2 1. Introduction to Survival Analysis

Introduction This introduction to survival analysis gives a descriptive overview of the
data analytic approach called survival analysis. This approach includes the
type of problem addressed by survival analysis, the outcome variable con-
sidered, the need to take into account “censored data,” what a survival func-
tion and a hazard function represent, basic data layouts for a survival analy-
sis, the goals of survival analysis, and some examples of survival analysis.

Because this chapter is primarily descriptive in content, no prerequisite
mathematical, statistical, or epidemiologic concepts are absolutely neces-
sary. A first course on the principles of epidemiologic research would be
helpful. It would also be helpful if the reader has had some experience read-
ing mathematical notation and formulae.

Abbreviated The outline below gives the user a preview of the material to be covered by
Outline the presentation. A detailed outline for review purposes follows the presen-
tation.

I. What is survival analysis? (pages 4-5)
II. Censored data (pages 5-8)
III. Terminology and notation (pages 8-14)
IV. Goals of survival analysis (page 15)
V. Basic data layout for computer (pages 15-19)
V1. Basic data layout for understanding analysis
(pages 19-24)
VII. Descriptive measures of survival experience (pages 24-26)
VIII. Example: Extended remission data (pages 26-29)
IX. Multivariable example (pages 29-31)
X. Math models in survival analysis (pages 32-33)
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Objectives 3

Objectives Upon completing the module, the learner should be able to:

1. Recognize or describe the tvpe of problem addressed by a survival
analysis.

2. Define what is meant by censored data.

3. Define or recognize right-censored data.

4. Give three reasons why data may be censored.

5. Define, recognize, or interpret a survivor function.

6. Define, recognize, or interpret a hazard function.

7. Describe the relationship between a survivor function and a hazard
function.

8. State three goals of a survival analysis.

9. Tdentity or recognize the basic data layout for the computer; in partic-
ular, put a given set of survival data into this layout.

10. Identify or recognize the basic data layout, or components thereof, for
understanding modeling theory; in particular, put a given set of sur-
vival data into this lavout.

11. Interpret or compare examples of survivor curves or hazard functions.

12. Given a problem situation, state the goal of a survival analysis in
terms of describing how explanatory variables relate to survival time.

13. Compute or interpret average survival and/or average hazard mea-
sures from a set of survival data.

14. Define or interpret the hazard ratio defined from comparing two

groups of survival data.
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Presentation

the problem
* goals

e terminology and
notation

s data layout
examples

This presentation gives a general introduction to sur-
vival analysis, a popular data analysis approach for
certain kinds of epidemiologic and other data. Here we
focus on the problem addressed by survival analysis,
the goals of a survival analysis, key notation and termi-
nologyv, the basic data layout, and some examples.

I. What Is Survival Analysis?

Outcome variable: Time until an event
occurs

Start follow-up TIME ~ Event

Event: death
disease
relapse
recovery

Assume 1 event

> 1 event Competing risk

Time = survival time

Event = failure

1

We begin by describing the type of analytic problem
addressed by survival analysis. Generally, survival
analysis is a collection of statistical procedures for
data analysis for which the outcome variable of inter-
est is time until an event occurs.

By time, we mean years, months, weeks, or days from
the beginning of follow-up of an individual until an
event occurs; alternatively, time can refer to the age of
an individual when an event occurs.

By event, we mean death, disease incidence, relapse
from remission, recovery (e.g., return to work) or any
designated experience of interest that may happen to
an individual.

Although more than one event may be considered in
the same analysis, we will assume that only one event
is of designated interest. When more than one event is
considered (e.g., death from any of several causes), the
statistical problem is generally characterized as a com-
peting risk problem, which is beyond the scope of this
presentation.

In a survival analysis, we usually refer to the time vari-
able as survival time, because it gives the time that an
individual has “survived” over some follow-up period.
We also typically refer to the event as a failure,
because the kind of event of interest usually is death,
disease incidence, or some other negative individual
experience. However, survival time may be “time to
return to work after an elective surgical procedure,” in
which case failure is a positive event.
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Five examples of survival analvsis problems are briefly
mentioned here. The first is a study that follows
leukemia patients in remission over several weeks to
see how long they stay in remission. The second exam-
ple follows a disease-free cohort of individuals over
several years to see who develops heart disease. A third
example considers a 13-year follow-up of an elderly
population (60+ vears) to see how long subjects
remain alive. A fourth example follows newly released
parolees for several weeks to see whether they get re-
arrested. (This type of problem is called a recidivism
study.) The fifth example traces how long patients sur-
vive after receiving a heart transplant.

