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9 Life Tables:
An Introduction

Life tables (of sorts) date back to third-century Roman records of the
age at death. The development of the formal life table is usually
attributed to Edmund Halley (1693) and John Graunt (1662). By the
end of the nineteenth century, life tables were routinely computed as
part of a generally emerging awareness of the importance of mortality
statistics. The first official U.S. (death registration states) life table
published in 1900 showed the expected length of life for white males as
46.6 years and for white females as 48.7 years.

A life table is a systematic way to keep track of the mortality
experience of a group. A cohort life table is constructed from the
mortality records of individuals followed from the birth of the first to
the death of the last member of a group. Such life tables are constructed
from animal and insect data. For human populations, it is obviously
not practical to construct a life table by following a cohort of
individuals from birth until all have died. Instead a life table is
constructed from current mortality rates. These rates do not apply to
past populations and undoubtedly will not apply to future populations.
Nevertheless, patterns of mortality can be seen from a current life table,
and the comparison of life tables calculated for different groups is a
basic strategy for analyzing certain types of epidemiologic data.

Complete, Current Life Table: Construction

The word complete when applied to a life table means that ages are not
grouped but recorded in l-year intervals. The actual construction of a
complete life table is rather mechanical and embraces seven basic
elements:

Age interval (x to x + 1): Each age interval consists of 1 year (age
denoted by x) except the last age interval, which is left open ended
(e.g., 90+ years).

Number alive (I.): The number of individuals alive at exactly age x.
The number [, is the life table population at risk for the interval x
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to x + 1. The number alive at age 0 (/;) is set at some arbitrary
value, such as 100,000, and called the radix.

Deaths(d, ): The number of individuals who died between the ages of
xand x + 1.

Probability of death (q,): The conditional probability that an
individual who is alive at age x dies before age x + 1. That is,
¢, = d, /L. The probability of death within a specific age interval is
related to a hazard rate and is distinct from the probability of
dying before a specific age x, which is expressed in terms of a
survival curve.

Years lived (L,): The cumulative time lived by the entire cohort
between the ages of x and x 4 1. Each individual alive at age x
contributes to the total time lived by all individuals either 1 year
or the proportion of the year lived if the person died in the
interval. The value L, is the life table person-years of risk for the
interval x to x + 1.

Total time lived (T,): The total time lived beyond age x by all
individuals alive at age xis 7, =L, + L., + L., + ---. The
value 7T, is primarily a calculational step in the life-table
construction.

Expectation of life (e.): The average number of additional years
expected to be lived by those individuals alive at age x and
e, = T./l,.

The following relationships are direct consequences of these
definitions:

1. Number dying in the interval x to x + 1 = d, = ¢, L, = |, — L 4y;
2. Number surviving at age x + 1 = [,y =p, [, = [, — d,;
3. Probability of dying in the interval x to x+1=g¢,= e—lev 1) e

=dy[ls;
4. Probability of surviving from x to x+l=p,=1—¢,= (le—d)/l;
=L/l
These definitions apply to a complete life table, using age intervals of 1

ear.

’ The total person-years at risk for the interval x to x + 1 includes 1
year of survival for each person who did not die during the interval.
Individuals who die contribute the proportion of the year they were
alive to the total time lived. The average time contributed by those who
died in the interval x to x + 1 is represented by a,. The value a, is close
to 0.5 for all ages except the first few years of life. For years 0 to 4 the

]
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values of a, are: 2, =0.09, a; =0.43, a, =045, a; =0.47, and
a4 = 0.49 (determined empirically by Chiang [Ref. 1]). These values
make logical sense—the distribution of survival times in the first year of
life 1s skewed towards the beginning of the interval since most deaths in
the interval 0 to 1 year are within the first month. Therefore, the
average contribution of time lived by those who died to the total years
lived is low for the interval O to 1. For ages 2 to 4, the mean a, shows
slightly earlier deaths within the interval, but these a, values are much
closer to 0.50. For all other age intervals the average value of a, is
essentially 0.5 years.

The value a, takes on importance in calculating the person-years of
life for a life table since

Lx = (lx - dx) + [_lxdx (91)

estimates the life table person-years of risk for the age interval x to
x4+ 1. Using L,, the life-table age-specific mortality rate becomes
d./L,, providing a link to observed age-specific mortality rates. This
life-table person-years calculation does not differ from the person-years
calculation in Chapter 1 [expression (1.5)].

The starting point for construction of a life table is a set of age-
specific probabilities of death (g, ). These probabilities can be derived
by equating the life-table age-specific mortality rates to the age-specific
mortality rates from the population of interest, or

d
life-table mortality rate = -— = R, = observed mortality rate, (9.2)

where R is the age-specific rate for age x calculated from observed
mortality data. A value for ¢, follows from R, since

dx 9x
life-tabl tality rate = = =R 9.3
ife-table mortality rate L—d)+ad 10 . (9.3)
and solving for ¢, gives
= R L (0.4)
TV 0 —aR, - ®

A set of observed mortality rates (R,) produce a set of life-table
probabilities (¢, ). The probabilities ¢, generate the rest of the life-table
functions (I, d,, L., T, and e,) with one exception.

The person-years of life (L, ) for the last interval cannot be calculated
directly since a value for a, is not generally available. The individuals
who are present at the start of the last interval all die (g, = 1.0) so that
l. = d,., where ¥’ symbolizes the final age interval (e.g., if the last
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interval is 90 +, then x' = 90). Therefore, again equating the observed
mortality rate with the life-table mortality rate for this last age interval

gives

b L _p, (9.5)
L. L.
and then solving for L, yields
L.= L (9.6)
© =R .

Therefore, an observed set of age-specific mortality rates is all that is
needed to calculate a complete life table.
Specifically, consider the age interval 65 to 66 for white males, 1980,

California:

0.0284
L gos = Ros 2 = 0.0280,
1 +05Res 1+ 0.5(0.0284)
92097

since Rgs = = 0.0284 (note: a5 = 0.5),

73832

9. dgs = lgsges = 69728(0.0280) = 1953,
3. Los = lgs — dgs + 0.5dgs = 69728 — 1953 + 0.5(1953) = 68752,
4. Tes=Les+Lest+ + +Loo+
=68752+66757+ --- +9126+41616=1011356,
and

Tes _ 1011356
les 69728

These five steps are repeated for each age interval, starting at age 0,
resulting in the entire current life table from a set of mortality rates
(R,) and an arbitrary starting value (/o).

