Fall 1999 Course513-697: Applied Linear Models
Highlights/ Key Conceptsin NKNW4 Chapter 7

Ideas unique to Multiple Regression - no analogy with Simple Linear Regression.
A number of important sub-topics are introduced in this Chapter (see also "Chapter 9" notesin c678)

--Formal tests for Addition/Deletion of 1 or more termsin aregression model (nicely done)
-- Callinearity -- very important -- should be in a chapter by itself!
-- Interaction terms -- again, should be in achapter by itself ("Effect Modification™ in Epidemiology)!
7.1  Extra Sumsof Squares
Extra SSif focus on SS;¢: Reduced SSif focus on SSyeqqual-

Same idea whether adding or removing 1 (or more) term(s)
EXAMPLE
Y: % Body Fat (by underwater weighing !! )
X1 Skinfold Thickness (by calipers:- some discomfort)
X2 Skinfold Thickness (by tape measure:- painless)
X3 Midarm Circumference (by tape measure:- painless)

IN COMPACT NOTATION (2" X" terms)

SSR (short for SSreg) SSE (short for SSgrrqr) SST (short for SSiotal)
SSR(X1) + SSE(X1) = SST
SSR(X 1 ,X2) + SSE(X 1 ,X2) = SST

SSR(X1,X2) - SSR(X1) SSE(X1) - SSE(X1.X2)

"Extra SSR dueto X"

"Reduced SSE dueto X"
SSR(X>| X1)

IN COMPACT NOTATION (3" X" 's)

SSR(X1) + SSE(X1) = SST

SSR(X1,X2) + SSE(X1,X1) = SST

SSR(X1,X2,X3) + SSE(X1,X1,X3) = SST

= SSR(X1) =SST - SSE(X1) Note order matterd
SSR(X>| X1) =SSE(Xy1) - SSE(X1,X2) SSR(X>| X1) not same
SSR(X3| X1.X2) = SSE(X1,X2) - SSE(X1.X2,X3) as SSR(X1| X2)
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Different decompositions have different meanings

eg. a b c
SSR(X1) SSR(X1) SSR(X3)
SSR(X2| X1) SSR(X3| X1) SSR(X2| X3)

SSR(X3| X1,X2) SSR(X2| X1,X3) SSR(X1]| X2,X3)

These decompositions are referred to as "variables added in order SS' or "Type | SS'
(to distinguish them from "variables added last SS' or "Typelll SS' used below)

If labeling is not obvious, or if you forget what Type | means (I don't blame you, given the
imaginative choice of the label), one way to recognize it for what it isisthat Type | SS count each
separate contribution just once .. so that the successive Type | SSR's add to the overall SSR.

Graphical Depiction of these decompositions ... see Figure 7.1 on page 265

(1 find thisdiagram so helpful that | scanned it and put it on the www page for c678 -- where we
used a different text)

Using SS decomposition in ANOVA Table => Decomposition of Degrees of Freedom
The above decomposition is for the Sums of Squares.
When the decomposition is done one term at atime, the SSR(X1), SSR(X5| X1), SSR(X3| X1,X2) ...

and the corresponding MS(X 1), MS(X5| X1), MS(X3| X1,X5) are the same -- since each divisor
involves 1 df.
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7.2
and
7.3  "ExtraSumsof Squares' to test coefficients of Multiple Regression

From Cochran's Theorem [ partitioning SS; each (1/s2) MS ~ indep. central/non-central X2 ]

Singleb [ Ho: thisb's=0]
t* =b/ SE[b] with df = df for residuals (€'s) when this X & other X'sin the model
or (equivalently, since t*? = F*)

SSR[this X | other X's] / 1 df _ MSR[this X | otherX's]|

F SSE[thlsX & other X's] / df for €'sif thisX & other X's ~ MSE[this X & other X's]

Several b's [ Hp: theseb's=0]

SSR[these X's | other X's] / # of these X's _ MSR[these X's | other X's]

P = SSE[these & other X's] / df for E if these X's & other X's ~  MSE[these & other X'

All b's[ Hop: all theb's=0]

SSRJ[all these X's] / # of X's _ MSR][ these X's]

F* = SSE[these X's] / df for €sif these X's = MSE] these XS]

IN GENERAL [ Hg: set of (linear) constraintson theb's]

B = SSR[constrained b's] / # of constraints _ MSR["dueto" constrained b's|
~ SSE[no constraints] / df for €sif no constraints a M SE[no constraints]
i.e.
= { SSreg[larger model] - SSgeg[smaller model] } / # of constraints

SSE[no constraints] / df for €sin larger model

_ MSR["dueto" constrained b's]

B M SE[larger model]
Q: Why use the MSE from the larger model as the denominator of each test?