All of the above examples are survival analysis prob-
lems because the outcome variable is time until an
event occurs. In the first example, involving leukemia
patients, the event of interest (i.e., failure) is “going out
of remission,” and the outcome is “time in weeks until
a person goes out of remission.” In the second example,
the event is “developing heart disease,” and the out-
come js “time in years until a person develops heart dis-
case.” In the third example, the event is “death” and
the outcome is“time in vears to death.” Example four,
a sociological rather than a medical study, considers
the event of recidivism (i.e., getting rearrested), and the
outcome is time in weeks until rearrested. Finally, the
fifth example considers the event “death,” with the out-
come being “time until death (in months from receiving
a transplant).”

We will return to some of these examples later in this
presentation and in later presentations.

Il. Censored Data

Censoring: don't know survival
time exactly

Most survival analyses must consider a key analvtical
problem called censoring. In essence, censoring
occurs when we have some information about individ-
ual survival time, but we don’t know the survival
time exactly.
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Why censor?

1.
2.
3.

study ends—no event
lost
withdraws

As a simple example of censoring, consider leukemia
patients followed until they go out of remission, shown
here as X. If for a given patient, the study ends while
the patient is still in remission (i.e., doesn’'t get the
event), then that patient’s survival time is considered
censored. We know that, for this person, the survival
time is at least as long as the period that the person has
been followed, but if the person goes out of remission
after the study ends, we do not know the complete sur-
vival time.

There are generally three reasons why censoring may
occur:

(1) a person does not cxperience the event before the
study ends;

(2) aperson is lost to follow-up during the study
period;

(3) a person withdraws from the study because of
death (if death is not the event of interest) or
some other reason (e.g., adverse drug reaction).

These situations are graphically illustrated here. The
graph describes the experience of several persons fol-
lowed over time. An X denotes a person who got the
event.

Person A, for example, is followed from the start of the
study until getting the event at week 5; his survival
time is 5 weeks and is not censored.

Person B also is observed at the start of the study but is
followed to the end of the 12-week study period with-
out getting the event; the survival time here is censored
because we can say only that it is at least 12 weeks.

Person C enters the study between the second and
third week and is followed until he/she withdraws from
the study at 6 weeks; this person’s survival time is cen-
sored after 3.5 weeks.

Person D enters at week 4 and is followed for the
remainder of the study without getting the event; this
person’s censored time is 8 wecks.
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Person E enters the study at week 3 and is followed
until week 9, when he is lost to follow-up; his censored
time is 6 weeks.

Person F enters at week 8 and is followed until getting

X . Eventoccurs the event at week 11.5. As with person A, there is no
censoring here; the survival time is 3.5 weeks.
SUMMARY In summary, of the six persons observed, two get the
Event: A, F event (persons A and F) and four are censored (B, C,
Censored: B, C, D, E D, and E).

Survival Failed (1); A table of the survival time data for the six persons in

Person time censored (0) the graph is now presented. For each person, we have
A 5 1 given the corresponding survival time up to the event’s
B 12 0 occurring or up to censorship. We have indicated in

the last column whether this time was censored or not
(with 1 denoting failed and 0 denoting censored). For
example, the data for person C is a survival time of 3.5

E 6 0 and a censorship indicator of 0, whereas for person F
the survival time is 3.5 and the censorship indicator is
1. This table is a simplified illustration of the type of
data to be analyzed in a survival analysis.