Two example life tables are given in Tables 9.1 and 9.2 for male and
female residents of California for the year 1980. The expected number
of years of life remaining after the age x is an effective summary of the
entire mortality pattern described by a life table (¢; last column in
Tables 9.1 and 9.2). The expectation of life is not more than a special
mean value and is calculated in the same way as most mean values,
where

5. egs = = 14.504.

. total years lived beyond age x _Tl 9.7)
mean years remaming= €= = - imber of individuals age x L ’

Perhaps the most common single summary value calculated from a life
table is the expectation of life at birth (g,). For the California data,
¢y = 69.61 years for males and ¢, = 76.93 years for females, based on
1980 mortality patterns.
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Table 9-1. California 1980 population of white males
Popula-
x—x+1 tion Deaths R¥ 9x d, N L, T, x
01 129,602 2,166 1,671.3 0.01647 1,647 100,000 98,518 6,960,692 69.61
1 2 117,753 123 104.5 0.00104 103 98,353 98,295 6,862,175 69.77
2-3 115,003 73 63.5 0.00063 62 98,251 98,217 6,763,880 68.84
3-4 113,314 60 53.0 0.00053 52 98,188 98,161 6,665,663 67.89
4-5 110,822 41 37.0 0.00037 36 98,137 98,118 6,567,502 66.92
5-6 110,548 55 49.8 0.00050 49 98,076 98,100 6,469,384 65.95
6-7 106,857 42 39.3 0.00039 39 98,051 98,032 6,371,308 64.98
7-8 112,184 58 51.7 0.00052 51 98,013 97,988 6,273,276 64.00
8-9 116,423 44 37.8 0.00038 37 97,962 97,944 6,175,288 63.04
9-10 132,952 52 39.1 0.00039 38 97,925 97,906 6,077,344 62.06
1011 134,266 48 35.7 0.00036 35 97,887 97,869 5,979,438 61.09
11-12 128,938 60 46.5 0.00047 46 97,852 97,829 5,881,569 60.11
12-13 125,502 52 41.4  0.00041 41 97,806 97,786 5,783,740 59.13
13-14 128,212 82 64.0 0.00064 63 97,766 97,735 5,685,954 58.16
14-15 132,775 129 97.2  0.00097 95 97,703 97,656 5,588,219 57.20
15-16 143,600 233 162.3 0.00162 158 97,608 97,529 5,490,563 56.25
16-17 151,840 290 191.0 0.00191 186 97,450 97,357 5,393,034 55.34
17-18 157,365 400 254.2 0.00254 - 247 97,264 97,141 5,295,677 54.45
18--19 159,476 415 260.2 0.00260 252 97,017 96,891 5,198,535 53.58
19-20 171,235 416 2429 0.00243 235 96,765 96,648 5,101,644 52.72
20-21 173,682 418 240.7 0‘00249 232 96,530 96,414 5,004,996 51.85
21-22 172,656 436 252.5 0.00252 243 96,298 96,177 4,908,582 50.97
22-23 176,544 400 226.6 0.00226 217 96,056 95,947 4,812,405 50.10
23-24 175,732 410 233.3 0.00233 223 95838 95726 4,716,458 49.21
24-25 174,780 409 2340 0.0023¢ 223 95615 95503 4,620,731 48.33
25-26 173,214 393 226.9 0.00227 216 95,391 95,283 4,525,228 47.44
26-27 169,980 400 235.3 0.00235 224 95,175 95,063 4,429,944 46.55
27-28 168,369 366 217.4 0.00217 206 94,951 94,848 4,334,881 45.65
28-29 157,189 330 209.9 0.00210 199 94,745 94,646 4,240,033 44.75
29-30 162,394 346 213.1  0.00213 201 94,547 94,446 4,145,387 43.84
30-31 161,191 329 204.1 0.00204 192 94,345 94,249 4,050,941 42.94
31-32 154,874 355 229.2 0.00229 216 94,153 94,045 3,956,692 42.02
32-33 162,136 338 208.5 0.00208 196 93,937 93,840 3,862,647 41.12
33-34 163,065 305 187.0 0.00187 175 93,742 93,654 3,768,807 40.20
34-35 127,624 267 209.2 0.00209 196 93,567 93,469 3,675,153 39.28
35-36 128,890 296 229.7 0.00229 214 93,371 93,264 3,581,684 38.36
36-37 127,933 302 236.1 0.00236 220 93,157 93,047 3,488,420 37.45
37-38 127,923 334 261.1 0.00261 242 92,937 92,816 3,395,373 36.53
38-39 109,718 281 256.1 0.00256 237 92,695 92,576 3,302,557 35.63
39-40 108,168 325 300.5 0.00300 277 92,458 92,319 3,209,981 34.72
40—-41 104,314 338 324.0 0.00324 298 92,180 92,031 3,117,662 33.82
41-42 100,059 342 341.8 0.00341 314 91,882 91,725 3,025,630 32.93
42-43 97,330 344 353.4 0.00353 323 91,569 91,407 2,933,905 32.04
43-44 92,394 356 385.3 0.00385 351 91,246 91,070 2,842,497 31.15
44 - 45 91,741 431 469.8 0.00469 426 90,895 90,682 2,751,427 30.27
45-46 92,331 438 474.4 0.00473 428 90,469 90,255 2,660,745 29.41
46-47 88,150 522 592.2 0.00590 532 90,041 89,775 2,570,491 28.55
47-48 90,475 559 617.9 0.00616 551 89,509 89,233 2,480,716 27.71
48 49 90,095 650 721.5 0.00719 639 88,958 88,638 2,391,483 26.88
49 -50 97,275 696 715.5 0.00713 630 88,318 88,003 2,302,845 26.07
50-51 98,008 734 748.9 0.00746 654 87,688 87,361 2,214,841 25.26
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Table 9-1. (Continued)

Popula-

x—x+1 Hon Deaths R¥ Gy d, Il L,

51-52 93,134 825 885.8 0.00882 768 87,034 86,650
52-53 94,496 875 926.0 0.00922 795 86,267 85,869
53-54 93,239 1,010 1,083.2 0.01077 921 85,472 85,011

54-55 96,443 1,126 1,167.5 0.01161 981 84,551 84,060
55-56 97,763 1,197 1,224.4 0.01217 1,017 83,569 83,061