Even if sometermsin larger model are unnecessary, this MSE is an unbiased estimator of s2[€].
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Coefficients of Partial Deter mination

Recall: Coefficient of Multiple Determination:

Reduction in Var(Y) through use of X1, Xo, ..

o _ ValY]-ValY [X1 X ...] _ SSRIXy X ...]
Y with X1, X2, X3, ... ValY] SSE[mode with just b

By analogy. Coefficient of Partial Determination (by X1 -- after aready fitting X»):

Reductionin Var(resdua Y | X»)

_ ValY | X3] - VarlY | X1 X3]

2y with X1 given X2 VarlY [X3]
- SSR[X1]X2]
SSE[model with just { Xg and} X1]
likewise...
) _ValY | Xq] - VarlY | X1 X,
<y with X2 given X1 = varlY [Xq]
_ SSR[X2|X1]
SSE[model with just { Xg and} X2]
note:
2y withXx1givenX2 =2y with X1'
where Y =resdual of Y after regressing Y on X5, and
Xq' =residual of X1 after regressing X, on X5 .
Goingontomore X's...
r2 ) ) — SSR[X4 | X1 Xo X3 ]
Y with X4 given X1, X2 and X3 - SSE[modeI with Xl X2 X3 ]

Coefficients of Partial Correlation (Square Root of Coefficient of Partial deter mination)

(Useful to those who think in correlations rather than regresssion coefficients)

'Y with X4 given X1, X2 and X3

=sign[bs inmodel of Y on X1 to Xy4] ° \/r2 of Y with X4 given X; to X3
(seeegns. 7.41 & 7.42 on how to calculate them from lower order partial correlation coefficients)
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7.5  Standardized Multiple Regression Model

- relevant also for Simple Regression model:- eiminates b's in different Y/X1 , Y/X»,... units
(so don't have to worry if X1 isin cm or inches or metres, X, in Kg or Ibs or grams-- or $'s)

- issues of numerical accuracy no longer quite as relevant with high-precision facilities
(accuracy issuesif X's of very different magnitudes, or highly correlated so det[X TX] close to 0)

Correlation Transfor mation
- transform each X variable so that each entry in XTX matrix isacorrelation of 2 X's, i.e.

X - Xbar
\[S(X - Xbar)?

- transform Y variablein sameway , i.e.

.. X' T X" matrix = correlations of pairsof X's

X'=

(text formula makes transf. unnec. complex)

Y - Ybar

\S(Y - Ybar)2

-fitmodel Y '=by' X1'+by' Xp'+...+e" (nointerceptsinceavelY '] now =0)

Y'= (text formula makes transf. unnec. complex)

work back ...

SD[Y]
SD[Xk]

bk = bk'

bo :Ybar-(b1X1+b2X2 +)

X'T X" matrix = correlation matrix of original X's = Ryx
X' TY" vector = correlation of Y with each origina X = Ryx
LS Solutionforb ' , thecolumnvector (by', by, ...)T

b' =(Rxx)1Ryx

For worked example, see text
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7.6

Multicollinearity and its Effects (see also item from Graybill on IlI-Conditioning)
Meaning: (high) intercorrelation among some or all of the X termsin amultiple regression
I mplications:

- easiest to understand by examining just 2 Xs and just the two extremes:

- see "Confounding[in pictures and numbers]” in Chapter 8 material in c678 www page;
- see also the "hammock™ spreadsheset

X1 & X2 uncorrelated X1 & X2 perfectly (+ or -) correlated
* by (X1-only modd) = b; (X1 & X2 mode!) b, (X1 only model) doesn't have
same meaning or value
as by (X1& X2 model)
* SSR(X1) = SSR(X1]|X2) SSR(X1 | X2) =SSR(X2|X1) =0
and vice versa (can fit b1 and b2 "marginaly") different (by,by) pairs give samefit

