Fall 2000 Course 513-697: Applied Linear Models
Assignment 5 Answers and Comments

3.1 (1) Resdudsareinorigind Y unitswhereas semi-studentized residuals are scaled so their
SD is approx 1.

(2) e'sare unobservable "true" deviations of Y from hypothetical or assumed unobservable
mean [Y | X] =} + [3; X, and thus E[e]=0. The €'s are observed residuals measured about the
observed line. Their mean is (by construction) zero.

(3) eistheerror term and eisthe observed (constructed) residual.
3.2 Seetext.

3.9 The++- - - ++ pattern of residuals suggests a quadratic relation would be better than a
simple linear one. | don't think of going to (X,X2) asa"transformation” per se[since it adds
termsto the model, rather than rescales terms] but some of you (and | think the textbook) see
it that way.

3.19 [NO‘/I\' asked thisyear .. quirtetricky!] Plot e vs v or evsyY ?7?7?
evsY won't show systematic tendenciesif modd fits; evsY will, evenif fit is quite good.

evsY will beapogtiverdation. | found it helpful to experiment with the Excel spreadsheet
(EMYS) to see what is happening before | worked out the following algebra.

Theoretically, to seethis, without loss of generality (w.l.0.g.) ,
takeX =Y =0 =>py =0,
and SD(X) =SD(Y) =1 =>by =corr[Y,X] =r and SD[e] =4/1 - rZ SD(Y) =4/1 - 12
Then observed correlation of €sand Y'sis
corrfe)Y] =—avele” Y] /{SD[e] " SD[Y]}
=avel{Y -by X} " Y] / SD[€]
={avgY?] - by ave[ X" Y] =ave]Y2] - by r} / SD[€]
={aveY?] -r2} / SD[€]
={1-r2}/ SD[€¢]
=41-12

Numerical Example ... Y=GPA vs X=EntryScore
Ceneral Linear Mdels Procedure
Dependent Vari abl e: GPA

Sum of Mean
Sour ce DF Squar es Square F Val ue Pr > F
Model 1 6. 43372807 6. 43372807 34. 00 0. 0001
Error 18 3.40627193 0.18923733
Corrected Tot al 19 9. 84000000
R- Squar e C. V. Root MSE GPA Mean
0. 653834 17. 40057 0. 43501 2.50000
Pearson Correl ati on Coefficients
GPA RESI DUAL
GPA 1. 00000 0. 58836
RESI DUAL 0. 58836 1. 00000

Check: V1 -r2 =4/1-0.653834 =4+/0.346166 =0.58836
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3.20

321

Intuitively ... Y has 2 parts (1) its (fitted) expectation, \?, and (2) its (fitted) residual, e.
If wecorredlateewith Y, then 'Y ill containsthe e portion, i.e. Y and e have ein common.
Extremeexamples; w.l.0.g., supposeY =0.
(i) Supposeb; =0(sor=0)sothaY =¥ +e= Y +e = O+e =e;

eandY are perfectly postively correlated!
(i1) Suppose r=1; then ¢ =Y,and0Y = Y+e=Y +0 i.e, e=0andso

Y and e are uncorrelated.

The (vertical) distribution of Y |X does not change just because we locate Y [X over some new
X' = some transform of X. In contrast, transforming from Y [X tto Y'[X where Y' is some
function of Y, certainly will change the vertical distribution of these Y's. The only
transformation of Y that leavesthe distribution Gaussian isalinear transform.
N
Rather than reverse-engineer it, it is easier to start with each (Yjj - Yjj) and re-expressit as
N - - N
Yij - Yij = (Yij - V) + (Y- Yi)).
The square of thisinvolves the squares of the two components and twice their crossproduct.
The task then reduces to showing that the sum (over i and j) of these crossproductsis zero.

The keys are that Qij isthe samefor all i within j, and that within any j, the sum S(Y;; -\-(J-) isO

by definition of a mean.

Dental Caries(Y) and Fluoride (X)

a Simple"Y vsX plot showsacurvilinear relationship, a"law of diminishing returns’ with
an asymptote (irreducible minimum) somewhere beyond 1.2 or 1.5 parts per million.

Residual (from linear fit) vs X (or predicted) shows the same thing:- astraight line
underestimates Y at low and high X (positive residuas), and overestimates at middle X
values (negative residuals). Some of you went to this plot first without ever plotting the Y
vs X, and somehow thought it implied u-shaped relation -- implying increasing caries at
very high F levels.

b YvslXorY vsYpexp[-bX] suggest themselves. By the way, do you think of the latter as
atransformation of the Y [to log] or of the X?

Caffeine clearance in smokers and non-smokers.

Most of you fitted log{ caffeine level} to time, using the model

E[ log{ caffeine} =bg + by T; (C=Caffeing T = time- tmax)

log[ C] | T ~Gaussian[ bg + by T,s2]
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Response Distribution: Normal Link Function: Identity

LN C =054 - 0.12 T ;R o0t MSE = 0.12
o} .

L Model assumes that
N var[ log_C]

_ 1. is Gaussian and

c constant over T

-2
0 10 20
T

I n thismodel, the estimation procedure does not even know that the" Y" isalready a log
of something else, and it isthe vertical variation in the logC that is assumed Gaussian
and constant over T. i.e. the RMSE of 0.12isin thelogC scale.

You are essentially assuming that the C's are log-normal and that 1ogC has same
varianceregardlessof T.

At least one student (last year) did something that at first sight might look the same, but is
quite different conceptualy

E[C] =exp[bo+ b1 T;
i.e. log[E[C]] = bg+ b1 T];
C|time ~ Gaussian[exp[bg + by T],s"2]
This latter model modelsthe log of the mean of C, whereas the former models the mean of

thelog of Y. Thelatter is possible in this course by use of one of the generalized linear
models.. ielog link and Gaussian variance.
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Response Distribution: Normal Link Function: Log

15 Fitted model [Log (E[C])= 0.59- 0.14 T
. Mean of Response 1.03 Deviance 0.10
SCALE (MLE) 0.13 Deviance / DF 0.02
Fitted 1. Of . Model that
E[C] . odel assumes tha
. var[C|E[C]]
0. 51
is Gaussian and constant over T
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T

If we took the log[C]'s from linear model, equal variance assumptionsin the former, and
then "anti-logged" them, their means on the "regular" C scale would be curvilinear in T and
their variances would be decreasing with T [constant relative errors applied to lower C levels
alargeT]

Half-life estimates obtained aslog[2]/b, ; Thus, ab; with high SE trandatesinto a half-life
estimate with higher SE. The highest SE's are from subjects where (i) spread of T was not
aswide,(ii) fewer observations or (i) more variation from fitted line (larger RM SE).