56-57 96,823 1,272 1,313.7 0.01305 1,077 82,552 82,014
57-58 96,189 1,334 1,386.9 0.01377 1,122 81,475 80,914
58-59 98,518 1,553 1,576.4 0.01564 1,257 80,353 79,724
59-60 96,154 1,564 1,626.6 0.01613 1,276 79.096 78,458
60-61 88,552 1,472 1,662.3 0.01649 1,283 77,820 77,820
61-62 83,814 1,684 2,009.2 0.01989 1,522 76,537 75,776
62--63 81,464 1,763 2,164.1 0.02141 1,606 75,014 74,211
63-64 76,317 1,871 2,451.6 0.02422 1,778 73,408 72,519
64-65 75,505 2,032 2,691.2 0.02656 1,902 71,630 70,679
65-66 73,832 2,097 2,840.2 0.02801 1,953 69,728 68,752
66-67 69,480 2,121 3,052.7 0.03007 2,038 67,776 66,757
67--68 65,690 2,130 3,242.5 0.03191 2,098 65,738 64,689
68-69 62,557 2,256 3,606.3 0.03542 2,254 63,640 62,513
69-70 57,412 2,327 4,053.2 0.03973 2,439 61,386 60,166
70-71 53,926 2,205 4,088.9 0.04007 2,362 58947 57,766
71-72 50,402 2,376 4,714.1 0.04606 2,606 56,585 55,282
72-73 47,213 2,342 4,960.5 0.04840 2,613 53,979 52,673
73-74 42,931 2,233 5,201.4 0.05070 2,604 51,366 50,064
74--75 39,611 2,300 5,806.5 0.05643 2,751 48,762 47,386
75-76 36,306 2,408 6,632.5 0.06420 2,954 46,011 - 44,534
76-77 33,386 2,251 6,742.3 0.06523 2,808 43,057 41,653
77-78 30,141 2,102 6,973.9 0.06739 2,712 40,249 38,892
78-79 26,432 2,272 8,595.6 0.08241 3,094 37,536 35,990
79-80 26,264 2,093 7,969.1 0.07664 2,640 34,443 33,123
80-81 21,846 1,958 8,962.7 0.08578 2,728 31,803 30,439
81-82 18,868 1,947 10,319.1 0.09813 2,853 29,075 27,648
82-83 16,653 1,802 10,820.9 0.10265 2,692 26,222 24,876
83--84 14,825 1,751 11,811.1 0.11153 2,624 23,530 22,218
84-85 13,137 1,689 12,856.8 0.12080 2,525 20,906 19,643
85-86 11,350 1,622 14,290.7 0.13338 2,452 18,380 17,155
86-87 9,442 1,426 15,102.7 0.14042 2,237 15,929 14,811
87-88 8,047 1,198 14,8875 0.13856 1,897 13,692 12,744
88-89 6,091 1,072 17,599.7 0.16176 1,908 11,795 10,841
89--90 5,382 897 16,666.7 0.15385 1,521 9,887 9,126
90+ 17,346 3,487 20,102.6 1.00000 8,366 8,366 41,616

T,

2,127,480
2,040,830
1,954,960
1,869,949
1,785,889
1,702,829
1,620,815
1,539,901
1,460,177
1,381,719
1,304,541
1,228,766
1,154,554
1,082,035
1,011,356
942,604
875,847
811,159
748,646
688,479
630,713
575,431
522,759
472,694
425,308
380,774
339,121
300,229
264,239
231,117
200,677
173,029
148,153
125,935
106,292
89,137
74,327
61,583
50,742
41,616

x

24.44
23.66
22.87
22.12
21.37
20.63
19.89
19.16
18.46
17.76
17.04
16.38
15.73
15.11
14.50
13.91
13.32
12.75
12.20
11.68
11.15
10.66
10.18
9.69
9.24
8.84
8.43
8.00
7.67
7.27
6.90
6.60
6.30
6.02
5.78
5.60
5.43
5.22
5.13
4.97

*Rate per 100,000 person years of risk.

Expectations of life from birth are compared among countries and
among groups within a country. The U.S. life expectancy ¢, has
steadily increased over the last 80 years, and the difference between
males and females has also increased, as Table 9.3 shows.

The expectation of life has a geometric interpretation related to the
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Table 9-2. California 1980 population of white females

Popula-

247

x—x+1 tion Deaths R* ' d, I, L, 7, ey
0-1 123,342 1,635 1325.6  0.01310 1,310 100,000 98,821 7,693,461 76.93
1-2 111,520 64 57.4  0.00057 57 98,690 98,658 7,594,641 76.95
2-3 109,200 41 37.5 0.00038 37 98,633 98,613 7,495,983 76.00
3-4 108,749 22 20.2  0.00020 20 98,596 98,586 7,397,370 75.03
4-5 105,698 41 38.8 0.00039 38 98,576 98,557 7,298,784 74.04
5-6 105,801 37 35.0 0.00035 34 98,538 98,521 7,200,227 73.07
6-7 101,630 37 36.4 0.00036 36 98,504 98,486 7,101,706 72.10
7-8 106,850 32 29.9  0.00030 29 98,468 98,453 7,003,220 71.12
8-9 110,410 32 29.0  0.00029 29 98,438 98,424 6,904,767 70.14
9-10 127,237 33 25.9  0.00026 26 98,410 98,397 6,806,342 69.16
10--11 128,916 33 25.6  0.00026 25 98,384 98,372 6,707,945 68.18
11-12 124,123 32 258  0.00026 25 98,359 98,347 6,609,573 67.20
12-13 119,672 28 23.4  0.00023 23 98,334 98,322 6,511,227 66.22
13-14 123,652 48 38.8  0.00039 38 98,311 98,292 6,412,905 65.23
14-15 127,869 68 53.2  0.00053 52 98,273 98,247 6,314,613 64.26
15-16 139,122 98 70.4  0.00070 69 98,220 98,186 6,216,366 63.29
16-17 146,318 93 63.6  0.00064 62 98,151 98,120 6,118,180 62.33
17-18 150,163 132 87.9  0.00088 86 98,089 98,046 6,020,059 61.37
18-19 152,382 121 79.4  0.00079 78 98,003 97,964 5,922,014 60.43
19-20 162,203 138 85.1  0.00085 83 97,925 97,883 5,824,050 59.47
20-21 162,313 118 72.7  0.00073 71 97,842 97,806 5,726,167 58.52
21-22 162,709 104 63.9  0.00064 62 97,771 97,739 5,628,360 57.57
22-23 167,087 96 57.5  0.00057 56 97,708 97,680 5,530,621 56.60
23-24 168,874 121 717 0.00072 70 97,652 97,617 5,432,940 55.64
24-25 168,959 119 70.4  0.00070 69 97,582 97,548 5,335,324 54.68
25-26 168,414 110 65.3  0.00065 64 97,513 97,481 5,237,776 53.71
26-27 165,167 141 85.4  0.00085 83 97,450 97,408 5,140,295 52.75
27-28 164,403 123 74.8  0.00075 73 97,366 97,330 5,042,887 51.79
28-29 154,062 137 88.9  0.00089 86 97,294 97,250 4,945,557 50.83
29-30 158,102 135 85.4 0.00085 83 97,207 97,166 4,848,307 49.88
30-31 157,975 134 84.8  0.00085 82 97,124 97,083 4,751,141 48.92
31-32 153,534 134 87.3  0.00087 85 97,042 97,000 4,654,058 47.96
32-33 160.016 157 98.1  0.00098 95 96,957 96,910 4,557,058 47.00
33-34 160,299 127 79.2  0.00079 77 96,862 96,824 4,460,149 46.05
34-35 125,826 144 114.4  0.00114 111 96,785 96,730 4,363,324 45.08
3536 126,747 158 124.7  0.00125 120 96,675 96,614 4,266,594 44.13
36-37 125,960 155 123.1  0.00123 119 96,554 96,495 4,169,980 43.19
37-38 127,942 161 125.8  0.00126 121 96,436 96,375 4,073,485 42.24
38- 39 109,358 169 154.5 0.00154 149 96,314 96,240 3,977,110 41.29
39-40 106,481 196 184.1 0.00184 177 96,166 96,077 3,880,870 40.36
40-41 103,828 171 164.7  0.00165 158 95,989 95,910 3,784,793 39.43
41-42 99,325 205 206.4  0.00206 198 95,831 95,732 3,688,883 38.49
42-43 96,380 228 236.6  0.00236 226 95,633 95,520 3,593,151 37.57
43- 44 93,276 256 274.5 0.00274 261 95,407 95,276 3,497,631 36.66
44-45 92,873 258 277.8  0.00277 264 95,146 95,014 3,402,355 35.76
45-46 92,183 246 266.9  0.00267 253 94,882 94,755 3,307,341 34.86
46-47 88,595 274 309.3  0.00309 292 94,629 94,483 3,212,586 33.95
47-48 91,046 323 354.8  0.00354 334 94,337 94,170 3,118,103 33.05
48 -49 89,588 384 428.6  0.00428 402 94,003 93,802 3,023,934 32.17
49--50 97,274 398 409.2  0.00408 382 93,601 93,409 2,930,132 31.30
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Table 9-2. (Continued)