(see Fig 7.2 in NWNW4)

uncorrelated estimates of b, and b, cannot "separate” b1 and by
estimates:- (by,lp) are unstable
* (b1 +ve, by -ve) in one sample
* (by-ve, by +ve) in another

Like hammock, fitted surface rests
on a"knife-edge"

BUT: can make predictionswithin
(X1,X2) dataregion

In practice, inter-correlations of X's (and effects of these) are usualy somewherein between.
but, more difficult to "see" if more than 2 X's. (Large SE'sfor b's can be a warning)

Chapter 9 will describe methods for detecting multicollinearity in "higher-D" X data.
Chapter 10 explains remedial methods (including "Ridge Regression”).
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1.7

Polynomial Regression

(Use of higher powers of X (or products of two or more X's) as terms in a multiple regression)
Can be helpful for fitting Response Functions of asingle X, or a Response Surface for 2 X's.

* INSIGHT (in SAS) has adangeroudy-simple interface for fitting a polynomial in asingle X.

* Polynomial regression is simply a multiple regression where the terms are powers of same basic
X variable; BUT one needs to be extra careful about overfitting and about extrapolation Thiswill
remind me to relate one physician's use of afitted polynomial of time (fitted in the original Lotusl-
2-3 software) to monitor (and ?? anticipate) a patient's White Blood Cell (WBC) count over time.

*» On arelated note: concerning Figl of the article™ Changesin Alcohol Consumption With Age"
in Can JPublic Hedlth Val. 82, July/August 1991 pp231-4 elsewhere on thiswww page. (see aso
excerpts from article)

RESULTS (from text of the article)
M easur es of consumption (based on atotal of 3,304 interviews)

The top panel of Figure 1 shows mean alcohol consumption in drinks per month for males,
females and all respondents by age. The middle panel presentsin a similar manner the
frequency of drinking occasions per month, and the bottom panel shows the quantity (mean
number of drinks consumed per drinking occasion).

These figures were derived by rank ordering all respondents by age. Each data point
represents the mean of successively older groups of 25 respondents. Plotting datain this
fashion provides information on the relative density of observations according to age and sex.
In order to reduce the scatter which could obscure trends, a 4253H, twice compound
smoother with endpoint adjustment was used. This consists of a series of running median
smoothers and the Hanning running weighted average smoother applied twice.

The top panel shows an age-related decline in total alcohol consumption per month for all
respondents. This line has a slope of -0.12. It is clear from these figures that the age-related
decrease seen in the top panel is largely due to a decrease in quantity which shows a rather
steady decline with age (slope = -0.26), rather than any change in frequency, which has a slope
of only -.04. The correlation between frequency and dose is-0.11 which is small, but statistically
significant (p < 0.0001).

* | question the choice of "smoothing" that the authors carried out. Although they are non-
parametric,they look like high order polynomials that seem to "follow" every little random
twist and turn in the raw data. To my eye, the patterns in the bottom panel are quite linear---
the "join the dots" approach (even with each dot being a running median) over-accentuates
the random components -- what one wants first is the BIG PICTURE .. the clear
downwards "close to linear" trend. | believe the little ups and downs along the way are
random noise -- and that they are being over-emphasized. | cannot imagine that the
population medians actually behave like this.

* Polynomial models are often used for prediction. Thus, the meaning of individua b'sisless
critical than when they are associated with different X's. Nevertheless, they are agood example of
the benefits of " centering” X variablesin any multiple regression, and of theinduced
collinearity if oneuses" raw" powersof X, or -- for that matter --products of two different
X variables. If X isapositive RV, then X2 can be strongly correlated withiit.
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7.8  Regression Modelsinvolving I nteractions
See also: www material, Session 5, course 678: Interaction(Effect Modification) in Regression
Definitions ...
I nteraction (statistical)
- "Non-additivity" of "effects’ in regression

- need for product term in regression analysis (miettinen)
note that need for product term may be scale-dependent (e.g. Y vslog Y scale)

(Effect) Modification (epidemiological)
- Inconstancy of a parameter of arelation over other subject characteristic (miettinen)
- "Different dopesfor different folks' (jh)

"Modifier (of arelation)
- A characteristic (of individuals) on which a parameter of arelation depends (osm)

Examples... (first 4 are on course 678 www page)

Equation for Ideal Weight as function of Height - modification by Gender

Average Earnings as function of Education/ Age - modification by Gender

Declinein Bone Density with Age - Different in 19th and 20th Centuries
Hit further with aluminum than wood basebal bat? - Depends on where on bat one hits
Changes over timein injury rates - Different in intervn. & ref. areas?

