lead to similar values of
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the AIC-statistic, whic ‘ i i i
e e Lheli,r}llosdl:iws that there are no obvious alternatives to using

We now consider the treatment effect. Let Treat be a variable that take
the value zero for individuals allocated to the placebo, and unity for thoss
allocated to DES. When Treat is added to the model tk’xat contains Size a 3
Inde:z,. the va'lue of —2log L is reduced to 22.572. This reduction of 0.961 f)ln
1 d.f. is not significant (P = 0.327). This indicates that there is no tre.atment
effect, but first we ought to examine whether the coefficients of the two e
planatory variables in the model depend on treatment. To do this, we fo "
the products T'size = Treat x Size and Tindexr = Treat x Index, and ,add thrm
to the model that contains Size, Index and Treat. When T'size ;).nd Tindezx ZSE
added tlo the model, —2log L is reduced to 20.829 and 20.792, respectiv lre
Qn a@dlng both of these mixed terms, —2log L becomes 19.70,5 Tﬁe rediZ—.
tions in .—ZIOgL on adding these terms to the model are not sig;liﬁcant and
S0 ?here is no evidence that the treatment effect depends on Size and I;ldew
Th1s means that our original interpretation of the size of the treatment effect'
is valid, and that on the basis of these data, treatment with DES does not
appear to affect the hazard of death. The estimated size of this treatment
effect will be considered later in Example 3.10. e

Before leaving this example, we note that when either Tsize or Tinder i
added to the model, their estimated coefficient, and that of Treat beconiS
large.. The standard errors of these estimates are also very large I7n arti ;
ular, in the model that contains Size, Index, Treat and Tsize thé estiII)natIC(;
coefficient .of Treat is —11.28 with a standard error of 18.50.,F0r the mO(;e 1
that contains Size, Index, Treat and Tindexz, the coefficients of Treat and Ti:;-
de.z.‘ are —161.52 and 14.66, respectively, while the standard errors of these
estimates are 18476 and 1680, respectively! This is evidence of overfittin

.In an onerﬁtted model, the estimated values of some of the 6—coeﬂiciint
will be highly dependent on the actual data. A very slight change to the val ;
of one of th'ese variables could then have a large impact on the estimate of rl(:
g;);;zs;c&ng:?ogr sc.oeﬁiment. This is the reason for such estimates having large

An overfitted model is one that is more complicated than is justified b
the data, and does not provide a useful summary of the data. This is anothe}r’

reason for not including the mixed terms in
the model f
from prostatic cancer. or the hagard of death

3.6.2 Testing for non-linearity

zNhen the depen_dence of the hazard function on a variate that takes a wide
ange of v.alues is to be modelled, we should consider whether the variat
should be mclu'ded as a linear term in the proportional hazards model ’
lrFor some varlla.tes, tragsformations of their original values might be lised in
p' <ltce of the orlgmal v.anate. For example, if a variate takes a wide range of
values, that variate might first be transformed by taking logarithms. This i
particularly appropriate for variates that are strictly positive. The lt;garithllj



88 MODELLING SURVIVAL DATA

of a variate may also be used when the distribution of the values of the variate
is highly positively skew.

When there are no a priori reasons for transforming a variate, the assump-
tion of linearity in the variate should at least be critically examined. One
possibility is to add quadratic or even cubic terms to the model, and exam-
ine the consequent reduction in the value of —2log L. If the inclusion of such
terms significantly reduces the value of this statistic, we would conclude that
there is non-linearity, and incorporate the polynomial terms in the model.

In many situations, non-linearity in an explanatory variate cannot be ad-
equately represented by including polynomial terms in a model, or by trans-
forming the original variable. For this reason, the following procedure is rec-
ommended for general use.

The values of the variate are first grouped into four or five categories con-
taining approximately equal numbers of observations. A factor is then defined
whose levels correspond to this grouping. For example, a variate reflecting the
size of a tumour could be fitted as a factor whose levels correspond to very
small, small, medium and large.