x—x+1 Population Deaths R¥ gy d, I L, ' I

50-51 98,371 449 456.4 0.00455 425 93218 93,006 2,836,722 30.43
51-52 95,717 474 4952 0.00494 458 92,794 92,565 2,743,716 29.57
52-53 99,570 557 559.4  0.00558 515 92,335 92,078 2,651,152 28.71
53-54 101,653 687 675.8 0.00674 618 91,820 91,511 2,559,074 27.87
54-55 105,815 675 637.9 0.00636 580 91,202 90,912 2,467,563 27.06
55-56 108,657 737 678.3 0.00676 613 90,622 90,316 2,376,651 26.23
56-57 106,689 784 7348 0.00732 659 90,009 89,680 2,286,336 25.40
57-58 106,142 842 793.3  0.00790 706 89,350 88,997 2,196,656 24.58
58-59 107,384 929 865.1 0.00861 764 88,644 88,263 2,107,659 23.78
59-60 103,981 1,007 968.4 0.00964 847 87,881 87,457 2,019,396 22.98
60-61 97,063 964 993.2 0.00988 860 87,034 86,604 1,931,939 22.20
61-62 93,115 1,033 1,109.4 0.01103 951 86,174 85,698 1,845,335 21.4]
62-63 90,046 1,070 1,188.3 0.01181 1,007 85223 84,720 1,759,637 20.65
63-64 86916 1,141  1,312.8 001304 1,098 84216 83,667 1674917 19.89
64-65 85,726 1,282 14955 0.01484 1,234 83,118 82,501 1,591,250 19.14
65-66 86,996 1,387  1594.3 0.01582 1,295 81,884 81,237 1,508,749 18.43
66-67 83,258 1,400 1,681.5 0.01668 1,344 80,589 79,917 1,427,513 17.71
67-68 79,961 1,428  1,7859 0.01770 1,403 79,245 78,544 1,347,595 17.01
68-69 78,039 1,485  1,902.9 0.01885 1,467 77,842 77,109 1,269,052 16.30
69-70 74,389 1,617 2,173.7 0.02150 1,642 76,375 75,554 1,191,943 15.61
70-71 70,163 1,614  2,300.4 0.02274 1,700 74,733 73,883 1,116,389 14.94
71-72 67,599 1,816 2,686.4 0.02651 1,936 73,033 72,065 1,042,506 14.27
72-73 65,045 1,813 2,787.3 0.02749 1,954 71,097 70,120 970,441 13.65
73-74 60,676 1,905 3,139.6 0.03091 2,137 69,143 68,074 900,320 13.02
74-75 57,975 1,889  3,258.3 0.03206 2,148 67,006 65931 832,246 12.42
75-76 54,912 1,995 3,633.1 0.03568 2,314 64,857 63,700 766,315 11.82
76-77 51,217 2,089 4,078.7 0.03997 2,500 62,543 61,293 702,615 11.23
77-78 48,251 1,993  4,130.5 p.04047 2,430 60,043 58,828 641,322 10.68
78-79 43,234 2344 54217 0.05279 3,041 57,613 56,093 582,494 10.11
79-80 47,158 2,399  5087.2 0.04961 2,707 54,572 53,218 526,401  9.65
80-81 39,462 2,318 58740 0.05706 2,960 51,865 50,385 473,183  9.12
81-82 36,295 2,416 6,656.6 0.06442 3,151 48,905 47,330 422,798  8.65
82-83 31,875 2,360  7,403.9 0.07140 3,267 45755 44,121 375468  8.21
83-84 30,470 2,535 8319.7 0.07987 3,394 42,488 40,791 331,347  7.80
84-85 27,904 2,540  9,102.6 0.08706 3,404 39,094 37,392 290,556  7.43
85-86 24712 2,458  9,946.6 0.09475 3,382 35690 34,000 253,163  7.09
86-87 21,302 2,383 11,186.7 0.10594 3,423 32,309 30,597 219,164 6.78
87-88 19,402 2,120 10,926.7 0.10361 2,993 928,886 27,389 188,567  6.53
88-89 14,905 1,993 13,3714 0.12533 3,245 25893 24,270 161,177  6.22
89-90 13,873 1,900 13,6957 0.12818 2,903 22,648 21,196 136,907 6.05
90 + 47,650 8,131 17,0640 1.00000 19,745 19,745 115,710 115,710 5.86

*Rate per 100,000 person years of risk.

survival curve (see the next section). The expectation of life (¢,) is
approximately equal to the area under the survival curve. In Chapter
10 this interpretation is discussed further [expression (10.36)].