wi
o
o

Weeks ——» Notice in our example that for each of the four persons
2 4 6 8 10 12 censored, we know that the person’s exact survival
time becomes incomplete at the right side of the fol-

|
; ! ! I ! ! low-up period, occurring when the study ends or when
A X ! the person is lost to follow-up or is withdrawn. We gen-
[ erally refer to this kind of data as right-censored. For
B E Study end these data, the complete survival time interval, which
! (RIGHT we don't really know, has been cut off (i.e., censored)
C Withdrawn «* at the right side. Although data can also be left-cen-
! sored, most survival data is right-censored. In the
D : Study end remainder of this text, we will consider right-censored
; data only.
E Lost !
F X
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Left-censored data:

Left censored  Observed survival time
................... X

HIV exposure IV + test

Left-censored data can occur when a person’s survival
time becomes incomplete at the left side of the follow-
up period for that person. For example, if we are fol-
lowing persons with HIV infection, we may start fol-
low-up when a subject first tests positive for the HIV
virus, but we may not know exactly the time of first
exposure to the virus. Thus, the survival time is cen-
sored on the left side, because there is unknown fol-
low-up time from the time of first exposure up to the
time of first positive HIV test.

I11. Terminology and Notation

T = survival time (7> 0)

\ random variable

t = specific value for T

EXAMPLE
‘Survives >Syears'> v
) - (O 1?') l‘aﬁdorﬁ kvkar’iable |

B { 1 if failure
" 1 0if censored

* study ends
e lost
e withdraws

S(t) = survivor function
h(t) = hazard tunction

We are now ready to introduce basic mathematical ter-
minologv and notation for survival analysis. First, we
denote by a capital T the random variable for a per-
son’s survival time. Since T denotes time, its possible
values include all nonnegative numbers; that is, 7 can
be any number equal to or greater than zero.

Next, we denote by a small letter ¢ any specific value
of interest for the random variable capital 7. For exam-
ple, if we are interested in evaluating whether a person
survives for more than 5 vears after undergoing cancer
therapy, small ¢ equals 5; we then ask whether capital
T exceeds 5.

Finally, we let the Greek letter delta (8) denote a (0,1)
random variable indicating either failure or censor-
ship. That is, & = 1 for failure if the event occurs during
the study period, or & = 0 if the survival time is cen-
sored by the end of the study period. Note that if a per-
son does not fail, that is, does not get the event during
the study period, censorship is the only remaining pos-
sibility for that person’s survival time. That is, 8 = 0 if
and only if one of the following happens: a person sui-
vives until the study ends, a person is lost to follow-up,
or a person withdraws during the study period.

We next introduce and describe two quantitative terms
considered in any survival analysis. These are the sur-
vivor function, denoted by S(z), and the hazard func-
tion, denoted by A(1).




S(t) = P(T > )

¢ S(t)
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1 S =P(T>1)
2 S(2) = P(T > 2)
3 S3) = P(T = 3)

Theoretical S(1):

S(0)
I
S(1)
/(w)
o . o,

S(t) in practice:
1
S@)

0 ¢ Study end

_ P(z£T<z+Asz2z)
A(t) = lim —_— =
Af—0 At

[, Terminology and Notation ¢

The survivor function S(t) gives the probability that a
berson survives longer than some specitied time ¢: that
Is, S(1) gives the probability that the random variable T
exceeds the specified time L.

The survivor function is fundamental to g survival
analvsis, because obtaining survival probabilities for
different values of ; provides crucial summary infor-
mation from survival data,

Theoretically, as 7 ranges from 0 up to infinity, the sur-
vivor function can be graphed as a smooth curve, As illus-
trated by the graph here, where 7 identifies the X-axis, all
survivor functions have (he following characteristics:

* thevare nonincreasing; that s, they head down-
ward as to increases:

* attimer=0,S() - S(0) = 1; that is, at the start of
the study, since no one has gotten the event yet,
the probability of surviving past time 0 is one;

* attimet = oo, §(7) = S(e<) = 0; that Is, theorelically,
if the study period increased without limit, eventy-
ally nobodv would survive, so the survivor curve
must eventually fall to zero.

Note that these are theoretical properties of survivor
curves.

In practice, when using actual data, we usually obtain
graphs that are step functions, as Hlustrated here,
rather than smooth curves. Moreover, because the
study period is never infinite in length, it ig possible
that not everyone studied gets the event; the estimated
survivor function, denoted by a caret over the S in the
graph, thus does not go all the way down to zero at the
end of the study.

