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NOTES ON THE THEORY OF PROBABILITIES.
By SIMos Newcomb, Cambridge, Mass.

[Continued from Page 335, Wol. I.]

15. ThE problem which we are about to consider is one of the
most fruitful in the theory of probabilities, as out of it grow the
theory of errors, the theory of chance distribution, the law of aver
ages, and the estimation of the probability that an observed concur
rence of events is the result of a law of nature.

To find the probability that an event of which the probability on a single

trial is p will happen s times on n trials.

The probability that it will fail on every trial is (1 — p)", 1–p
being the probability that it will fail on any single trial.
The probability that it will happen on the first trial and fail on

the n — 1 following ones is p (1 — p)"-". But as the single event

is as likely to occur on the 2d, 3d, . . . . . nth trial as on the first, the
probability that it will occur just once is np (1 — p)"T".
The probability that the event will occur on the first two trials

and fail on the n – 2 subsequent ones is p" (1 — p)"T". But the
two events can equally occur on the (1,3), (1,4). . . . . (1, n)

,
or the

(2,3), (2,4), &c. trials; in fact there will be & pairs of trials on which

the two events can occur, so that & p” (1 — p)"-* is the proba
bility that it will occur twice.

rt

By a process of reasoning exactly like the last, we find the prob
ability that it will occurs times to be

-

(1) P = ºr (1–py-,
which is the (s –H 1)st term in the development of the binomial
[(1 — p) + p.". The sum of the probabilities of al

l

the possible

results of the n trials is therefore 1, as it ought to be.

|
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As an example to elucidate the above, suppose that a cent is so
formed that a head is twice as likely to be thrown as a tail, so that
the probability of the former on each throw is 3. If the coin is
thrown four times, the results of the four throws may be as follows.
After each separate result is written the fraction expressing the
probability of that result.

No heads, t t t t + = ºr
,

1 head, h t t t t htt, t t ht, t t t h, each ºr ; X 4 = ºr,

2 heads, h htt, h th t, h t t h, th ht, th th, t t h h, 6 × ºr = ##,

3 heads, h h ht, h h th, h th/, thhh, = }},

4 heads, h h h h = }}.

If we supposed heads as likely to be thrown as tails, we should
find these probabilities to be I's, Hº, Hº, Hº, T's, respectively. The
result would evidently be the same if we supposed that four coins
were thrown from a box together.
16. To resume the general discussion, let us see what value of s

is the most probable. This value we will determine by the condition
that its probability must be greater than that of the next smaller
number, and also greater than that of the next greater number, or

(p
.

(1 —p)"-" > ºw- (1 —p)"-'t";

s s + 1

Çr (1–py-> (p" (1–py-'-'.

%
,

n – s + 1 7". '?' n – s -g-º-; g; £-ii (;

we have from the division of the first inequality by 'cy- (1—p)"-",

Since

1–p < *=::tºp, which gives s 3 p (n + 1);-

s

and from the division of the second inequality by & p' (1–p)"-'-'
we have
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1–p-Hºp, which gives s >p (n + 1) — 1;

s is therefore the greatest whole number in p (n + 1)
. If s and za

are very large numbers, we have very nearly

(2) :=p.

It follows, therefore, that in a great number of trials events are
more likely to occur a number of times proportional to their re
spective probabilities than any other number. Thus if a cent is

thrown one hundred times, heads are more likely to be thrown fifty
than any other single number of times. But it must not be sup
posed that they are therefore more likely to be thrown fifty times
than not, for it is almost as likely to be thrown 49 times or 51 times

as fifty times. The chances that it would be thrown exactly fifty
times would be quite small, because there are so many other num
bers that might be thrown.
17. Another deduction from the expression (1) is the following:

however small the probability of an event on a single trial, by in
creasing the number of trials we can render the probability that the
event will occur at least once as great as we please. For the proba
bility that it will fail on every one of the n trials being (1 — p)";
however small p may be, we may make n so great that (1–p)" shall
be as small as we please.

18. Suppose now that n is infinitely great, and p infinitely small,
and that n p = a, a being a finite quantity. We may then put

n = n – 1 = n – 2, &c. We shall then have, while s is finite,

s

s 77° s w”(p = {=},

(1 — p)"T’ = (1 — p)" = (1 — p) = e-",

e being the Napierian base. Substituting these values in (1) we ob
tain for the probability that the event will occurs times
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(3) P. = **s!
The probability that the event will fail, is therefore e-"; that it will- 24 - o” - as
occur once only, a eT"; twice only, 3 * , &c.

The sum of this series of probabilities continued to infinity is

~ (1 + 4 + 3 +...+ &c.)= e− e = 1, as it ought to be

19. We may apply this equation to the determination of the
probability that, if the stars were scattered at random over the
heavens, any small space selected at random would contain s stars.
Let N be the whole number of stars, h the number of units of space
in the heavens, then y dh may be taken to represent the infinitely

small probability that the infinitely small space dh contains a star.
Moreover, if l represents the extent of space selected at random
which we consider, we may consider the examination of each dh as

a trial, and the number n of trials will then be # The value of a

will then become # , and by substitution in (3) we have

Nº re-º
(4) P – Thºst

for the probability that the space l contains 8 stars. Suppose, as a
numerical example, that l is a square degree, and N = 1500, which
is about the number of stars of the fifth and higher magnitudes;

s = 6. We then have
# =

1
by the substitution of theseT 41253 2

values in (4) we shall have the probability that any square degree

selected at random in the heavens contains six stars. Multiplying

this probability by 41253, the number of square degrees in the
whole heavens, we obtain the probability that, if the heavens were

divided at random into square degrees, some one of those square degrees

would contain si
x

stars. This probability we find to be

WOL. II. 18
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15006

412535. 6]

... eT .03636- .000000128.
This, however, is evidently rather smaller than the probability that
six stars should be found so near together that a square degree could
be fitted on so as to include them.