The crude mortality rate associated with a life table is the total
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Table 9-3. United States life expectancy for white males and females

(1900-80)

Year 1900 1910 1920 1930 1940 1950 1960 1970 1980
Male 46.6 48.6 54.5 59.7 62.1 66.5 67.4 68.0 70.7
Female 48.7 52.0 55.6 635 66.6 72.2 741 756 78.1

Source: Vital Statistics of the United States, 1983, U.S. Department of Health and Human
Services.

number of persons who died divided by the total number of person-
years lived by the entire life-table population or
Zd, Iy

crude mortality rate = T, = T, (9.8)

The crude mortality rate is the reciprocal of the expectation of life at
birth or
1 1

)
crude mortality rate = — = — or ey = .
To e Lo/ To

(9.9)

Referring to the life table for males (Table 9.1), the crude mortality
rate is 100,000/6,960,692 = 0.0144, or 1,437 deaths per 100,000
person-years of life and 1/0.0144 = 69.607 years of life are expected to
be lived by a newborn male infant who experiences the exact 1980 age-
specific mortality rates. A life table formally shows the expected
relationship that survival time (average expected lifetime) is inversely
related to risk (average rate of death).

Three assumptions are implicit in constructing and interpreting a life
table. The life-table structure requires that the same number of births
occur each year (/, constant). The deaths are assumed to be uniformly
distributed within each interval for ages greater than four (thus
resulting in a, = 0.5), and no population growth occurs (the number of
births is equal to the number of deaths each year, and no immigration
or emigration occurs). When a population conforms to these three
properties, it is called a stationary population. Although stationary
human populations do not exist, in most cases changes are sufficiently
slow so that postulating that a group of individuals has an approx-
imately stationary structure is not unreasonable, making a life table a
useful tool to describe human mortality experience.

Life Table Survival Curve

A fundamental summary statistic derived from a life table is an
estimate of a survival curve (introduced in Chapter 1), that is, the
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probability of surviving beyond a specific point in time. In symbols,
S(x) represents the probability of surviving beyond age x. Two identical
ways of computing S{(x) from a life table are:

S(x) == (9.10)
lo
or
x—1 x=1
S =111 —q)= HOP:- (9.11)
i=0 i=
The equivalence of these two calculations comes from the fact that
k= Lhilhlly Ly L s
Sy =[] p=alable bon & & (9.12)
R | S N Y A A

since p; = [;, ,/{; is the probability of surviving from age 7 to age ¢ + 1
given that the individual is alive at the beginning of the interval. Also
note that §(0) = 1, which is a property of survival curves in general.

The survival curves for the male (solid line) and female (dotted line)
1980 California populations are displayed in Figure 9.1 (top). A small

Survival curves
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Figure 9-1. Survival curve and hazard function from the life table for white
males and females, California, 1980.
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decrease in $(x) caused by high rates of infant mortality in the first year
of life is followed by a slight and gradual decrease in the probability of
survival until about ages 60 or 70, where the S(x) curve begins to fall
rapidly. This pattern is often observed in modern human populations.
The probability of living more than 90 years is given by the values
$(90) = 0.084 for males and §(90) = 0.197 for females (females are 2.4
times more likely than males to live beyond the age of 90).

Life Table Hazard Function

The slope of the survival curve or the derivative of §{(x) at the point »
[48(x)/dx] measures the impact of mortality on a population at a
specific age x. The slope indicates the rate of change (intensity of
mortality) of the curve representing the probability of surviving
beyond a particular point. Analogous to the definition of a mortality
rate [expression (1.2)], if the instantaneous slope of the survival curve is
measured relative to the proportion surviving up to age x, then the
previous definition of a hazard rate emerges, given as

dS{x)[dx

M) = ~ =i

(9.13)
where A(x) represents the hazard rate and the negative sign makes it a
positive quantity. A hazard rate applied to mortality data is the
instantaneous rate of death, relative to being alive at age x.

To estimate the hazard rate from a life table, it is necessary to make a
series of approximations to calculate this theoretical quantity. The

-slope of the survival curve at the midpoint of the interval x to x + 1 is

approximately S(x + 1) — §(x), and the value of the survival curve at
x + % is approximately [S(x + 1) + S(x)]/2. These two approximations
are exact if the survival curve is a straight line. Combining these two
quantities gives an approximate expression for the hazard rate at age
x+3of

dS(x +Pldr  S(x+1) — S(x)
S+ d T S+ )+ SW2”

This expression in terms of the number of persons alive at age x (I,) is

AMx+d) =

(9.14)

lx _lx px_ 1 qu
A Hr -2 =— = .
S T T R N i R
Whereﬁx = x+1/lx'
Since log(p) = 2(p — 1)/(p + 1) for p > 0.7, then
Ax +3) = —log(p,), {9.16)
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which provides a useful approximation of the hazard rate for most life
tables based on human mortality. An expression for the hazard rate at
age x is the average of the hazard rates at age x — Land x + 3 or

 — o8 (P 1) +log(p.)] 017)

Alx) 5

A further simplification is achieved by using yet another approxi-
mation, that of log(p) ~ p — 1 for p > 0.9, giving

Ax +3) & —log(px) = ¢x (9.18)

and, as before,

) v Tz T 8 (9.19)
2
for age intervals with low probabilities of death. Similar to a mortality
rate, a hazard rate is conceptually an instantaneous quantity and must
be approximated when the survival curve S(x) is not specified.
Another estimate for the hazard rate A(x + 3) can be derived by
noting that a hazard rate is an instantaneous age-specific rate. An
average age-specific rate from a life table is estimated by

d

S T 9.20
I, — 0.5d, (9-20)

rate =

For a small interval (say, 1 year), the age-specific life-table mortality
rate is approximately equal to the hazard rate at the middle of an age

interval or

d
H= = 9.21
Ax + 5) = rate 054, ( )
Two other versions of this expression are used. They are
24«
Ax+dh ~—E L (9.22)

F1=05g, pat 1
The last expression is the same as the previous expression for the hazard
rate [expression (9.15)] derived from different considerations. Again, if
d, is small relative to [, (p, = 1), then A(x + 1) = ¢,. In general, an
approximate life-table hazard rate is

ds

S S— (9.23)
ny(l, — 0.5d,)

Mx +nyf2) =

where 7, represents the interval length. The accuracy of this expression
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as an approximation for a hazard rate decreases as the interval length
n, increases for most situations.