The hazard tunction, denoted by h(t), is given by the for-
mula: 4(z) equals the limit, as Az approaches zero, of a
probability statement about survival, divided by Ar,
where Ar denotes 7 small interval of time. This mathe-
matical formula is difficult o, explain in practical terms.
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h(t) = instantaneous potential Before getting into the specifics of the formula, we give

a conceptual interpretation. The hazard function h(t)

gives the instantaneous potential per unit time for

the event to occur, given that the individual has

| > survived up to time 7. Note that, in contrast to the
information given by the survivor function. That is, the

k() higher S(1) is for a given , the smaller is A(t), and vice

' | versa.
St

S(t) not failing
ki) ¢ failing

survivor function, which focuses on nor failing, the
hazard function focuses on failing, that is, on the event
occurring. Thus, in some sense, the hazard function
can be considered as giving the negative side of the

To get an idea of what we mean by instantaneous

60
potential, consider the concept of velocity. If, for
example, you are driving in your car and you see that
your speedometer is registering 60 mph, what does
this reading mean? It means that if in the next hour,
you continue to drive this way, with the speedometer
exactly on 60, you would cover 60 miles. This reading
gives the potential, at the moment you have looked at

your speedometer, for how many miles you wil} travel
in the next hour. However, because you may slow
down or speed up or even stop during the next hour,
the 60-mph speedometer reading does not tell you the
number of miles you really will cover in the next hour.
The speedometer tells you only how fast you are going
at a given monient; that is, the instrument gives your
instantaneous potential or velocity.

Velocity at time ¢ Similar to the idea of velocity, a hazard function /(1)
gives the instantaneous potential at time ¢ for getting
h(t) an event, like death or some disease of interest, given

\ survival up to time ¢. The given part, that is, surviving
Instantaneous potential up to time, is analogous to recognizing in the velocity
example that the speedometer reading at a point in
time inherently assumes that you have already traveled

some distance (i.e., survived) up to the time of the
reading.
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Pt<T<t+Ar|T=21)
Al

h(t)= lim
A0

Conditional probabilities: P(4 | B)

12.Pt<T<t+At|T=21)

Hazard function = conditional failure rate

. PlrsT<t+M|Tz¢)
lim
At—0 At

Probability per unit time

Rate: 0 to =

P=Pt<T<t+At|Tz1)

P/ =

P At /Az‘ rate

1 1 /3 .
3 Eda} 72—«0.67/(1213
! 1 week LS =4.67/week
3 14 114
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In mathematical terms, the given part of the formula
for the hazard function is found in the probability
statement—the numerator to the right of the limit sign.
This statement is a conditional probability because it is
of the form, P of A, given B, where the P denotes prob-
ability and where the long vertical line separating A
from B denotes “given.” Tn the hazard formula, the
conditional probability gives the probability that the
event will occur in the time interval between ¢ and
t + Ar, given that the survival time, 7, is greater than or
equal to r. Because of the given sign here, the hazard
function is sometimes called a conditional failure
rate.

We now explain why the hazard is a rate rather than a
probability. Note that in the hazard function formula,
the expression to the right of the limit sign gives the
ratio of two quantities. The numerator is the condi-
tional probability we just discussed. The denominator
is At, which denotes a small time interval. By this divi-
sion, we obtain a probability per unit time, which is no
longer a probability but a rate. In particular, the scale
for this ratio is not 0 to 1, as for a probability, but
rather ranges between 0 and infinity, and depends on
whether time is measured in days, weeks, months, or
vears, etc.

For example, if the probability, denoted here by P, is
1/3, and the time interval is one-half a day, then the
probability divided by the time interval is 1/3 divided
by 1/2, which equals 0.67 per day. As another example,
suppose, for the same probability of 1/3, that the time
interval is considered in weeks, so that 1/2 day equals
1/14 of a week. Then the probability divided by the
time interval becomes 1/3 over 1/14, which equals 14/3,
or 4.67 per week. The point is simply that the expres-
sion P divided by Ar at the right of the limit sign does
not give a probability, The value obtained will give
a different number depending on the units of time
used, and may even give a number larger than one.






