
Fall 1999   Course 513-697: Applied Linear Models

Highlights / Key Concepts in NKNW4 Chapter  2.1-2.6

[See also "Notes on M&M Chapters 2 and 9", "Bridge" from 607" & "Chapter 5" under Chapter 5 of webpage for course 678]

• Parameters of Interest: β1, β0 and derivatives of them; Estimators of these: b0, b1 and derivatives of them

• The following are all based on the assumption of Gaussian Error Regression Model

- Inferences based on t distrn. [non-Gaussian errors => t-based inferences not entirely accurate, but 'close' if n large]

- Reason for t: - b0, b1, and estimates derived from them are all linear combinations of Y's and
  so all have Gaussian variation

- variances of b0, b1 and estimates derived from them all involve σ2;

- if σ2 known, all inferences would be based on Gaussian distribution
  but σ2 has to be estimated, so must use a slightly wider distribution (t) instead

• §2.1 Inference concerning 1 [ β1 usually of far greater interest than β0]

- β1 = 0 <==> "No linear association b/w Y and X" (Distrn of Y | X identical for all X

- β1 ≠ 0 <==> "Linear association b/w Y and X"

• b1 is linear combination of Gaussian random variables -- each has a different mean if β1 ≠ 0

• E{b1} = β1 so b1 is an unbiased estimator of β1

• var{b1} = 
σ2

∑[X – X
–

]2
See "Notes on M&M Chapters 2 and 9" (under chapter 5 in 678 www page)

 for discussion of alternative forms for var{b1} and for the factors that affect var{b1}

• b1 ~ Gaussian(ß1, var{b1} ) => 
b1 –  β1

 var{b1}
  ~ Gaussian(0,1)

BUT var{b1} involves σ2 ... and  σ2 is typically unknown and so must be ESTIMATED... by MSE = 
∑[Y – Ŷ]2

n – 2

so, we have instead:  
b1 –  β1

 ESTIMATED var{b1}
  ~ t(with n-2 degrees of freedom)

THIS IS THE BASIS FOR INFERENCES CONCERNING β1

This is the same concept as when in a first course in statistics, we wished to make inference concerning µ on the basis of

n independent observations from a single Gaussian(µ, σ2). In that case... Y
–

 is a linear combination of i.i.d. Gaussian

random variables -- with mean µ;  E{Y
–

} = µ so Y
–

 is an unbiased estimator of µ; var{Y
–

} = 
σ2

n

=>   Y
–

 ~ Gaussian(µ, var{Y
–

} ) => 
Y
–

  –  µ

 var{Y
–

}
  ~ Gaussian(0,1)

BUT var{Y
–

} involves σ2 ... but if  σ2 is unknown and must be ESTIMATED... by MSE = 
∑[Y – Y

–
]2

n – 1

then, we have instead:  
Y
–

  –  µ

 ESTIMATED var{Y
–

}
  ~ t(n-1 degrees of freedom)

• t variable with ν  degrees of freedom = 
Gaussian[0;1] variable

 
Independent χ2 variable with ν  degrees of freedom

ν
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• 100(1 – α)% 2-sided CI for β1 : b1  ±  t(1 – α/2, n-2) ESTIMATED var{b1}

 -  ESTIMATED var{b1}  is often called the Standard Error or "SE" of b1.

• Test of hypothesis H0:   β1 = specified value [not necessarily zero]

vs. Ha:   β1 ≠ specified value  [2-sided] or say β1 > specified value  [1-sided]

based on test statistic t* =  
b1 – specified value

 ESTIMATED var{b1}
  vis-a-vis t(n – 2)

NOTE the link between 2-sided tests and 2-sided CI's (cf example 1  p 51, next line after 2.16)

INSTEAD OF "CONCLUDING H0" (in 2.18 p 51), PREFERABLE TO SAY "DID NOT REJECT H0"
(there's a big difference between 'concluding' and 'not ruling out' : if we took the author's wording, then a great way to
never conclude anything but H0 would be to not collect much data, so that the power to detect Ha, even if it were true,
was minimal; there is a big difference between "evidence of no relation" and "no evidence of a relation")

