Fall 1999 Course 513-697: Applied Linear Models

Highlights / Key Concepts in NKNW4 Chapter 2.1-2.6

[See dso "Noteson M&M Chapters 2 and 9", "Bridge" from 607" & "Chapter 5" under Chapter 5 of webpage for course 678]

Parameters of Interest: by, by and derivatives of them; Estimators of these: by, b, and derivatives of them

The following are al based on the assumption of Gaussian Error Regression Model
- Inferences based on t distrn. [non-Gaussian errors => t-based inferences not entirely accurate, but 'close’ if n large]

-Reasonfort: - by, by, and estimates derived from them are all linear combinations of Y'sand
so all have Gaussian variation

- variances of by, b; and estimates derived from them all involve s?;
- if s2 known, al inferences would be based on Gaussian distribution
but s2 has to be estimated, so must use adightly wider distribution (t) instead

82.1 Inference concerning B, [ by usualy of far greater interest than bg]

- by = 0<==>"No linear association b/w Y and X" (Distrn of Y | X identical for all X

- by ! 0<==>"Linear association b/w Y and X"

* by islinear combination of Gaussian random variables -- each has a different meanif by 2 0

* E{b} =b; so0 b; isan unbiased estimator of b,

e var{b;} 20572_2 See"Noteson M&M Chapters 2 and 9" (under chapter 5 in 678 www page)
A= for discussion of alternative formsfor var{b;} and for the factors that affect var{ b;}

by - b

Vvar{b}

ary — V12
BUT var{b,} involvess2 ... and s2 istypically unknown and so must be ESTIMATED... by MSE :QHL

* by ~ Gaussian(f3;, var{b;} ) => Gaussian(0,1)

by — by
\/ESTIMATED var{b,}
THIS IS THE BASIS FOR INFERENCES CONCERNING b,

so, we have instead: ~ t(with n-2 degrees of freedom)

Thisisthe same concept as when in afirst course in statistics, we wished to make inference concerning mon the basis of
n independent observations from asingle Gaussian(m s2). In that case... Y isalinear combination of i.i.d. Gaussian

— _ _ 2
random variables -- withmeanm E{Y} =mso Y isan unbiased estimator of nyvar{Y} :%

=> ¥ ~Gaussian(y, var{Y} ) > Y om Gaussian(0,1)
V(¥
BUT var{Y} involvess2 ... but if s2isunknown and must be ESTIMATED... by MSE :EHE
Y - m
\/ ESTIMATED var{ Y}

then, we have instead:

~ t(n-1 degrees of freedom)

Gaussian[0;1] variable
\/ Independent c2 variable with n degrees of freedom
n

t variable with n degrees of freedom =
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100(1 — a)% 2-sided CI for b, : b, + t(1—-a/2, n-2) VESTIMATED var{b;}

- VESTIMATED var{b,} isoften called the Standard Error or "SE" of b;,.
Test of hypothesis  Hp: by = specified value [not necessarily zero]
VS. Hy byt specified value [2-sided] or say b, > specified value [1-sided]

b, — specified value
VESTIMATED var{b,}

based on test statistic t* = vis-a-vist(n—2)

NOTE thelink between 2-sided tests and 2-sided Cl's (cf example 1 p 51, next line after 2.16)
INSTEAD OF "CONCLUDING Hy" (in 2.18 p 51), PREFERABLE TO SAY "DID NOT REJECT H,"
(there's a big difference between 'concluding’ and 'not ruling out' : if we took the author's wording, then a great way to

never conclude anything but Hy would be to not collect much data, so that the power to detect H,, even if it were true,
was minimal; there is a big difference between "evidence of no relation” and "no evidence of arelation")

2.2 Inference concerning Bg [ by usualy of lesser interest -- might not even be any data close to X=0]

Inferenceviaby = Y —b; X
Can rewrite by as alinear combination of Y's, so if errors (and thus Y's) are Gaussian, so will be behaviour of by .
2 2 2
iy =2 v X e[ 1o ]
n 4[X — X]2 N &x- X2

note that the further the data are from X=0, the larger the uncertainty in the estimate of the intercept.

by — bo
VESTIMATED var{ by}

inference viafact that ~ t(with n-2 degrees of freedom)

2.3 Notes:

- Asymptotic normality: akin to Central Limit Theorem and the fact that a linear combination of alarge number of non-
identical but INDEPENDENTLY distributed [a key assumption] random variables will have close to a Gaussian
distribution even if the random variables do not themselves have Gaussian distributions. A little more complicated here
since dealing with ratio of alinear combination of random variables to a separate estimate of variance.

- Spacing of X levels: see "factorsthat affect SE of estimate of slope" in other handout (from course 607).

- Power of Tests... skip for now

2.4 Inference concerning E{Y | specified level of X} [don't know why authorsused hin X]:

Point Estimator of E{Y | specified level, X, of X} : \’(\h =by + by X;, Note: by & b, negatively correlated*

- Thisisalinear combination of the Y's and so has a Gaussian distribution with
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E{ ¥n} =bo + by X,

;+Mr'ﬂ2]

Var{\l(\“}:sz[ N ax- Xp
a —_—

* var more easily derived if rewrite 9,1 =Y + by [Xyn— X] ...2 components uncorrelated >

- Again, asin 2.1 and 2.2, we must usually ESTIMATE s2 by MSE, so that we instead have

Vi - { by + by Xp}]
\JESTIMATED Var{¥,}

~ t(n-2 degrees of freedom)

Cl'sand testsareasin §2.1 or §2.2.

As can be seen from variance formula, Cl's are wider further away from the center, X , of the X points.

Note also that if X, = X , then ¥, = Y and Var{ ¥}, } reducesto the familiar var{ ¥ } = Sz[ % ] .

e 2.5 Inference (prediction) concerning a new Y at a specified level of X}:

Have to approach in two steps:

1 estimate what the mean (center) of all possible observations would be at X = X,

2 Overlay thedistribution of individual Y's on this estimated mean. Having lots of data to estimate the center quite
precisely will not alter the fact that the individuality of the Y values remains unaltered; mind you, we will have to

estimate --viathe MSE -- thisindividuality.

The uncertainty about a new individual now contains two components 1. the precision (or lack of it) associated with getting
the middle correct and 2. the (unalterable) individuality or individuas

pred observation on individual = true mean + error in estimating this mean + individuality

var{ pred observation on individual} = var{ estimate of mean} + var{individuals about true mean}
— X112
:32[ 1y D= X Xl ] + s?
N3 x- X2
— X712
:SZ[:|_+1-+7[Xh X_] ]
ax - Xj?

ClI for individual based on t(n — 2) rather than Z, since s2 hasto be estimated by MSE.

e 2.6 Confidence Band for ENTIRE Regression Line:
* Thisis different from what is usually output, namely the CI givenin §2.5

* See especially notes 3 and 4 p69



