Appl. Survival Analysis. Hosmer&Lemeshow 1¢
226 ASSESSMENT OF MODEL ADEQUACY

observed number of events in each group to the model-based estimate
of the expected number of events. Using the counting process ap-
proach, they derive an expression for the covariance matrix of the vec-
tor of G sums. They show that their quadratic form test statistic has a
chi-square distribution with G —1 degrees-of-freedom when the fitted
model is the correct model and the sample is large enough that the esti-
mated expected number of events in each group is large. As presented
in their paper, the calculations of Grgnnesby and Borgan (1996) are not
a trivial matter. o

May and Hosmer (1998), following the method used by Tsiatis
(1980) to derive a goodness-of-fit test in logistic regression, prove that
Grgnnesby and Borgan’s test is the score test for the addition of G-1
design variables, based on the G groups, to the fitted proportional haz-
ards model. Thus, the test statistic may be calculated in any package
that performs score tests. Using the asymptotic equivalence of score
tests and likelihood ratio tests, one may approximate the score test with
the partial likelihood ratio test, which may be done in any package. -

One may be tempted to define groups based on the subject-specific
estimated survival probabilities,

8t B) =[Sl

This should not be done as the values of time differ for each subject. If
groups are to be based on the survival probability scale, they should be
computed using the risk score and a fixed value of time for each sub-
ject. For example, in the UIS we could use the estimated one-year sur-
vival probability

§(365,x,.8) = [5“0(365)]°“p(‘56).

Since the choice of a time is arbitrary, one cannot interpret the prob-
ability as a prediction of the number of events in each decile of risk. It
merely provides another way to express the risk score. .

The value of the score test for the inclusion of the nine decile-of-
risk design variables to the model in Table 5.11 is 7.86 whi'ch, with _9
degrees-of-freedom, has a p-value of 0.549. The partial lik.ellhood rapo
test comparing the model in Table 5.11 to the one including the nine
design variables is G =7.56 which, with 9 degrees-of-freedom, has a p-
value of 0.579. The two test statistics have nearly the same value and
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neither is significant, suggesting that there is no evidence that the model
does not fit.

May and Hosmer’s (1998) result not only greatly simplifies the cal-
culation of the test, but it also suggests that a two by ten table presenting
the observed and expected numbers of events in each group is a useful
way to summarize the model fit. The individual observed and expected
values in the table may be compared by appealing to counting process
theory. Under this theory, the counting function is approximately a
Poisson variate with mean equal to the cumulative hazard function.
Sums of independent count functions will be approximately Poisson
distributed, with mean equal to the sum of the cumulative hazard func-
tion. This suggests considering the observed counts within each decile
of risk to be distributed approximately Poisson, with mean equal to the
estimated expected number of counts. Furthermore, the fact that the
Poisson distribution may be approximated by the normal for large val-
ues of the mean suggests that an easy way to compare the observed and
expected counts is to form a z-score by dividing their difference by the
square root of the expected. The two-tailed p-value is obtained from
the standard normal distribution. There are obvious dependencies in
the counts due to the fact that the same estimated parameter vector is
used to calculate the individual expected values and some dependency
due to grouping subjects into deciles. The effect of these dependencies
has not been studied, but it is likely to smooth the counts toward the ex-
pected counts. Thus, the proposed cell-wise z-score comparisons
should, if anything, be a bit conservative.

Table 6.5 presents the observed and estimated expected numbers of
events, the z-score and two-tailed p-value within each decile of risk for
the fitted model in Table 5.11. The numbers in Table 6.5 are large
enough that we feel comfortable using the normal approximation to the
Poisson distribution. With a p-value equal to 0.049, only the sixth
decile has a possibly significant difference between the observed and
model-based expected count. If we use Bonferroni’s method to adjust
the 5 percent level of significance for multiple testing to 0.005, then
none of the cleciles has a significant difference between the observed
and expected counts. Thus, we conclude that there is agreement be-
tween observed and expected number of events within each of the 10
deciles of risk.