The hazard functions (a series of hazard rates) are plotted in Figure
9.1 (bottom) for the California 1980 life tables for males and females.
Detail of the mortality pattern is clearly seen from these hazard
functions. For example, an inconsistency in the rise of the hazard
function for the older age groups is obvious and undoubtedly due to the
lack of reliability in reporting of age for older individuals (about 80
years or so).

The shape of the curve observed for the 1980 California life-table
populations is typical of most human populations over the entire age
span. After the first year of life, the next 60 years are characterized by
an essentially level hazard function followed by a sharp increase.
However, hazard functions in other contexts take on a variety of
shapes. A population subject to only accidental (random) deaths, for
example, would have a mortality pattern with a constant hazard
function (a horizontal line). A hazard function and a survival curve are
related— higher rates of mortality imply lower probabilities of survival.
The exact mathematical relationship is described in Chapter 11, and
complete discussions are found in technical texts on survival analysis
(e.g., [Ref. 2]).

Life tables can be constructed from small sets of data. The principles
are the same as those described, but the issue of sampling variation
should not be ignored. The values ¢,, [,, etc. are estimated quantities
subject to sampling variation, which usually requires reporting their
associated standard errors. Huge numbers of individuals make up the
California life-table data sets so the precision of the estimates is not
much of an issue. For a life table based on a small number of
individuals, however, the variability of the estimated quantities should
be taken into account. Expressions for the variances of life-table
estimates are based on assuming that the probabilities of death can be
modeled by binomial distributions (these expressions are presented in
detail elsewhere [Ref. 1]). A life table based on small numbers of
observations illustrates where 11 individuals failed to respond to a
specific treatment (“‘died”) [Ref. 2]. The survival times, amount of
time to remission (in weeks), are 5, 5, 8, 8, 12, 23, 27, 30, 33, 43,45. A
life table, based on 10-week intervals, summarizing these data is given
in Table 9.4.

The size of the sample used to construct this life table is small,
making the variability of the estimates an issue, and, once again,
categorizing a continuous variable (survival time) is not an ideal way



254  Statistical Analysis of Epidemiologic Data

Table 9-4. Life table for a small set of data

Interval Midpoint  “Deaths”  Population Gx b . S(x)  A(x +5)
0-10 5 4 il 0.364 0.636 1.000 1.000 0.044
10-20 15 1 7 0.143 0.857 636" 0.636 0.015
20-30 25 2 6 0.333 0.667 545 0.545 0.040
30-40 35 2 4 0.500 0.500 364 0.364 0.067
40--50 45 2 2 1.000 0.000 182 0.182 0.200

to proceed. Small sets of survival data are better analyzed by other
approaches (presented in Chapters 10 and 11).

Proportional Hazard Rates—An Example

An instructive application of a life table involves an actuarial-like
calculation showing the consequences of lowered hazard rates in a
specific population. Suppose a hazard rate is reduced uniformly by a
set proportion ¢ [i.e., A(£) = cdy(f), where 44(2) is a known or estimated
hazard function]; construction of a life table based on such a hazard
function describes the resulting mortality experience. Figure 9.2 (top)
shows three hypothetical hazard functions based on the 1980 Califor-
nia, white male population mortality rates [A(¢), top line], where ¢ is
set at 0.75, 0.50, and 0.25. The logarithms of the hazard rates clearly
show the detail of these curves (Figure 9.2, bottom). Note that the
logarithms of a set of proportional hazard rates produce parallel lines.
The associated life table can be used to describe the impact of the lower
hazard rates.

To summarize the life tables constructed from the three reduced
hazard functions, the proportion of individuals alive at ages 65, 75, and
85 years along with the expected length of life from birth for the
“proportional populations” are shown in Table 9.5.

It is unlikely that a decrease in mortality would be exactly pro-
portional throughout the life span (i.e., proportional hazards rates);
nevertheless, some idea of the impact of decreasing mortality risk is
gained by life-table summary values. The percentage of older indiv-
iduals increases markedly as the age-specific mortality decreases. For
example, about 469, of the 1980 California males are older than 75
years, but, when the mortality is reduced by a factor of 4 (¢ = 0.25),
this value increases to an estimated 849,. The expected length of life at
birth is correspondingly increased from 69.6 to 87.4 years.
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Figure 9.—2. Hazard functions and the logarithm of the hazard functions for three
hypothetical patterns of mortality based on the white, male mortality rate,
California 1980.

The effects on a population of an increasing or decreasing hazard
rate are not always clear. As the illustration shows, a hazard rate can be
related to more easily interpreted measures of the impact of risk using
life-table summaries. A decrease in hazard rate becomes a less abstract
expression of risk when translated, for example, into an increase in the
number of individuals exceeding a specific age or into an increase in the
expected years of remaining life.

Table 9-5. Influence of three hypothetical hazard rates on the 1980 California male
population

Hazard % 265 years 9% 275 years 9 >85 years Expectation
1.004 69.7 46.0 18.3 69.6
0.752 78.7 58.7 30.0 74.7
0.504 85.3 70.2 45.1 79.8

0.254 92.3 83.8 67.4 87.4
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LIFE TABLES: THREE APPLICATIONS OF LIFE TABLE
TECHNIQUES

Life-Table Method for Calculating a Survival Probability

The evaluation of the treatment of chronic disease usually involves the
assessment of survival (or, perhaps, remission) times. The probability of
surviving 5 years after receiving a treatment is a frequent measure of
efficacy. Survival data can be collected and recorded in a sequence of
intervals to form a series of cohort tables (one for each year of follow-
up, for example). It is this follow-up pattern of data collection th?t
allows an efficient estimate of the 5-year survival probability or, in
general, an estimate of the survival curve associated with the samp'led
population. The set of follow-up data in Table 9.6 concerns the survival
of six cohorts of kidney cancer patients, illustrating this type of data
[Ref. 3].