Commentson NKNW4 (and most statisticians') terminology:
"regression model is not additive, or. equivaently, it contains an interaction effect "
"non-additive" isamore informative phrase; it avoids possible over-interpretation of the
word interaction; it highlights the non constancy (over X») of effect of X1 on (a specific
function of) my. It aso plays down the interpretation of phraseslike"... interaction effect is
of areinforcement or synergistic type" or "of aninterference or antagonistic type". (p311)
Oxford English Dictionary ...

interact- "to act reciprocally, to act on each other"
interaction:- "reciprocal action, action of persons or things on each other"
Inter pretation of modelsthat include interaction (product) terms
E[Y | X1,X2] =bg+ by X1+ by Xy + bz Xy Xo
=(bg + by X2) + (b + bz X3) X3 ...if wishtothink of E[Y] vs X
=(bg + b1 X1) + (b2 + bz X1) Xz ... if wishto think of E[Y] vs X>
mathematically symmetricin X1 and X (although seldom so in practice)
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Interpretation ...

If one of thetwo X'sisthe natura "modifier" of the"Y - other X" relation, easier to refer to
modifier by another symbol (M) and write equation as

E[YlX,M] =bg+ b1 X+boM + b3 XM
=(bo + bz M) + (by + b3 M) X

Don't try to interpret thebs "inisolation". And, athough the severa different (M-specific)
X-Y relations can be represented in a single equation, remember that they must be separated
out when describing them.. i.e.

interaction <---> "Different Y vs X story" for each level of M
"no single summary that appliesto al levels of M"

Think of b for product term as "additional Y-X dope for each unit differencein M"

If b for product termissmall (in sensethat Y-X dopeisn't that different from one end of
the M range to the other) , then the Y-X dope obtained by dropping M from model is not
that misleading

("1051bs. +5.51bs. for every inch over 5 feet” ... for adults of either sex??)

"Removable" vs. " Non-Removable" Interactions

Y "Removable" "Non-Removable" "Non-Removable"
M=0
M=0 M=0
X X X

X & M both Binary => f associated with XM product is a" double difference"

[ yXZl - YXZO ] M=1 " [ yXZl o y-XZO ]M=0

Statistical precision/power to measure/detect a double difference considerable lower than that to
measure a single difference. We often end up not being able to adequately statistically test if X
differences in response are M-specific, and so depend on analogy or other outside information
judgment when deciding whether to report them separately (M-specificaly).
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Warning in most textbooks: if put product term in model, then must also include each
component of the product (i.e. X1 and X, aswell as X1X5)

Absolutely must? No. BUT be careful to interpret coefficients carefully! Helpsto draw thelines e.g.
ELY | X1,X2] =

Bo + B3X1X> Bo +B2Xy +B3X1X>2 Bo +B1X1 +B2Xs +B3X1X»
E[Y] E[Y] E[Y] X2=3
25 25 25
X2=3 /
20 20 20 //. X2=2
15 15 X2=2 15 B
B2 B2 // X2=1
10 wo—3 10 x2=1 10 / "
X2=2 / =
5 . X2=1 5 5
BO X2=0 BO X2=0 BO
00 00 OO
X1 X1 X1

Product Termsto test changein Y level or Y-time slope (or both) when changes introduced
(serially)

Examples

- Prescriptionsfilled before and after the introduction of the Quebec Drug Plan

- Motor vehiclefatality rates before/after change back to 65 mph limits

- Asthma deaths before/after removal of certain asthmadrug in New Zealand

- Numbers of Marriage Licencesissued before/after HIV tests became mandatory
- What Does It Take to Heat a New Room? (see datasets on 697 www page)

Product Termsto test changein Y level or Y-time slope (or both) when changes introduced
(parallel groups)

Example

-The Lidkoping Accident Prevention Programme -- a community approach to preventing childhood
injuries in Sweden (see www material in "datasets' in course 626)

Reducing Collinearity of Product Term and its Components ... by Centering
Example

-The Lidkoping Accident Prevention Programme (X=Time M = Program)

10
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7.9 Constrained regression
- Seetext
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