Arjas (1988) suggests plotting the cumulative observed versus the
cumulative estimated expected number of events for subjects with ob-
served, not censored, survival times within partitions of the data to assess
model fit. If the model is the correct one, the points should follow a 45
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Table 6.5 Observed Number of Events, Estimated Number
of Events, z-Scores and Two-Tailed p-Values within Each
Decile of Risk Based on the Model in Table 5.11

Decile of | Observed Number Estimated Number

Risk of Events of Events z p-Value
1 34 33.96 0.007 0.994
2 43 36.35 1.103 0.270
3 37 44.88 -1.176  0.240
4 44 45.77 -0.262 0.744
5 46 52.82 -0.939 0.348
6 51 38.73 1.972 0.049
7 49 49.28 -0.041 0.968
8 53 52.73 0.037 0.971
9 52 53.19 -0.164 0.870
10 55 56.3 —0.173 0.863

Total 464 464

degree line beginning at the origin. Arjas suggests forming groups
based on covariate values, such as the treatment variable for the model
in Table 5.11. Rather than using groups based on only a few covariates,
we feel that a partition based on the risk score is a convenient way to
incorporate all study covariates into the grouping strategy. The Arjas
plot for each of the deciles of risk in Table 6.5 provides graphical sup-
port for the conclusion that the model fits within each decile of risk.
These plots do, in fact, support model fit. For illustrative purposes we
demonstrate the Arjas plots in Figure 6.8 using quartiles of risk instead
of deciles of risk.

The plots in Figure 6.8 are obtained as follows: first, create groups
based on quartiles of risk and sort on risk score within each group; sec-
ond, compute the cumulative sum of the zero-one censoring variable
and the cumulative sum of the estimated cumulative hazard function
within each group; third, plot the pairs of cumulative sums within each
group only for subjects with an observed survival time.

In Figures 6.82a-6.8d the polygons connecting the points are each
close to the 45 degree line. They display small departures that do not
necessarily indicate a poorly fitting model. Thus, these Arjas plots do
not contradict earlier conclusions regarding the model’s fit to the data.

As in all regression analyses, some measure analogous to R? may be
of interest as a measure of model performance. As shown in a detailed
study by Schemper and Stare (1996), there is not a single, simple, easy

OVERALL GOODNESS-OF-FIT TESTS AND MEASURES 229
1004 125.)
e E =
&
© 2
3 g 4
g 2
g 4
53]
0+ T L T T T la T T L) 125
0 Observed Count 100 0 Observed Count
(a) First Quartile of Risk (b) Secand Quartile of Risk
1254 1404
g g 1
& &
3 3 4
£ ]
& &
[$1] w
04 i i,
v r r v v r -
0 Observed Count 125 0 Observed Count
(<) Thind Quartile of Risk (d) Fourth Quartile of Risk

Figure 6.8 Plots of the cumulative estimated expected count versus the cumula-
tive observed count within each quartile of risk based on the fitted model in Table
5.11, for subjects with an observed survival time.

to calculate, useful, easy to interpret measure for a proportional hazards
regression model. In particular, all measures depend on the proportion
of values that are censored. A perfectly adequate model may have what,
at face value, seems like a terribly low R? due to a high percent of cen-
sored data. In our opinion, further work needs to be done before we
can recommend one measure over another. However, if one must com-
pute such a measure, then

R2=1- {expE(Lﬂ ~L, )]}

is perhaps the easiest and best one to use, where L, is the log partial
likelihood for the fitted model with p covariates, and L, is the log par-

tial likelihood for model zero, the model with no covariates. For the
fitted model in Table 5.11, the value is

W
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R=1- (expﬂ;—s] x[(~2663.985) - (—2630.418)]}] =0.11.

The model displayed in Table 5.11 has passed all the tests for a
good fitting model. We are now in a position to discuss the interpreta-
tion of this model and how to best present the results to the audience of
interest.