The complete display of the data set is presented to show the cohorts
formed as each year new patients are added to the sample. The interval
x to x + 1 denotes the years survived since the kidney cancer was
diagnosed. The column labeled [, contains the count of the individuals

Tabte 9-6. Calculation of a survival
probability: Data

Year xtox+1 [, d. u, w,
1946 0-1 9 4 1 —
1-2 4 0 0 —
2-3 4 0 0 —
3-4 4 0 0 —
4-5 4 0 0 -—
5-6 4 0 0 4
1947 0-1 18 7 0 —
1-2 11 0o 0 —
2-3 I 1r o —
3-4 10 2 2 —
4-5 6 0 0 6
1948 0-1 21 11 0 —
1-2 w1 2 —
2-3 7 0 0 —
3-4 7 0 0 7
1949 0-1 34 12 0 —
1-2 22 3 3 —
2-3 16 1 0 15
1950 0-1 19 5 1 —
1-2 13 1 1 11
1951 0-1 8 2 15

¥
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alive at the beginning of the time interval x to x + 1. The number of
deaths in each interval is represented by d,. The possibility exists that
patients are “lost to follow-up” during the time period covered by the
study. The count of patients lost during an interval is symbolized by u,.
The last column in the table contains the counts of patients withdrawn
from study. Individuals are said to be withdrawn when they are no
longer relevant to further calculations. For example, consider the 1950
cohort of 19 patients. Five patients died the first year, and one the
second year; two were lost, one each year, and the remaining 11
individuals produced information about the first and second year of
survival but cannot be used in calculations for the third year or beyond
since they were only observed for a maximum of 2 years. The 11
(w, = 11) members of this cohort alive at the end of the second year are
said to be withdrawn after 2 years and are not part of subsequent
calculations. They either survived or died after 1951, but this in-
formation is not part of the collected data. The times of these four
possible events (I,, d,, u,, and w,) are recorded to the nearest year in
the kidney cancer follow-up data. A summary table that combines the
survival experience of all kidney cancer patients for the six cohorts
{Table 9.6) is given in Table 9.7. Note that

Lvy =l ~dy — uy — w,. (9.24)

If the entire cohort was entered into the study on the first day and
followed for at least 5 years and no one was lost, then a 5-year survival
probability would be the number who lived 5 years divided by the
number who started the study. For most survival data, however,
individuals die, are lost, or withdrawn from follow-up at different times
during the study period. It is also likely that, during the course of
collecting a set of follow-up data, individuals will die from causes other
than the one being investigated. Somewhat pragmatically, these

Table 9-7. Calculation of a sur-
vival probability from tabled data:
Summary data

x—x+1 L, dy u, w,
0-1 126 47 4 15
1-2 60 5 6 11
2-3 38 2 0 15
3-4 21002 2 7
4-5 100 0 0 6
5-6 4 0 0 4
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individuals are usually classified as lost (i.e., u, is increased), which
introduces no bias if these deaths are completely unrelated to the
disease under study. The sequential pattern of follow-up data collection
makes it necessary to piece together the followup information.

Notice that 15 individuals in the 1951 cohort were withdrawn after 1
year. If the exact time these patients were observed was known, then
the total person-years of risk would be the sum of their observed
individual survival times. When this information is not available,
estimates of survival time must be adjusted to compensate for the
incomplete nature of the data. One approach is to assume that each
person withdrawn during an interval, on the average, contributes one-
half an interval of time (2, = 0.5) to the total survival time. That is, it is
postulated that individuals come into the study uniformly throughout
the follow-up period, implying they will be withdrawn uniformly from
observation. If this is the case, then attributing one-half an interval’s
time to each person withdrawn is “on the average” correct. A similar
assumption is usually made about individuals lost from follow-up. An
estimate of the probability of death (g,) that accounts for the two types
of incomplete information is made by reducing the number of persons
beginning the interval (/,) to compensate for those individuals lost (uy)
and withdrawn (w,) during the interval. Specifically,

l, =1, — 0.5u, — 0.5uwy, (9.25)

where [, is the “effective” persons at risk in the interval and the
probability of death within an interval is then estimated by

ds (9.26)

<= Z -

The adjusted persons at risk (£;) better reflects the underlying situation.

An alternate view of this adjustment comes from noting that the

observed number of deaths is understated since lost and withdrawn

individuals are not followed for, on the average, half an interval and

deaths occurring during that time will not be recorded. An estimate of

this additional number of “deaths” is 0.5(u, + w,)q,. Adding these

“deaths” to the number of observed deaths gives an estimate of the
probability of death as

dy + 0.5(u, + w,)gy

qx = l

x

, (9.27)

and solving for ¢, produces the same result as before (g, = d,/l;).
Employing the value g, to estimate the proportion of deaths among
those who were lost or withdrawn implies that these individuals do not
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differ in their mortality experience from those who continued to be
followed. This assumption may not be tenable in some situations. For
example, it might be that lost individuals are more likely to have
survived or, perhaps, more likely to have died; a suitable ¢, should be
used under these conditions. A more subtle implication of employing
is the implicit assumption that mortality experience is unrelated to the
probability that an individual is withdrawn from follow-up.

Analogous to the life-table calculation of the survival curve, the
survival probabilities are

. -1
P = ljo e (9.28)

where, as before, p, =1 — ¢g,. The value P, is the probability of
surviving up to the kth time interval. Applying these estimates to the
kidney cancer data gives Table 9.8.

The 5-year survival probability is

Pg = (0.597)(0.903)(0.934)(0.879) (1.000) = 0.442

(standard error = 0.060). The variance of these estimates comes from
the expression

variance(ﬁk) =P kil L (9.29)

Yo Ly
The variance estimate is often referred to as “Greenwood’s formula”
after Major M. Greenwood, an early biostatistician, and is used to test
hypotheses or construct confidence intervals for specific estimated
survival probabilities.

Another estimate of the 5-year survival probability is the number of
individuals who survived 5 years divided by those who began the study
at least 5 years previously. Only the 1946 cohort can be used to
estimate this 5-year survival probability since the other cohorts contain

Table 9-8. Caiculation of a 5-year survival rate from tabled data:
Calculations '

Interval dy 8 9x b P, IIp, Std. error

47 1165 0403 0597 P, 1.000 —

5 51.5 0.097 0903 P, 0597 0.045
2 30.5 0066 0934 P, 0539 0.048
2 16.5  0.121 0879 P, 0.503 0.051
0 7.0 0.000 1.000 £, 0442 0.060
0 20  0.000 1.000 P;  0.442 0.060
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individuals with less than 5 years of follow-up time. The 5-year survival
probability is then 4/9 = 0.444, with a standard error of 0.166
(assuming the lost individual survived). Using all available data rather
than a single cohort produces a more precise estimate of the 5-year
survival probability (ratio of standard errors = 0.166/0.060 = 2.7 in
the kidney cancer example). However, the cost of this increased
precision is possible bias from the assumption that the mortality
experience over time is similar enough among cohorts that combining
data for all years reflects the overall mortality experience of all
observed individuals.

Another important summary of survival data is an estimate of the
mean time individuals survived. This calculation is complicated by the
fact that the time of death is not known for all participating individuals.
For the data recorded on the 126 kidney cancer patients, the mean
survival time is 3.523 years. Mean survival time calculations are
discussed in Chapter 10.

