ILL-CONDITIONING AND COLLINEARITY

From Graybill FA and lyer H K
Regression Analysis. Concepts and Applications

Duxbury Press Belmont Ca 1994

EXAMPLE 5.5.2 (p394-397)

Suppose we want to develop afunction for predicting the weight Y using age (X1), and length (X2)
for babies with ages ranging from 1 month to 12 months, and that a sample of size 12 was selected
by first preselecting the ages and then randomly choosing one baby from each presel ected age

group. The length and weight of each chosen baby are recorded along with age. The dataare

displayedin Table 5.5.2.

Observation
Number

PR e
KEBowo~wouhrwNhr

Weight
Y (pounds)
9.

14.7
14.4
15.2

Age
X1 (months)
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Suppose that assumptions (A) for regression are satisfied with

My(X1,X2) =bg + byX1 + bpX2

Length
X2 (inches)
204
20.9
221
21.7
22.9
24.2
24.9
26.1
26.9
27.6
28.1
29.2

(5.5.1)

We estimate the parameters, b; using the formula (4.4.8) and carrying out all calculations exactly
(by hand). The results are

XTX =

XTy =

(XTX)1 =

b= (XTX)1XTy =

12
78
295

143.5
1018.5
3598.99

63417951 / 236068
1357051/ 118034
-824135/ 59017

5743609 / 2360680
421987/ 1180340
34577/ 118034

78
650
2035.7

1357051/ 118034
29723 /59017
-35460 / 59017

2.433031584
= 0.357513089
0.292941017

295
2035.7
7351.16

-824135/ 59017
-35460 / 59017
42900/ 59017

(final result
rounded to

9 decimals)



Now supposethat X2 and Y values are measured dightly inaccurately, resulting in the datain Table
5.5.3. Note that the data valuesin Table 5.5.3 differ from the corresponding valuesin Table 5.5.2
by at most plus or minus 0.1.

Observation
Number

Weight
Y (pounds)
9.

Age
X1 (months)

Length
X2 (inches)
20.5
20.8
22.2
21.6
23.0
24.1
25.0
26.0
27.0
275
28.2
29.1

We again estimate the parameters b; using formula (4.4.8) and carrying out all calculations exactly
(by hand). The results are

XTX =

XTy =

(XTX)1 =

b= (XTX)1XTy =

12
78
295

143.5
1017.9
3598.42

63612799 / 275428
1351165/ 137714
-825305 / 68857

-377089 / 2754280
335833/ 1377140
58877/ 137714

78
650
2035.1

1351165/ 137714
29495 / 68857
-35280 / 68857

-0.13691019
= 0.243862643
0.427530970

295
2035.1
7350.40

-825305 / 68857
-35280 / 68857
42900 / 68857

(final result
rounded to
9 decimals)

We see that small perturbations (changes or errors) in the sample values have resulted in substantial
changesin the estimated parameter values, even though the calculations are exact.

The matrix X may beill-conditioned because of one or both of the following reasons:

1 Oneor more columnsof X consist of elements all of which are very nearly equa to zero.

2 Oneor more columns of X are very nearly obtainable aslinear combinations of the remaining
columns. In this case we say that multicollinearity exists among the columns of X. Thisis
what happensin Example 5.5.2. Y ou may verify that in Example 5.5.2, X1 and X2 are nearly
linearly related and that in fact

X2 =19.2106 + 0.82657 X1,

causing the X matrix to beill-conditioned.



Multicollinearity among the columns of X can occur due to one or more of the following reasons:

a Inthe population, one or more of the predictor variables X1, . . ., Xk isnearly an exact linear
combination of some or al of the remaining predictor variables. For instance, variable Xj may
be very nearly an exact linear combination of the remaining predictors so that we have

Xj~Co+C1Xy + e+ Gy Xj1 + Cjug Xjug + + CiXk

for every observation. In this situation we say that multicollinearity exists among the
predictor variables in the population. If sample data are obtained by simple random sampling,

then the sample vaues of the predictor variables also tend to exhibit a relation such as (5.5.2),
resulting in multicollinearity among the columns of the X matrix, making it ill-conditioned.

When the predictor variables exhibit multicollinearity in the population, then even if the data are

obtained by sampling with preselected X values, we are unable to avoid an ill-conditioned X

matrix because arelation such as (5.5.2) holds for every set of values (X, . . ., Xk) that occurs

in the population.

Consider, for instance, a study in which the predictor variables X1, X2, X3, X4, and X5 are
heights at ages 4, 5, 6, 7, and 8, respectively, of a population of children, and the response

variable Y isheight at age 9. In al likelihood, the height at age 8 can be predicted very well
using the heights at ages 4, 5, 6, and 7 in alinear prediction function. This meansthat Xsisvery

nearly alinear function of X1, X2, X3, and X4 in the population, and no matter how the sample
is selected, the sample valuesof X5 will aso be very nearly a linear function of the sample

valuesof X1, X2, X3, and X4.

b Datawere obtained by sampling with preselected X values, but practical constraints such as cost,

infeasibility of obtaining samples of the response variable at certain combinations of the
predictors, etc., may have resulted in a choice of preselected values for the predictors leading to

anill-conditioned X matrix.

¢ Thedesign of the study is bad. Here investigators could have selected values of the predictor
variables in such away that the X matrix would not be ill-conditioned, but they failed to take

advantage of this opportunity.

Presence of multicollinearity among the columns of the X matrix has the following implications:

a Computations are very sensitive to rounding, and even if severa significant digits are retained
during various steps of the calculations, they often yield incorrect values for estimates of various
parameters. This can perhaps be overcome by using double precision or multiple precision

calculations.

b Theresultsare highly sensitive to errors in the sample data. Even seemingly negligible errorsin
the measurements can lead to results that have no resemblance to the results that would be

obtained if there were no errorsin the data. Because practically all measurements are subject to

errors, the resulting statistics cannot be taken serioudly when the columns of the X matrix exhibit
multicollinearity. Thestandard errors of the parameter estimates may reflect this situation by

taking on valuesthat are extremely large relative to the magnitude of the estimates.

¢ Based on the sample at hand, it is not possible to separate the influences of each of the
predictors on the response. This is again related to the fact that the estimated regression
coefficients tend to have large standard errors relative to their magnitudes. Whereas we may be

able to find good prediction functions, we have to choose arbitrarily from among several sets of

nearly equally good prediction functions. Knowledge related to the field of application can often

guide usin making arational selection.