6.6 INTERPRETATION AND PRESENTATION OF THE
FINAL MODEL

The model fit to the UIS data, shown in Table 5.11, is reported again in
Table 6.6. It is an excellent model for teaching purposes, as it contains
an example of just about every possible covariate one is likely to en-
counter in practice. The model contains two simple dichotomous
covariates (treatment and recent IV drug use), a continuous linear
covariate (Beck score), a continuous non-linear covariate (number of
prior drug treatments), an interaction between a continuous and a di-
chotomous covariate (age and site) and and interaction between two di-
chotomous covariates (race and site). In this section, when we refer to
“the model” we are referring to the one in Table 6.6.

Table 6.6 Estimated Coefficients, Standard Errors,
z-Scores, Two-Tailed p-Values and 95% Confidence
Intervals for the Final Proportional Hazards Model
for the UIS (n = 575)
Variable Coeff. Std. Err. 2 P>zl 95% CIE
AGE -0.041 0.010 4.18 <0.001 -0.061, -0.022
BECKTOTA 0.009 0.005 1.76 0.078 -0.001, 0.018
NDRUGFP1 -0.574 0.125 —4.59 <0.001 -0.820, -0.329
NDRUGFP2 -0.215 0.049 -4.42 <0.001 -0.310, -0.119
IVHX 3 0228 0.109 2.10 0.036 0.015, 0.441
RACE -0467 0.135 -347 0.001 -0.731, -0.203
TREAT -0247 0.094 -2.62 0.009 -0.432, -0.062
SITE -1.317 0.531 -2.48 0.013 -2.359, -0.275
AGEXSITE 0.032 0.016 202 0.044 0.001, 0.064
RACEXSITE 0.850 0.248 343 0.001 0.365, 1.336
Log-likelihood = -2630.418
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We begin by discussing how to prepare point and interval estimates
of hazard ratios for the covariates. We wish to call attention to the fact
that we have assiduously avoided including any exponentiated coeffi-
cients in tables of estimated coefficients in Chapters 5 and 6. While
most software packages automatically provide these quantities, they
probably will be useful summary statistics for only a few model covari-
ates. We feel it is best not to even attempt estimating any hazard ratios
until one has completed all steps in both model development and model
checking: i.e., the model fits, satisfies the proportional hazards assump-
tion, and any and all highly influential subjects have been dealt with in a
scientifically appropriate manner.

Only the covariates for Beck score, recent IV drug use and treatment
have hazard ratios that may be estimated by exponentiating their esti-
mated coefficients. This is because the other covariates are either in-
volved in interactions or are nonlinear in the model. It is convenient to
display these estimated hazard ratios and their confidence intervals in a
table similar to Table 6.7.

The estimated hazard ratio for a 10-point increase in the Beck score
is 1.09 = exp(10 % 0.009), which shows a slight increase in the rate of re-
turn to drug use. The interpretation is that subjects with the 10-point
higher score are returning to drug use at a rate that is 9 percent higher
than for subjects at the lower score. The 95 percent confidence interval
suggests that an increased rate of return to drug use as high as 20 per-
cent or even a decreased rate of 1 percent is consistent with the data.
Since the model is linear in the Beck score, this interpretation holds over
the observed range of Beck scores.

The estimated hazard ratio for recent IV drug use is 1.26. The in-
terpretation of this is that subjects who have a recent history of IV drug
use are returning to drug use at a rate that is 26 percent higher than for
subjects who are not recent IV drug users. The confidence interval in-
dicates that the rate could actually be as much as 55 percent higher or as
little as 2 percent higher.

The hazard ratio for treatment of 0.78 means that subjects in the
longer or extgnded treatment program are returning to drug use at a
rate that is 22 percent lower than for subjects with the shorter treatment.
The 95 percent confidence interval suggests that the rate could be as
much as 35 percent lower to only 6 percent lower. The estimated haz-
ard ratio points to a significant benefit for the longer of the two treat-
ments, controlling for all other model covariates. In studies in which
there is a single covariate of primary interest, such as a treatment covari-
ate, one may encounter tables of results in which a summary statistic for
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Table 6.7 Estimated Hazard Ratios and 95%
Confidence Intervals for Beck Score, Recent 1V
Drug Use and Treatment for the UIS (n = 575)