Survival patterns experienced by different groups can be sum-
marized and compared using specific survival probabilities. Two such
groups from the WCGS data are those with high values of the body-
mass index (greater than the 75th percentile) and those with smaller
body-mass values (less than the 75th percentile). The data and the
calculated “survival” probabilities are (here “survival” means free
from a coronary event) given in Tables 9.9 and 9.10.

The comparison of these survival probabilities shows a lower
probability (higher risk) of “‘survival” for those individuals with high
body-mass indexes. For example, the 5-year survival probability of
0.940 for high values of body-mass index is less than the 0.961 observed
for individuals with “normal” values of the body-mass index. The

Table 9-9. WCGS body mass > 75th percentile

x—x+1 I, d wy dx P, Std. error
0-1 871 6 0 0.0069 1.000 —
1-2 865 8 21 0.0094 0993 0.0028
2-3 836 16 19 00194 0984 0.0043
3-4 801 9 23 0.0114 0.965 0.0063
4-5 769 11 14 0.0144 0.95¢ 0.0072
5-6 744 12 19 0.0163 0.940 0.0082
6-7 713 18 46 0.0261 0925 0.0092
7-8 649 9 195 00163 0.901 0.0106
8-9 445 5 431 00218 0886 0.0115
9-1

0 9 0 9 0.0000 0.867 0.0141
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Table 9-10. WCGS body mass < 75th percentile

=
|
®
+
—_

I, dy w, 7x P, Std. error

2283 9 4 0.0039 1.000
2270 20 24 0.0089 0.996  0.0013
2226 23 50 0.0104 0.987 0.0024
2153 18 41 0.0084 0.977 0.0032
2094 18 37 0.0087 0.967 0.0037
2039 27 61 0.0134 0961 0.0042
1951 14 99 0.0074 0.947 0.0048
1838 22 502 0.0139 0.940 0.0051
1314 12 1271 0.0177 0.927 0.0057
31 0 31 0.0000 0911 0.0073

O R~ U R OON =D
i
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standard errors for these estimates indicate that this difference is not
likely to have occurred by chance variation. For the >75th percentile
group the approximate 959, confidence interval is (0.924, 0.956) and
for the < 75th percentile group it is (0.953, 0.969) based on
“Greenwood’s” variance [expression (9.29)]. A plot of these two sets of
survival probabilities is given in Figure 9.3.

The WCGS follow-up times are recorded exactly (to the ncarest
day); so the probability that a coronary event does not occur
(“survival”) can be calculated without assumptions about the indiv-

.00
098
096

094

=<0>

092

---individuols less than 75th percentile

090 — individuals more than 75th percentile

0.88 1

0.86 1 ' 1 .
[0} 2 4q 6 8

Years of follow—up

Figure 9-3. Survival probabilities for individuals with a body-mass index less
than and greater than the 75th percentile (WCGS data).
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iduals lost or withdrawn during the follow-up years. Instead of using
0.5 years of risk, the exact total time contributed by individuals lost or
withdrawn can be directly calculated and produces the exact number
persons at risk. The difference between the exact and approximate
approaches is inconsequential in this example. The 9-year probability
using the exact follow-up times is 0.869 for individuals with body-mass
indexes in the upper quartile and 0.913 for the “normal” body-mass
individuals, compared to the approximate (@, = 0.5) values 0.867 and
0.911, respectively. In other study settings, however, individuals lost or
withdrawn from follow-up may have different outcome experiences,
necessitating careful selection of an adjustment method when exact
values are not available.

Three assumptions about the structure of the sampled population
are made to calculate a survival curve using life-table techniques. First,
all lost and withdrawn subjects are assumed to contribute, on the
average, half the survival information of an individual followed for a
complete year (or complete time interval). Second, the data collected
for a number of cohorts are combined to maximize the number of
observations available in each time interval to calculate the probability
of death. To give an unbiased estimate of survival probabilities, all
cohorts must experience the same pattern of mortality during the
follow-up period (again, the absence of interaction permits the data to
be combined). In terms of the kidney cancer data, the individuals who
entered the study in 1947, for example, are assumed to have the same
pattern of mortality as the patients who entered in 1951, which allows
the data from both groups to be used in the calculation of the
probability of surviving the first year after diagnosis. The third
assumption is that the lost and withdrawn individuals have the same
probability of death as the individuals remaining in the follow-up data
set. This conjecture is probably the most tenuous when applied to
individuals lost from observation. Situations certainly arise where other
assumptions make sense. For example, if it is assumed that all
individuals classified as lost actually survived, then
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The probabilities ¢, and g represent the extremes in terms of the
impact of the lost individuals on the calculation of the g,. These two
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extremes applied to the kidney cancer data yield 5-year survival
probabilities of P = 0.454 if all lost patients survive and Py =0.387 if
all lost patients die.

Life-Table Measures of Specific Causes of Death

Hundreds of causes of death act simultaneously within human popula-
tions. Two approaches based on life-table methods provide an oppor-
tunity to isolate the individual impact of specific causes on the pattern
of human mortality. These methods help resolve two questions:

1. What is the age structure throughout the life span associated with
specific causes of death, taking into account other causes?

2. How does the probability of death from a specific cause change when
other causes are “‘eliminated” from the population?

The first question is answered by applying a multiple cause life table
(also called a multiple decrement life table). The second question is
addressed by a competing risk analysis.

Multiple Cause Life Table

A multiple-cause life table is similar to the single-cause life table but is
used to describe simultaneously the mortality patterns of a number of
diseases in a population. The goal of such a table is to organize and
display the age structure of individuals dying of specific causes. The
mechanics of constructing these age distributions are defined and
illustrated by a set of data consisting of California resident males who
died during 1980. The causes of death come from death certificates,
classified according to the ninth revision of thé International Clas-
sification of Diseases (ICD9) [Ref. 4]. These deaths are classified into
four categories—death from lung cancer (ICD9, code 162), deaths
from ischemic heart disease (ICD9, codes 410 to 414), deaths from
motor vehicle accidents (ICD9, codes E810 to E819), and deaths from
all other causes. Also necessary is a series of age-specific popuiation
counts—the 1980 U.S. Census counts of California male residents are
used. The following life-table construction is abridged, which means
that the lengths of the age intervals are not consistently 1 year. Most
age intervals are 5-year lengths (represented as n,; for example, ngo = 5
years).

The basic components required to construct a multiple-cause life
table are the total number of deaths, the age-, cause-specific numbers of
deaths and the age-specific midyear populations. That is,