Mr. MITCHELL committed an error in his solution, the effect of |

which, if I mistake not, is to make his probability too great. His
general method is

, however, better applicable to this particular prob
lem than that given above, but as there is a margin of vagueness and |

uncertainty about the problem in question, so that the answer does
not admit of being expressed in exact numbers without an exces
sively complicated process of reasoning, I have preferred to deduce

an approximate solution from the general formulae, to be used in so

many more problems.

20. Let us now consider Prof. Forbes's objections to the above
results of the calculus of probabilities.
He scattered paint from a brush upon a wall, and found double

and triple spots and groups innumerable. This is about as decisive

as an attempt to disprove the Pythagorean proposition by measur/ ing the squares described on a triangle without knowing whether it

had or had not a right angle, and finding that one square was not
equal to the sum of the others. As a mathematician would answer
this objection by saying that his result only proved that he had
either made a mistake in his measurements, or had not measured a

right triangle; so Prof. For BES's result only proves that either he

was mistaken as to the marked character of the groupings, or that
the proximity of the components of each group was the effect of

their positions being determined by the action of the same cause, which

is al
l

that the theory of probabilities claims for the Pleiades. The
latter supposition is by no means improbable, because a group of

spots might be formed by the breaking up of a drop after it had
left the brush.
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21. Prof. FoRBEs remarked that an exactly uniform distribution of
stars would not be expected as the result of a random distribution.
In this he is correct; and as it is an interesting problem, we shall
here determine what law a random distribution may be expected to
follow. It may appear paradoxical to assert that the results of
chance can be expected to follow any law; but such is really the
case, and the formula (3) determines the law. As an example, sup
pose that the heavens are divided into 1500 equal portions, and
that 1500 stars are distributed at random, or, to speak with more
philosophical accuracy, that the causes which determine the position

of each separate star are entirely independent of those which deter
mine the position of any other. Then by reasoning as in § 19 we
find a = 1; and by formula (3) the probability that a unit of space– " + I

= gris.”; one star, is
two stars, #: three stars, sº ; &c. If we then select the whole

selected at will contains no star, will be :

1500 units we ought to expect the number which would be found
to contain the several numbers of stars to be somewhere near 1500

multiplied by the respective probabilities, or
1500 - - - -

about *= 552 portions containing no star,
15004%
z = 552 « 4. 1 star,

4% º – 276 ** 4% 2 stars,

44 ! — 92 << & 3 stars,

<< * = 23 « 4. 4 stars,

44 ! F. 4(+) 44 4. 5 stars,

a 1500 = 1 4% 4. 6 stars,6!e

* The acute reader will perceive that the solutions in §§ 19 and 21 are those of a
problem slightly (though not materially) different from that actually propounded.
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and it would be quite improbable (about 1 chance to 8) that any
space would be found to contain more than six stars.
If any one wishes an experimental illustration of the principle

let him take a pint of rice, color a hundred grains of it black, mix
the black grains thoroughly with the remainder, and stir the mixture
till he finds six or eight of the black grains to form a group by
themselves. Before this result arrives he will in al

l probability be

willing to admit that should he ever see such a group in such a

mixture, he would not believe that it was formed by indiscriminate
mixing.

A SECOND BOOK IN GEOMETRY.
[Continued from Page 104.]

CHAPTER VI.
THE PYTHAGOREAN PROPOSITION.

91. Theorem. If a triangle has one side and the adjacent angles equal respectively to a side
and the adjacent angles in another triangle, the two triangles are equal. — Proof. Let us sup

B E pose that, in the triangles A B C and DE F, we have the side

A B equal to the side DE, the angle at A equal to the angle D
,

2 \ and that at B equal to that at E. Let us imagine the triangle
DEF to be laid upon A B C in such a manner as to place E

upon B, and D upon A, which can be done because A B is equal

to D E. Now, as the angle A is equal to D
,

the line D F will run in the same direction as

A C, and, as it starts from the same point, will coincide with it. Also, since the angle B is

equal to E, the line E F will coincide with B C. Whence, by article 90, the triangles are
equal.º Theorem. The opposite sides of a parallelogram ar

e

equal. — Proof. Article 90 gives

us the only test of geometrical equality. So

that in order to prove this theorem we must
show that in a parallelogram like A B C D

,
A B

may be made to coincide with DC, and BC
with A.D. And this would evidently be done

if we could show that the triangle A B C is

equal to AD C. But in these triangles the line

A C is the same, and by article 87 the adjacent angles A C B and C A B are equal to the
adjacent angles C A D and A CD; whence, by article 91, the two triangles are equal, and

A D is equal to B C, and A B equal to D.C.

A C D

Fig. B
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