Hazard
Variable Ratio 95% CIE
BECKTOTA’ 1.09 0.99, 1.20
IVHX 3 1.26 1.02, 1.55
TREAT 0.78 0.65, 0.94

* Hazard ratio for a 10-point increase.

this covariate only is presented, with the other covariates in the model
relegated to footnote status. We feel that this is not good statistical or
scientific practice. With such an oversimplified summary, the reader has
no way of evaluating whether an appropriate model building and model
checking paradigm has been followed or what the actual fitted model
contains. We feel that the full model should be presented in a table
similar to Table 6.6 at some point in the results section.

The number of previous drug treatments is modeled with two non-
linear terms, so any hazard ratio will depend on the values of the num-
ber of previous drug treatments being compared. The graph in Figure
5.1d of the log hazard using the two non-linear terms shows an initial
decrease in risk followed by a progressive nonlinear increase. One pos-
sible strategy would be to compare the hazard ratio for an increase of
one in the number of previous drug treatments (i.e., hazard ratios for 0
vs. 1, 1 vs. 2, 2 vs. 3, etc.). These hazard ratios could either be tabulated
or presented graphically, along with their confidence limits. We will do
the latter.

One must proceed carefully when calculating hazard ratios for non-
linear functions of a covariate. The first step is to write down the ex-
pression for the log-hazard function, keeping all the other covariates
constant. For ease of presentation, let the log-hazard function com-
puted at a particular value of the number of previous drug treatments,
NDRUG, holding all other covariates fixed and denoted as z, be

g(NDRUGTX,z) = B, NDRUGFP1 + 3,NDRUGFP2 +f'z,
where
NDRUGFP! = [10/(NDRUGTX +1})]
and
NDRUGFP2 = NDRUGFPI x In[(NDRUGTX +1)/10].
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The next step is to write down the equation for the difference of interest
in the log hazard function. In this case it i1s, for a one-unit increase,

g(NDRUGTX +1,z) - g(NDRUGTX, z).

Note that the first term in the difference in the log-hazard functions is
the log-hazard evaluated at a one-unit increase in the previous number
of drug treatments, not a one-unit increase in the nonlinear transforma-
tion. If we denote the values of the transformed variables at the in-
creased value as

NDRUGFPI 1 =[10/(NDRUGTX +2)|]
and
NDRUGFP21 = NDRUGFPI I x In[(NDRUGTX +2)/10],

then the difference in the log-hazard functions is

g(NDRUGTX +1,z) - g(NDRUGTX, z) = afj, +bj3,, 6.27)
where
a=NDRUGFP11-NDRUGEFPI1

=[10/(NDRUGTX +2)| - [10/(NDRUGTX +1)]
and
b=NDRUGFP21- NDRUGFP2.

The estimated difference in the log-hazard function is obtained by
evaluating (6.27) using the values of the coefficients from Table 6.6,

B, =-0.574 and Bz =-0.215, and NDRUGTX =0, 1, 2, 3, etc. The es-
timated hazard ratios are then obtained by exponentiating the estimated
differences in the log-hazard functions,

AR(NDRUGTX +1,NDRUGTX, z) = exp(a[i1 + bﬁz) . (6.28)

The estimator of the endpoints of the 100(1-a) percent confidence in-
terval for the difference in the log-hazard functions is

(aB1 + b[i‘z) + z,_ms?z(a B, + bﬁz), (6.29)

where

SB(aB, + 0B, ) =[aVAr(B)+ p2Var(B.) +206CSu{B o)) - (630
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The estimators of the variances and covariance in (6.30) may be ob-
tained from output of the covariance matrix of the estimated coeffi-
cients from software packages. In the current example these values are

var([s,):o.msmz, Var(B,)=0.002361 and c’av(/},,ﬁz):o_ooeozz.

The endpoints of the confidence interval estimator for the hazard ratio
are obtained by exponentiating the estimators in (6.29).