More specifically, let A be a factor with m levels formed from a continuous
variate, and let X be a variate that takes the value j when A is at level j,
for j = 1,2,...,m. Linearity in the original variate will then correspond to
there being a linear trend across the levels of A. This linear trend can be
modelled by fitting X alone. Now, fitting the m—1 terms X, X2 ..., X™mtis
equivalent to fitting A as a factor in the model, using indicator variables as in
Section 3.2.1. Accordingly, the difference between the value of —21log L for the
model that contains X, and that for the model that contains A, is a measure
of non-linearity across the levels of A. If this difference is not significant we
would conclude that there is no non-linearity and the original variate would
be fitted. On the other hand, if there is evidence of non-linearity, the factor
which corresponds to the variate is fitted.

The actual form of the non-linearity can be further studied from the coef-
ficients of the indicator variables corresponding to A. Indeed, a plot of these
coefficients may help in establishing the nature of any trend across the levels
of the factor A.

Ezample 3.7 Survival of multiple myeloma patients
In Example 3.5, we found that a proportional hazards model that contained
the explanatory variables Bun and Hb appeared to be appropriate for the data
on the survival times of multiple myeloma patients. We now consider whether
there is any evidence of non-linearity in the values of serum haemoglobin level,
and examine whether a quadratic term is needed in the proportional hazards
model that contains Bun and Hb. When the term Hb? is added to this model,
the value of —210gli is reduced from 202.938 to 202.917. This reduction of
0.021 on 1 d.f. is clearly not significant, which suggests that a linear term in
Hb is sufficient.
An alternative way of examining the extent of non-linearity is to use a
‘ V% it fFans ~F commm hasmoglobin level on the hazard function.

INTERPRIETATION OF PARAMETER ESTIMATES
DS &9

Suppose t,he‘nt‘ a factor with four levels is defined, where level 1

to va}ues of Hb less than or equal to 7, level 2 t;) values bet Coflresponds
levgl 3 to values between 10 and 13 and level 4 to values great(:: etehn 1and 1(')’
choice of levclf c(.>rresponds roughly to the quartiles of the distrib atn g ;I‘ e
values of Hb. This fact'or can be fitted by defining three indicatoli o '(’)bthe
Hb2, Hb3 and Hb4, which take the values shown in the following tak\)/lizrld e

Level of factor (X) Value of Hb Hb2 Hb3 Hb4

1 H <7 0 0 0
2 7< Hb< 10 1 0 0
3 10 < Hb €13 0 1 0
4 Hb > 13 0 0 1

-2\?/'0he2 a I;l(;)del containing Bun, Hb2, Hb3 and Hb4 is fitted, the value of
2l ior lf,ari 3};116157}{ ”g;le I;Zx;ngedir}ll the value of this statistic c;n adding the
i , an b4 to the model that i
is 7.036 on 3 d.f., which is signi P 00T, Hoaone
is 7.03 -, whi gnificant at the 10% level (P = 0.07
it i (ll.lfﬁmﬂt to identify any pattern across the factor I(Evels. O7L)- However
o lei,rzjciazatregld acgosl? 1(;ihe levels of the factor corresponding to haemoglo
n be modelled by fitting the variate X, whi ]
: ch tak
;38, ;ilt,t:gcor(;l;lg EO the factor level. When the modél contair?inegs ;;lflzlejmli,?(:
, —2log L is 203.891, and the change i L
) gL , ge in the value of —2log L
3;;1}; r1110Cn-l1near1ty Is 203.891 — 200.417 = 3.474 on 2 d.f. This is not(;) iign(ii;ceaz(t)
s cingalr;éi with percentage points of the chi-squared distribution on 2
£ = 0.176). We therefore conclude that the effect of haemoglobin level

on the hazard of death in this ;
r .
using the linear term Hb. group of patients is adequately modelled by

3.7 Interpretation of parameter estimates

Wh i
e ecrcl) ;}%i i{;r(;porftl;)}ilal halzards model is used in the analysis of survival data
nts of the explanatory variables in th 7
e ] . e model can be int
i soizlirlthmil of th_e ratio of the hazard of death to the baseline e}rlle);?r?id
intelFwﬂesans that 'estlmates of this hazard ratio, and corresponding conﬁdence;
» can easily be found from the fitted model. The interpretation of pa

rameters corresponding to differ
: ent types of term i i
model is described in the following sections. 1 the proporional haserds

3.7.1 Models with a variate

Su; i
’ablip;)(sesth:ltl a proportional hazards model contains a single continuous vari-
» 80 that the hazard function for the ith of n individuals, for whom X

takes the value z;, is

hi (t) = eﬂ“ ho (t) .