• 2.2 Inference concerning 0 [ β0 usually of lesser interest -- might not even be any data close to X=0]

Inference via b0 =    Y
–

 – b1 X
–

Can rewrite b0 as a linear combination of Y's, so if errors (and thus Y's) are Gaussian, so will be behaviour of b0 .

var{b0} = 
σ2

n
  + σ2 

 X
–2 

∑[X – X
–

]2
   =  σ2 [ 1

n
  +  

 X
–2 

∑[X – X
–

]2
   ]

note that the further the data are from X=0, the larger the uncertainty in the estimate of the intercept.

inference via fact that  
b0 –  β0

 ESTIMATED var{b0}
  ~ t(with n-2 degrees of freedom)

• 2.3 Notes:

- Asymptotic normality: akin to Central Limit Theorem and the fact that a linear combination of a large number of non-
identical but INDEPENDENTLY distributed [a key assumption] random variables will have close to a Gaussian
distribution even if the random variables do not themselves have Gaussian distributions. A little more complicated here
since dealing with ratio of a linear combination of random variables to a separate estimate of variance.

- Spacing of X levels: see "factors that affect SE of estimate of slope" in other handout (from course 607).

- Power of Tests... skip for now

• 2.4 Inference concerning E{Y | specified level of X}    [don't know why authors used h in Xh]:

Point Estimator of E{Y | specified level, Xh, of X} :  Ŷh = b0 + b1 Xh   Note : b0 &  b 1 negatively correlated*

- This is a linear combination of the Y's and so has a Gaussian distribution with
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E{ Ŷh } = β0 + β1 Xh

Var{ Ŷh } =   σ2 [ 1
n
  +  

[Xh –   X
–

]2 

∑[X – X
–

]2
   ]

* var more easily derived if rewrite   Ŷh =  Y
–

 +  b 1 [Xh –   X
–

]  . . .  2 components uncorrelated >

- Again, as in 2.1 and 2.2, we must usually ESTIMATE  σ2 by MSE, so that we instead have

 Ŷ h -  {  β0 +  β1 X h}] 

  ESTIMATED Var{Ŷh}
  ~ t(n-2 degrees of freedom)

 CI's and tests are as in §2.1 or §2.2.

As can be seen from variance formula, CI's are wider further away from the center, X
–

 , of the X points.

Note also that if Xh =  X
–

 , then Ŷh =  Y
–

  and Var{ Ŷh } reduces to the familiar var{ Y
–

 } =  σ2 [ 1
n
  ] .

• 2.5 Inference (prediction) concerning a new Y at a specified level of X}:

Have to approach in two steps:

1 estimate what the mean (center) of all possible observations would be at X = Xh.

2 Overlay the distribution of individual Y's  on  this estimated mean. Having lots of data to estimate the center quite
precisely will not alter the fact that the individuality of the Y values remains unaltered; mind you, we will have to
estimate --via the MSE --  this individuality.

The uncertainty about a new individual now contains two components 1. the precision (or lack of it) associated with getting
the middle correct and 2. the (unalterable) individuality or individuals

pred observation on individual = true mean + error in estimating this mean + individuality

var{pred observation on individual} = var{estimate of mean} + var{individuals about true mean}

= σ2 [ 1
n
  +  

[Xh–   X
–

]2 

∑[X – X
–

]2
   ] + σ2

= σ2 [ 1 + 
1
n
  +  

[Xh –   X
–

]2 

∑[X – X
–

]2
   ]

CI for individual based on t(n – 2) rather than Z, since  σ2  has to be estimated by MSE.

• 2.6 Confidence Band for ENTIRE Regression Line:

• This is different from what is usually output, namely the CI given in §2.5

• See especially notes 3 and 4 p69