We calculated the value of the hazard ratio in (6.28) for the entire
range of values for number of previous drug treatments, 0—40, and ob-
served that, after about 10 previous treatments, there was not much
change in the hazard ratio for a one-unit increase. Thus, we present in
Figure 6.9 the graph of the hazard ratio and its confidence interval for
up to 10 previous drug treatments.

The point estimate of the hazard ratio at 0 previous drug treatments
in Figure 6.9 is 0.70. The interpretation is that subjects who have had
one previous drug treatment are returning to drug use at a rate that is 30
percent lower than subjects who have had no previous drug treatments.
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Figure 6.9 Graph of the estimated hazard ratio and associated 95 percent confi-
dence interval for a one unit increase in the number of drug treatments from the
labeled value.
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The point estimate of the hazard ratio at 1 in Figure 6.9 is 1.09. This
means that subjects with two previous treatments are returning to drug
use at a rate that is 9 percent higher than subjects with one previous
drug treatment. The estimate of the hazard ratio at 2 is 1.11, and then it
slowly falls to 1.03 at 10. Since the estimated hazard ratios in Figure
6.9 exceed 1 at one or more previous drug treatments, the graph indi-
cates a continuing increase in risk as the number of treatments increase;
but the increase is progressively less, that is, the change in rate from 1 to
2 is much greater than the change from 9 to 10. We note that, since
none of the confidence intervals include 1.0, the increase in rate of re-
turn to drugs is significant at all values.

An alternative presentation is obtained if we define one previous
treatment as a common reference value. The resulting estimated hazard
ratios could be either graphed or tabulated. We present, in Table 6.8,
the estimated hazard ratios and corresponding confidence intervals
comparing NDRUGTX =0,2,5,10 to NDRUGTX =1. These results are
obtained by using (6.27)-(6.30), with a change in the values being
compared. The results in Table 6.8, in the column labeled “0,” are the
reciprocals of the values shown in Figure 6.9 for 0 versus 1 previous
drug treatments, while the values for column “2” are the same as those
in Figure 6.9 for 1 versus 2 previous drug treatments. The values in the
columns for 5 and 10 previous treatments cannot be obtained from Fig-
ure 6.9. The results in Table 6.8 demonstrate in a more direct manner
the increase in hazard rate relative to the modeled minimum at 1. We
note that the rates at O and 5 previous treatments are about 40 percent
higher than the rate at 1. Although not shown, the rates increase pro-
gressively, so that the point estimate for 40 versus 1 is about 2.5 (1.70,
3.74).

Age and site are present in the model, with both main effects and
their interaction. Since site is at two levels and is fixed by design of the
study, we present hazard ratios for age at each site rather than for site at
each age. The process is essentially the same as the one used to com-
pute hazard ratios for the number of previous drug treatments, but it is a

@

Table 6.8 Estimated Hazard Ratios and 95%
Confidence Intervals for the Stated Number of
Previous Drug Treatments versus One Treatment.

0 2 5 10
HR 1.42 1.09 1.44 1.82
95% CIE] (1.08, 1.87) (1.03, 1.16) (1.22, 1.71) (1.40, 2.36)
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bit simpler as we don’t have to deal with nonlinear scaling. Again, the
first step is to write down the equation for the hazard ratio as a function
of the variables of interest, holding all the others fixed,

g(AGE,SITE, z) = B,AGE + B,SITE + B,AGE x SITE + B'z.

The second step is to write down the expression for the difference of
interest, in this case an increase of ¢ years of age holding SITE fixed:
g(AGE + ¢,SITE, z) — g( AGE,SITE, z)
={B,(AGE +c)+ B,SITE + B;(AGE + ¢) X SITE +p'z}
—{B,(AGE) + B,SITE + 8,(AGE) x SITE + Bz}
= Bic+ e xSITE. (6.31)

The next step is to choose a value for ¢, say S years, and to estimate the
value of (6.31) using the estimated coefficient of AGE from Table 6.6,

B, =—-0.041, and the estimated coefficient of the interaction of AGE and

SITE, [33 =0.032. The estimated hazard ratio for an increase of 5 years
of AGE at SITE=0is

HR(AGE + 5, AGE,SITE = 0) = ¢™(°%)) = 0815,

and at SITE=1 itis

HR(AGE +5, AGE, SITE = 1) = ¢>(-0%41)+5x00% _ 0 956

The endpoints of the 100(1 - o) percent confidence interval estimator of
the hazard ratio are computed by exponentiating the endpoints of the
confidence interval of the estimator of (6.32), which are

B + Bye x SITE + zl,a,zs%(/}lc + Bye x SITE), (6.32)

where

Aln o cszQr(Bx)+c2stTE2XVQr(B3) i
) . (633
SE(Blc+ﬂchSITE) +2¢2 xSITEXdaV(BI‘B3) o
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and since SITE is coded zero or one, SITE* =SITE. Again the values
of the variances and covariance needed to compute the standard error
are available from software packages. In this example, these are

\/Qr(ﬁ'1 ) = 0.000098,

Var(B,)=0.000259
and
Cov(B,. B ) =-0.00009.

Using these values, the 95 percent confidence interval at SITE=0 is
(0.739, 0.898) and at SITE=1 is (0.839, 1.089). The fact that age is
linear within site means that these results hold at all ages.

The interpretation is that being older by 5 years at SITE =0 reduces
the rate of return to drug use by about 18 percent, and the fact that 1.0
is not contained in the confidence interval points to a significant age
effect at this site. At the other site, SITE =1, the rate is only 5 percent
lower and is not significant.

The remaining hazard ratio involves race and site. We present the
hazard ratio and its confidence interval for race at each site. These may
be obtained by using (6.27)-(6.33) with ¢ =1, reflecting the fact that
race is dichotomous and has been recoded zero and one. The estimated
hazard ratio and 95 percent confidence interval for RACE = other ver-

sus RACE = white at SITE =0 is

AR(other, white, SITE = 0) = ¢ 047 = 0.627

and (0.481, 0.816) while at SITE=1 they are

AR (other, white, SITE = 1) = ¢ 04674085 = | 467

»
and (0.972, 2.214). The interpretation is that non-whites are returning
to drug use at a rate that is about 37 percent lower than whites at
SITE =0. The confidence interval for the ratio suggests that the rate
could be as much as 52 percent lower to only about 18 percent lower.
The reverse seems to be the case at SITE =1, where the non-whites are
returning to drug use at much higher rate than whites (about 46 percent
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higher), and the confidence interval suggests that this could be as high
as 121 percent or even slightly negative. In any event, the results point
not only to important racial differences, but to differences between the
two sites. This was discussed with the study team and deemed to be an
appropriate interpretation.

In this section we have had to emphasize both the calculation and
interpretation of the estimated hazard ratios. In practice, the estimated
hazard ratios and their confidence intervals would likely be tabulated
with no computational details presented and thus lend themselves to a
discussion with more continuity than was possible here. However, for a
complicated nonlinear variable like the number of previous drug treat-
ments, inclusion of an appendix providing an outline of how the
graphed (or tabulated) hazard ratios and their confidence intervals have
been computed can be a helpful addition to a paper.

We conclude our presentation of the fitted model in Table 6.6 with
graphs of the covariate-adjusted survivorship functions for the two levels
of treatment. Since the model is complicated, it is not clear what we
could use for a mean or median subject, so we use the modified risk
score method discussed in Section 4.3 and illustrated in (4.29) and
(4.30). The modified risk score is calculated for each subject as
rm; =, —(—0.247)TREAT, and the median is rmg, =~-2.088. The plot-
ted points for the covariate-adjusted survivorship function for the
shorter treatment are

exp(—2.088)

S(t,, gy ) = [3‘0(1,, )]
and for the longer treatment are

]exp(—2.088—0.2468)

S(t;, riigy) = [S’O(t,.)

Graphs of these two functions, at all observed values of time, are shown
in Figure 6.10.

The figure shows that, at all times, the covariate-adjusted proportion
of subjects who have not returned to drug use is higher for the longer of
the two treatments. The covariate-adjusted estimated median times to
return to drug may be obtained from the graphs in Figure 6.10 or from
a time-sorted list of the functions. The median times are 157 days for
the shorter treatment and 190 days for the longer treatment. As noted
in Section 4.5, there is no easily computed confidence interval for the
estimator of the median time from a modified risk-score-adjusted survi-
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Figure 6.10 Graphs of the covariate-adjusted survivorship functions for the
longer and shorter treatments computed using the model in Table 6.6.

vorship function.

In conclusion, the fitted model, shown in Table 6.6, has allowed de-
scription of a number of interesting relationships between time to return
to drug use and study factors. The notable results include, besides a
significant treatment effect, a differential effect of race within treatment
site, the nonlinear effect of the number of previous drug treatments and
significant effects due to Beck score and recent IV drug use.

In the next chapter we consider alternative methods for modeling
study covariates. These methods are of interest in themselves, but they
often also provide alternatives to models that are not adequate due to
poor fit or Xiolations of the proportional hazards assumption.

EXERCISES

1. Using data from the HMO-HIV+ study, assess the fit the proportional
hazards model containing AGE and DRUG. This assessment of fit
should include the following steps: evaluation of the proportional haz-
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ards assumption for each of the two covariates, examination of diagnos-
tic statistics, and an overall test of fit. If the model does not fit or adhere
to the proportional hazards assumption what would you do next? Note:
the goal is to obtain a model to estimate the effect of AGE and DRUG
on the survivorship experience.

2. Using the model obtained at the conclusion of problem 1, present a
table of estimated hazard ratios, with confidence intervals.  Present
graphs of the age-adjusted, at the mean age, estimated survivorship
functions for the two drug use groups. Use the estimated survivorship
functions to estimate the age-adjusted median survival time for each of
the two drug use groups.

3 In Section 6.4 diagnostic statistics were plotted and a few subjects
were identified as being possibly influential. Fit the model shown in
Table 6.6 deleting these subjects one at a time and then, collectively,
calculate the percent change in all coefficients with each deletion. Do
you agree or disagree with the conclusion in Section 6.4 to keep all
subjects in the analysis? Explain the rationale for your decision.

4. A considerable amount of the material presented in this chapter dealt
with the evaluation of fit, and the presentation and interpretation of the
fitted model shown in Table 5.11 (and repeated in Table 6.6). Repeat
the entire process for the fitted model shown in Table 5.13. This model
contains an interaction b ‘ween AGE and NDRUGFP1 and, as a result,
estimation and presentation of hazard ratios for age, controlling for the
number of previous drug treatments and for the number of previous
drug treatments controlling for age, is a major challenge.

5. Repeat the full model evaluation and presentation process using the
fitted model developed for the WHAS in problems 3 of Chapter 5.

CHAPTER 7

Extensions of the Proportional
Hazards Model

7.1 INTRODUCTION

Up to this point we have made several simplifying assumptions in devel-
oping and interpreting proportional hazards models. We have used a
proportional hazards model with a common unspecified baseline hazard
function where all the study covariates had values that remained fixed
over the follow-up period. Additionally, we have assumed that the ob-
servations of the time variable were continuous and subject only to right
censoring. In some settings one or more of these assumptions may not
be appropriate.

We may have data from a study in which subjects were randomized
within study sites. If we account for site by including it as a covariate,
the model forces the baseline hazards to be proportional across study
sites. This may not be justified and, if it isn’t, a careful analysis of the
proportional hazards assumption (as discussed in Chapter 6) for site
should reveal the problem. One possible solution is to use site as a
stratification variable, whereby each site would have a separate baseline
hazard function.

When study subjects are observed on a regular basis during the fol-
low-up periodfthe course of some covariates over time may be more
predictive of survival experience than the original baseline values. For
f:xample, continued survival of intensive care unit patients may depend
more on changes in their physiologic condition since admission than on
their absolute state at admission. Covariates whose values change over
time are commonly called time-varying or time-dependent covariates.
These may include measurements on individual subjects or measure-
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